## Warning: package 'data.table' was built under R version 4.0.3
download.file("http://www.openintro.org/stat/data/evals.RData", destfile = "evals.RData")
load("evals.RData")Is this an observational study or an experiment? The original research question posed in the paper is whether beauty leads directly to the differences in course evaluations. Given the study design, is it possible to answer this question as it is phrased? If not, rephrase the question.
It is a observational study. An observational study is where no variables are changed and the researchers just record what they see, but an experimental study is where you have a control group and a testable group. The question should be rephrased to are higher ratings in course evaluations given to more attractive professors? This is because there is no way to check if there is a direct link between beauty and course evaluation ratings based on an observational study.
Describe the distribution of score. Is the distribution skewed? What does that tell you about how students rate courses? Is this what you expected to see? Why, or why not?
Distribution is left skewed. It makes sense because the professors have many years of training and it is not common to have a really bad professor.
Excluding score, select two other variables and describe their relationship using an appropriate visualization (scatterplot, side-by-side boxplots, or mosaic plot).
## -- Attaching packages ------------------------------------------------------------------------------------------ tidyverse 1.3.0 --
## v ggplot2 3.3.2 v purrr 0.3.4
## v tibble 3.0.3 v dplyr 1.0.2
## v tidyr 1.1.2 v stringr 1.4.0
## v readr 1.3.1 v forcats 0.5.0
## -- Conflicts --------------------------------------------------------------------------------------------- tidyverse_conflicts() --
## x dplyr::between() masks data.table::between()
## x dplyr::filter() masks stats::filter()
## x dplyr::first() masks data.table::first()
## x dplyr::lag() masks stats::lag()
## x dplyr::last() masks data.table::last()
## x purrr::transpose() masks data.table::transpose()
par(mfrow=c(1,2))
evals %>% filter(gender=="female") %>% ggplot(aes(x=bty_f2upper, color="red")) + geom_density() + labs(title="Beauty rating of professor from upper level female")evals %>% filter(gender=="male") %>% ggplot(aes(x=bty_m2upper)) + geom_density() + labs(title="Beauty rating of professor from upper level male") When we compare the beauty rating of professor from upper level female vs. male we can see that students favor male professors.
Replot the scatterplot, but this time use the function jitter() on the y- or the x-coordinate. (Use ?jitter to learn more.) What was misleading about the initial scatterplot?
# Insert code for Exercise 4 here
evals %>% mutate(x=round(score)) %>%group_by(x)%>% select(bty_avg) %>% summarise(m = mean(bty_avg))## Adding missing grouping variables: `x`
## `summarise()` ungrouping output (override with `.groups` argument)
## # A tibble: 4 x 2
## x m
## <dbl> <dbl>
## 1 2 3.13
## 2 3 4.00
## 3 4 4.27
## 4 5 4.92
There does not seem to be 463 observations plotted in the inital scatterplot. With jitter() we see more points and this function helps to see trend that score grows with bty_avg.
Let’s see if the apparent trend in the plot is something more than natural variation. Fit a linear model called m_bty to predict average professor score by average beauty rating and add the line to your plot using abline(m_bty). Write out the equation for the linear model and interpret the slope. Is average beauty score a statistically significant predictor? Does it appear to be a practically significant predictor?
##
## Call:
## lm(formula = evals$score ~ evals$bty_avg)
##
## Residuals:
## Min 1Q Median 3Q Max
## -1.9246 -0.3690 0.1420 0.3977 0.9309
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 3.88034 0.07614 50.96 < 2e-16 ***
## evals$bty_avg 0.06664 0.01629 4.09 5.08e-05 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.5348 on 461 degrees of freedom
## Multiple R-squared: 0.03502, Adjusted R-squared: 0.03293
## F-statistic: 16.73 on 1 and 461 DF, p-value: 5.083e-05
bty_avg is a statistically significant predictor, but it explains only 3.3% of score variation. For the slope of 0.07, this suggests that for one point increase in beauty score, teachers score 0.07 points higher in their course evaluations on average.
