Insurance provides financing, leverage, cushion against possible eventuality. It is an arrangement by which the Company undertakes to provide a guarantee of compensation for specified loss, damage, illness or death in return by paymnent of a specified premium.
Premium paid by the customer is the major revenue source for insurance companies. Default in premium payments results in significant revenue losses and hence insurance companies would like to know upfront which type of customers would default premium payments. The objective of this project is to predict the probability that a customer will default the premium payment, so that the insurance agent can proactively reach out to the policy holder to follow up for the payment of premium.
Problem Statement: *The project ultimate focus is to predict if the current customer(s) will Default in Future Payments
The Project will include the following: * Visual inspection of data (rows, columns, descriptive details) * Understanding of attributes (variable info, renaming if required) * Univariate analysis (distribution and spread for every continuous attribute, distribution of the data in categories for categorical ones) * Bivariate analysis (relationship between different variables, correlations) * Building a model that can predict the likelihood of a customer defaulting on premium payments (Who is likely to default) * Identifing the factors that drive higher default rate (Are there any characteristics of the customers who are likely to default?) * Propose a strategy for reducing default rates by using the model and other insights from the analysis (What should be done to reduce the default rates?)
The dataset contains the following details collected well over ten years on 79, 854 Policy Holders. (The exact number of years will be decided as we gain better understanding of the data) * id: Unique customer ID perc_premium_paid_by_cash_credit: What % of the premium was paid by cash payments? * age_in_days: age of the customer in days * Income: Income of the customer * Marital Status: Married/Unmarried, Married (1), unmarried (0) * Veh_owned: Number of vehicles owned (1-3) * Count_3-6_months_late: Number of times premium was paid 3-6 months late * Count_6-12_months_late: Number of times premium was paid 6-12 months late * Count_more_than_12_months_late: Number of times premium was paid more than 12 months late * Risk_score: Risk score of customer (similar to credit score) * No_of_dep: Number of dependents in the family of the customer (1-4) * Accommodation: Owned (1), Rented (0) no_of_premiums_paid: Number of premiums paid till date * sourcing_channel: Channel through which customer was sourced * residence_area_type: Residence type of the customer * premium : Total premium amount paid till now * default: Y variable - 0 indicates that customer has defaulted the premium and 1 indicates that customer has not defaulted