Use residual plots to evaluate whether the conditions of least squares regression are reasonable. Provide plots and comments for each one (see the Simple Regression Lab for a reminder of how to make these).
## [1] 0.8439112
##
## Call:
## lm(formula = score ~ bty_avg + gender, data = evals)
##
## Residuals:
## Min 1Q Median 3Q Max
## -1.8305 -0.3625 0.1055 0.4213 0.9314
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 3.74734 0.08466 44.266 < 2e-16 ***
## bty_avg 0.07416 0.01625 4.563 6.48e-06 ***
## gendermale 0.17239 0.05022 3.433 0.000652 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.5287 on 460 degrees of freedom
## Multiple R-squared: 0.05912, Adjusted R-squared: 0.05503
## F-statistic: 14.45 on 2 and 460 DF, p-value: 8.177e-07
Residual vs. Fitted plot shows random distribution of Residuals around regression line which confirms that conditions of least squares regression are reasonable. Q-Q plot also confirms normality of stand. residuals. Histogram shows approximately normal distribution of residuals as well.According the multivariate plot, bty_avg is highly correlated to each of the beauty metrics.
P-values and parameter estimates should only be trusted if the conditions for the regression are reasonable. Verify that the conditions for this model are reasonable using diagnostic plots.
## [1] 0.8439112
##
## Call:
## lm(formula = score ~ bty_avg + gender, data = evals)
##
## Residuals:
## Min 1Q Median 3Q Max
## -1.8305 -0.3625 0.1055 0.4213 0.9314
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 3.74734 0.08466 44.266 < 2e-16 ***
## bty_avg 0.07416 0.01625 4.563 6.48e-06 ***
## gendermale 0.17239 0.05022 3.433 0.000652 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.5287 on 460 degrees of freedom
## Multiple R-squared: 0.05912, Adjusted R-squared: 0.05503
## F-statistic: 14.45 on 2 and 460 DF, p-value: 8.177e-07
Residuals are close to normal according to Q-Q plot. Variability of residual around regression line looks random according to Residual vs. Fitted Plot. The conditions for the regression are reasonable.
Is bty_avg still a significant predictor of score? Has the addition of gender to the model changed the parameter estimate for bty_avg?
## [1] 0.8439112
##
## Call:
## lm(formula = score ~ bty_avg + gender, data = evals)
##
## Residuals:
## Min 1Q Median 3Q Max
## -1.8305 -0.3625 0.1055 0.4213 0.9314
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 3.74734 0.08466 44.266 < 2e-16 ***
## bty_avg 0.07416 0.01625 4.563 6.48e-06 ***
## gendermale 0.17239 0.05022 3.433 0.000652 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.5287 on 460 degrees of freedom
## Multiple R-squared: 0.05912, Adjusted R-squared: 0.05503
## F-statistic: 14.45 on 2 and 460 DF, p-value: 8.177e-07
Yes, bty_avg still a significant predictor of score. Addition of gender changed the slope fpr bty_avg to 0.074 from 0.067.
What is the equation of the line corresponding to males? (Hint: For males, the parameter estimate is multiplied by 1.) For two professors who received the same beauty rating, which gender tends to have the higher course evaluation score?
professor.rating = 3.74734 + 0.17239 x 0.074 * beauty score. Male professors are getting a higher rating compared to female professors regardless of bty_avg.
Create a new model called m_bty_rank with gender removed and rank added in. How does R appear to handle categorical variables that have more than two levels? Note that the rank variable has three levels: teaching, tenure track, tenured.
# Insert code for Exercise 10 here
m_bty_rank <- lm(score ~ bty_avg + rank, data = evals)
summary(m_bty_rank)##
## Call:
## lm(formula = score ~ bty_avg + rank, data = evals)
##
## Residuals:
## Min 1Q Median 3Q Max
## -1.8713 -0.3642 0.1489 0.4103 0.9525
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 3.98155 0.09078 43.860 < 2e-16 ***
## bty_avg 0.06783 0.01655 4.098 4.92e-05 ***
## ranktenure track -0.16070 0.07395 -2.173 0.0303 *
## ranktenured -0.12623 0.06266 -2.014 0.0445 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.5328 on 459 degrees of freedom
## Multiple R-squared: 0.04652, Adjusted R-squared: 0.04029
## F-statistic: 7.465 on 3 and 459 DF, p-value: 6.88e-05
According to summary(m_bty_rank) coeff for two ranks for categorical variable. The third level is held in the intercept.
Which variable would you expect to have the highest p-value in this model? Why? Hint: Think about which variable would you expect to not have any association with the professor score
# Insert code for Exercise 11 here
m_full <- lm(score ~ rank + ethnicity + gender + language + age + cls_perc_eval +
cls_students + cls_level + cls_profs + cls_credits + bty_avg + pic_outfit +
pic_color, data = evals)
summary(m_full)##
## Call:
## lm(formula = score ~ rank + ethnicity + gender + language + age +
## cls_perc_eval + cls_students + cls_level + cls_profs + cls_credits +
## bty_avg + pic_outfit + pic_color, data = evals)
##
## Residuals:
## Min 1Q Median 3Q Max
## -1.77397 -0.32432 0.09067 0.35183 0.95036
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 4.0952141 0.2905277 14.096 < 2e-16 ***
## ranktenure track -0.1475932 0.0820671 -1.798 0.07278 .
## ranktenured -0.0973378 0.0663296 -1.467 0.14295
## ethnicitynot minority 0.1234929 0.0786273 1.571 0.11698
## gendermale 0.2109481 0.0518230 4.071 5.54e-05 ***
## languagenon-english -0.2298112 0.1113754 -2.063 0.03965 *
## age -0.0090072 0.0031359 -2.872 0.00427 **
## cls_perc_eval 0.0053272 0.0015393 3.461 0.00059 ***
## cls_students 0.0004546 0.0003774 1.205 0.22896
## cls_levelupper 0.0605140 0.0575617 1.051 0.29369
## cls_profssingle -0.0146619 0.0519885 -0.282 0.77806
## cls_creditsone credit 0.5020432 0.1159388 4.330 1.84e-05 ***
## bty_avg 0.0400333 0.0175064 2.287 0.02267 *
## pic_outfitnot formal -0.1126817 0.0738800 -1.525 0.12792
## pic_colorcolor -0.2172630 0.0715021 -3.039 0.00252 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.498 on 448 degrees of freedom
## Multiple R-squared: 0.1871, Adjusted R-squared: 0.1617
## F-statistic: 7.366 on 14 and 448 DF, p-value: 6.552e-14
I would think that total number of students in class should not affect score.
Check your suspicions from the previous exercise. Include the model output in your response.
# Insert code for Exercise 12 here
m_full <- lm(score ~ rank + ethnicity + gender + language + age + cls_perc_eval +
cls_students + cls_level + cls_profs + cls_credits + bty_avg + pic_outfit +
pic_color, data = evals)
summary(m_full)##
## Call:
## lm(formula = score ~ rank + ethnicity + gender + language + age +
## cls_perc_eval + cls_students + cls_level + cls_profs + cls_credits +
## bty_avg + pic_outfit + pic_color, data = evals)
##
## Residuals:
## Min 1Q Median 3Q Max
## -1.77397 -0.32432 0.09067 0.35183 0.95036
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 4.0952141 0.2905277 14.096 < 2e-16 ***
## ranktenure track -0.1475932 0.0820671 -1.798 0.07278 .
## ranktenured -0.0973378 0.0663296 -1.467 0.14295
## ethnicitynot minority 0.1234929 0.0786273 1.571 0.11698
## gendermale 0.2109481 0.0518230 4.071 5.54e-05 ***
## languagenon-english -0.2298112 0.1113754 -2.063 0.03965 *
## age -0.0090072 0.0031359 -2.872 0.00427 **
## cls_perc_eval 0.0053272 0.0015393 3.461 0.00059 ***
## cls_students 0.0004546 0.0003774 1.205 0.22896
## cls_levelupper 0.0605140 0.0575617 1.051 0.29369
## cls_profssingle -0.0146619 0.0519885 -0.282 0.77806
## cls_creditsone credit 0.5020432 0.1159388 4.330 1.84e-05 ***
## bty_avg 0.0400333 0.0175064 2.287 0.02267 *
## pic_outfitnot formal -0.1126817 0.0738800 -1.525 0.12792
## pic_colorcolor -0.2172630 0.0715021 -3.039 0.00252 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.498 on 448 degrees of freedom
## Multiple R-squared: 0.1871, Adjusted R-squared: 0.1617
## F-statistic: 7.366 on 14 and 448 DF, p-value: 6.552e-14
After running full model we see that number of professors teaching sections in course in sample: single, multiple.has the highest p-value.
Interpret the coefficient associated with the ethnicity variable.
# Insert code for Exercise 13 here
m_full1 <- lm(score ~ rank + ethnicity + gender + language + age + cls_perc_eval
+ cls_students + cls_level + cls_credits + bty_avg
+ pic_outfit + pic_color, data = evals)
summary(m_full1)##
## Call:
## lm(formula = score ~ rank + ethnicity + gender + language + age +
## cls_perc_eval + cls_students + cls_level + cls_credits +
## bty_avg + pic_outfit + pic_color, data = evals)
##
## Residuals:
## Min 1Q Median 3Q Max
## -1.7836 -0.3257 0.0859 0.3513 0.9551
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 4.0872523 0.2888562 14.150 < 2e-16 ***
## ranktenure track -0.1476746 0.0819824 -1.801 0.072327 .
## ranktenured -0.0973829 0.0662614 -1.470 0.142349
## ethnicitynot minority 0.1274458 0.0772887 1.649 0.099856 .
## gendermale 0.2101231 0.0516873 4.065 5.66e-05 ***
## languagenon-english -0.2282894 0.1111305 -2.054 0.040530 *
## age -0.0089992 0.0031326 -2.873 0.004262 **
## cls_perc_eval 0.0052888 0.0015317 3.453 0.000607 ***
## cls_students 0.0004687 0.0003737 1.254 0.210384
## cls_levelupper 0.0606374 0.0575010 1.055 0.292200
## cls_creditsone credit 0.5061196 0.1149163 4.404 1.33e-05 ***
## bty_avg 0.0398629 0.0174780 2.281 0.023032 *
## pic_outfitnot formal -0.1083227 0.0721711 -1.501 0.134080
## pic_colorcolor -0.2190527 0.0711469 -3.079 0.002205 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.4974 on 449 degrees of freedom
## Multiple R-squared: 0.187, Adjusted R-squared: 0.1634
## F-statistic: 7.943 on 13 and 449 DF, p-value: 2.336e-14
It is predicted that professor who is not a minority would see a 0.123 increase in score when all other variables are held constant.
Drop the variable with the highest p-value and re-fit the model. Did the coefficients and significance of the other explanatory variables change? (One of the things that makes multiple regression interesting is that coefficient estimates depend on the other variables that are included in the model.) If not, what does this say about whether or not the dropped variable was collinear with the other explanatory variables?
# Insert code for Exercise 14 here
m_full2 <- lm(score ~ rank + ethnicity + gender + language + age + cls_perc_eval
+ cls_students + cls_credits + bty_avg
+ pic_outfit + pic_color, data = evals)
summary(m_full2)##
## Call:
## lm(formula = score ~ rank + ethnicity + gender + language + age +
## cls_perc_eval + cls_students + cls_credits + bty_avg + pic_outfit +
## pic_color, data = evals)
##
## Residuals:
## Min 1Q Median 3Q Max
## -1.7761 -0.3187 0.0875 0.3547 0.9367
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 4.0856255 0.2888881 14.143 < 2e-16 ***
## ranktenure track -0.1420696 0.0818201 -1.736 0.083184 .
## ranktenured -0.0895940 0.0658566 -1.360 0.174372
## ethnicitynot minority 0.1424342 0.0759800 1.875 0.061491 .
## gendermale 0.2037722 0.0513416 3.969 8.40e-05 ***
## languagenon-english -0.2093185 0.1096785 -1.908 0.056966 .
## age -0.0087287 0.0031224 -2.795 0.005404 **
## cls_perc_eval 0.0053545 0.0015306 3.498 0.000515 ***
## cls_students 0.0003573 0.0003585 0.997 0.319451
## cls_creditsone credit 0.4733728 0.1106549 4.278 2.31e-05 ***
## bty_avg 0.0410340 0.0174449 2.352 0.019092 *
## pic_outfitnot formal -0.1172152 0.0716857 -1.635 0.102722
## pic_colorcolor -0.1973196 0.0681052 -2.897 0.003948 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.4975 on 450 degrees of freedom
## Multiple R-squared: 0.185, Adjusted R-squared: 0.1632
## F-statistic: 8.51 on 12 and 450 DF, p-value: 1.275e-14
m_full3 <- lm(score ~ rank + ethnicity + gender + language + age + cls_perc_eval
+ cls_credits + bty_avg
+ pic_outfit + pic_color, data = evals)
summary(m_full3)##
## Call:
## lm(formula = score ~ rank + ethnicity + gender + language + age +
## cls_perc_eval + cls_credits + bty_avg + pic_outfit + pic_color,
## data = evals)
##
## Residuals:
## Min 1Q Median 3Q Max
## -1.78424 -0.31397 0.09261 0.35904 0.92154
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 4.152893 0.280892 14.785 < 2e-16 ***
## ranktenure track -0.142239 0.081819 -1.738 0.082814 .
## ranktenured -0.083092 0.065532 -1.268 0.205469
## ethnicitynot minority 0.143509 0.075972 1.889 0.059535 .
## gendermale 0.208080 0.051159 4.067 5.61e-05 ***
## languagenon-english -0.222515 0.108876 -2.044 0.041558 *
## age -0.009074 0.003103 -2.924 0.003629 **
## cls_perc_eval 0.004841 0.001441 3.359 0.000849 ***
## cls_creditsone credit 0.472669 0.110652 4.272 2.37e-05 ***
## bty_avg 0.043578 0.017257 2.525 0.011903 *
## pic_outfitnot formal -0.136594 0.068998 -1.980 0.048347 *
## pic_colorcolor -0.189905 0.067697 -2.805 0.005246 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.4975 on 451 degrees of freedom
## Multiple R-squared: 0.1832, Adjusted R-squared: 0.1632
## F-statistic: 9.193 on 11 and 451 DF, p-value: 6.364e-15
m_full4 <- lm(score ~ ethnicity + gender + language + age + cls_perc_eval
+ cls_credits + bty_avg
+ pic_outfit + pic_color, data = evals)
summary(m_full4)##
## Call:
## lm(formula = score ~ ethnicity + gender + language + age + cls_perc_eval +
## cls_credits + bty_avg + pic_outfit + pic_color, data = evals)
##
## Residuals:
## Min 1Q Median 3Q Max
## -1.8455 -0.3221 0.1013 0.3745 0.9051
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 3.907030 0.244889 15.954 < 2e-16 ***
## ethnicitynot minority 0.163818 0.075158 2.180 0.029798 *
## gendermale 0.202597 0.050102 4.044 6.18e-05 ***
## languagenon-english -0.246683 0.106146 -2.324 0.020567 *
## age -0.006925 0.002658 -2.606 0.009475 **
## cls_perc_eval 0.004942 0.001442 3.427 0.000666 ***
## cls_creditsone credit 0.517205 0.104141 4.966 9.68e-07 ***
## bty_avg 0.046732 0.017091 2.734 0.006497 **
## pic_outfitnot formal -0.113939 0.067168 -1.696 0.090510 .
## pic_colorcolor -0.180870 0.067456 -2.681 0.007601 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.4982 on 453 degrees of freedom
## Multiple R-squared: 0.1774, Adjusted R-squared: 0.161
## F-statistic: 10.85 on 9 and 453 DF, p-value: 2.441e-15
m_full5 <- lm(score ~ ethnicity + gender + language + age + cls_perc_eval
+ cls_credits + bty_avg
+ pic_outfit + pic_color, data = evals)
summary(m_full5)##
## Call:
## lm(formula = score ~ ethnicity + gender + language + age + cls_perc_eval +
## cls_credits + bty_avg + pic_outfit + pic_color, data = evals)
##
## Residuals:
## Min 1Q Median 3Q Max
## -1.8455 -0.3221 0.1013 0.3745 0.9051
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 3.907030 0.244889 15.954 < 2e-16 ***
## ethnicitynot minority 0.163818 0.075158 2.180 0.029798 *
## gendermale 0.202597 0.050102 4.044 6.18e-05 ***
## languagenon-english -0.246683 0.106146 -2.324 0.020567 *
## age -0.006925 0.002658 -2.606 0.009475 **
## cls_perc_eval 0.004942 0.001442 3.427 0.000666 ***
## cls_creditsone credit 0.517205 0.104141 4.966 9.68e-07 ***
## bty_avg 0.046732 0.017091 2.734 0.006497 **
## pic_outfitnot formal -0.113939 0.067168 -1.696 0.090510 .
## pic_colorcolor -0.180870 0.067456 -2.681 0.007601 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.4982 on 453 degrees of freedom
## Multiple R-squared: 0.1774, Adjusted R-squared: 0.161
## F-statistic: 10.85 on 9 and 453 DF, p-value: 2.441e-15
m_full6 <- lm(score ~ ethnicity + gender + language + age + cls_perc_eval
+ cls_credits + bty_avg
+ pic_color, data = evals)
summary(m_full6)##
## Call:
## lm(formula = score ~ ethnicity + gender + language + age + cls_perc_eval +
## cls_credits + bty_avg + pic_color, data = evals)
##
## Residuals:
## Min 1Q Median 3Q Max
## -1.85320 -0.32394 0.09984 0.37930 0.93610
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 3.771922 0.232053 16.255 < 2e-16 ***
## ethnicitynot minority 0.167872 0.075275 2.230 0.02623 *
## gendermale 0.207112 0.050135 4.131 4.30e-05 ***
## languagenon-english -0.206178 0.103639 -1.989 0.04726 *
## age -0.006046 0.002612 -2.315 0.02108 *
## cls_perc_eval 0.004656 0.001435 3.244 0.00127 **
## cls_creditsone credit 0.505306 0.104119 4.853 1.67e-06 ***
## bty_avg 0.051069 0.016934 3.016 0.00271 **
## pic_colorcolor -0.190579 0.067351 -2.830 0.00487 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.4992 on 454 degrees of freedom
## Multiple R-squared: 0.1722, Adjusted R-squared: 0.1576
## F-statistic: 11.8 on 8 and 454 DF, p-value: 2.58e-15
Yes, the coefficients changed and p-value changed.
Using backward-selection and p-value as the selection criterion, determine the best model. You do not need to show all steps in your answer, just the output for the final model. Also, write out the linear model for predicting score based on the final model you settle on.
# Insert code for Exercise 15 here
m_full6 <- lm(score ~ ethnicity + gender + language + age + cls_perc_eval
+ cls_credits + bty_avg
+ pic_color, data = evals)
qqnorm(m_full6$residuals)
qqline(m_full6$residuals) professor rating = 3.771922 + 0.167872eth + 0.207112gender -0.206178lang -0.006046age +0.004656perceval + .505306credits + .051069beauty - .190579color ### Exercise 16
Verify that the conditions for this model are reasonable using diagnostic plots.
According to plots above residual are nearly normal and variability is nearly constant.
The original paper describes how these data were gathered by taking a sample of professors from the University of Texas at Austin and including all courses that they have taught. Considering that each row represents a course, could this new information have an impact on any of the conditions of linear regression?
Yes, independence will be broken.
Based on your final model, describe the characteristics of a professor and course at University of Texas at Austin that would be associated with a high evaluation score.
An English speaker and non minority male who teaches a one credit class, and has a high percent of students who evaluated.
Would you be comfortable generalizing your conclusions to apply to professors generally (at any university)? Why or why not?
No. University of Texas at Austin can’t be generic enough to apply conclusions above to all universities. It was also an observational study.