## Loading required package: carData
## corrplot 0.84 loaded
## # A tibble: 6 x 17
## id perc_premium_pa~ age_in_days Income `Count_3-6_mont~ `Count_6-12_mon~
## <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 1 0.317 11330 90050 0 0
## 2 2 0 30309 156080 0 0
## 3 3 0.015 16069 145020 1 0
## 4 4 0 23733 187560 0 0
## 5 5 0.888 19360 103050 7 3
## 6 6 0.512 16795 113500 0 0
## # ... with 11 more variables: Count_more_than_12_months_late <dbl>, `Marital
## # Status` <dbl>, Veh_Owned <dbl>, No_of_dep <dbl>, Accomodation <dbl>,
## # risk_score <dbl>, no_of_premiums_paid <dbl>, sourcing_channel <chr>,
## # residence_area_type <chr>, premium <dbl>, default <dbl>
## # A tibble: 6 x 17
## id perc_premium_pa~ age_in_days Income `Count_3-6_mont~ `Count_6-12_mon~
## <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 79848 0.009 21545 133140 0 0
## 2 79849 0.249 25555 64420 0 0
## 3 79850 0.003 16797 660040 1 0
## 4 79851 0.012 24835 227760 0 0
## 5 79852 0.19 10959 153060 1 0
## 6 79853 0 19720 324030 0 0
## # ... with 11 more variables: Count_more_than_12_months_late <dbl>, `Marital
## # Status` <dbl>, Veh_Owned <dbl>, No_of_dep <dbl>, Accomodation <dbl>,
## # risk_score <dbl>, no_of_premiums_paid <dbl>, sourcing_channel <chr>,
## # residence_area_type <chr>, premium <dbl>, default <dbl>
## tibble [79,853 x 17] (S3: tbl_df/tbl/data.frame)
## $ id : num [1:79853] 1 2 3 4 5 6 7 8 9 10 ...
## $ perc_premium_paid_by_cash_credit: num [1:79853] 0.317 0 0.015 0 0.888 0.512 0 0.994 0.019 0.018 ...
## $ age_in_days : num [1:79853] 11330 30309 16069 23733 19360 ...
## $ Income : num [1:79853] 90050 156080 145020 187560 103050 ...
## $ Count_3-6_months_late : num [1:79853] 0 0 1 0 7 0 0 0 0 0 ...
## $ Count_6-12_months_late : num [1:79853] 0 0 0 0 3 0 0 0 0 0 ...
## $ Count_more_than_12_months_late : num [1:79853] 0 0 0 0 4 0 0 0 0 0 ...
## $ Marital Status : num [1:79853] 0 1 0 1 0 0 0 0 1 1 ...
## $ Veh_Owned : num [1:79853] 3 3 1 1 2 1 3 3 2 3 ...
## $ No_of_dep : num [1:79853] 3 1 1 1 1 4 4 2 4 3 ...
## $ Accomodation : num [1:79853] 1 1 1 0 0 0 1 0 1 1 ...
## $ risk_score : num [1:79853] 98.8 99.1 99.2 99.4 98.8 ...
## $ no_of_premiums_paid : num [1:79853] 8 3 14 13 15 4 8 4 8 8 ...
## $ sourcing_channel : chr [1:79853] "A" "A" "C" "A" ...
## $ residence_area_type : chr [1:79853] "Rural" "Urban" "Urban" "Urban" ...
## $ premium : num [1:79853] 5400 11700 18000 13800 7500 3300 20100 3300 5400 9600 ...
## $ default : num [1:79853] 1 1 1 1 0 1 1 1 1 1 ...
## [1] "id" "perc_premium_paid_by_cash_credit"
## [3] "age_in_days" "Income"
## [5] "Count_3-6_months_late" "Count_6-12_months_late"
## [7] "Count_more_than_12_months_late" "Marital Status"
## [9] "Veh_Owned" "No_of_dep"
## [11] "Accomodation" "risk_score"
## [13] "no_of_premiums_paid" "sourcing_channel"
## [15] "residence_area_type" "premium"
## [17] "default"
Let’s rename the column names
Having changed the column names, lets check them
## [1] "id" "Perc_Premiumcash" "Age" "Income"
## [5] "Count3-6" "Count6_12" "Count12andmore" "Marital_Status"
## [9] "Veh_Owned" "Dependents" "Accomodation" "Risk_Score"
## [13] "Premiums_Paid" "Sourcing_Channel" "Residence" "Premium"
## [17] "Default"
## id Perc_Premiumcash Age Income
## 0 0 0 0
## Count3-6 Count6_12 Count12andmore Marital_Status
## 0 0 0 0
## Veh_Owned Dependents Accomodation Risk_Score
## 0 0 0 0
## Premiums_Paid Sourcing_Channel Residence Premium
## 0 0 0 0
## Default
## 0
## id Perc_Premiumcash Age Income
## Min. : 1 Min. :0.0000 Min. : 7670 Min. : 24030
## 1st Qu.:19964 1st Qu.:0.0340 1st Qu.:14974 1st Qu.: 108010
## Median :39927 Median :0.1670 Median :18625 Median : 166560
## Mean :39927 Mean :0.3143 Mean :18847 Mean : 208847
## 3rd Qu.:59890 3rd Qu.:0.5380 3rd Qu.:22636 3rd Qu.: 252090
## Max. :79853 Max. :1.0000 Max. :37602 Max. :90262600
## Count3-6 Count6_12 Count12andmore Marital_Status
## Min. : 0.0000 Min. : 0.00000 Min. : 0.00000 Min. :0.0000
## 1st Qu.: 0.0000 1st Qu.: 0.00000 1st Qu.: 0.00000 1st Qu.:0.0000
## Median : 0.0000 Median : 0.00000 Median : 0.00000 Median :0.0000
## Mean : 0.2484 Mean : 0.07809 Mean : 0.05994 Mean :0.4987
## 3rd Qu.: 0.0000 3rd Qu.: 0.00000 3rd Qu.: 0.00000 3rd Qu.:1.0000
## Max. :13.0000 Max. :17.00000 Max. :11.00000 Max. :1.0000
## Veh_Owned Dependents Accomodation Risk_Score
## Min. :1.000 Min. :1.000 Min. :0.0000 Min. :91.90
## 1st Qu.:1.000 1st Qu.:2.000 1st Qu.:0.0000 1st Qu.:98.83
## Median :2.000 Median :3.000 Median :1.0000 Median :99.18
## Mean :1.998 Mean :2.503 Mean :0.5013 Mean :99.07
## 3rd Qu.:3.000 3rd Qu.:3.000 3rd Qu.:1.0000 3rd Qu.:99.52
## Max. :3.000 Max. :4.000 Max. :1.0000 Max. :99.89
## Premiums_Paid Sourcing_Channel Residence Premium
## Min. : 2.00 Length:79853 Length:79853 Min. : 1200
## 1st Qu.: 7.00 Class :character Class :character 1st Qu.: 5400
## Median :10.00 Mode :character Mode :character Median : 7500
## Mean :10.86 Mean :10925
## 3rd Qu.:14.00 3rd Qu.:13800
## Max. :60.00 Max. :60000
## Default
## Min. :0.0000
## 1st Qu.:1.0000
## Median :1.0000
## Mean :0.9374
## 3rd Qu.:1.0000
## Max. :1.0000
We will create a new column of Age in Years from the original Age in Days column
Having created another column called AgeinYears, we can see in the Global Environment that the variables have increased from 17 to 18.
We will go ahead to remove the “Age” column (Column 3) later on.
We will create the income class column using the cut function on the current Income Variable.
We have created 3 income class (low, middle and high) within a new variable called IncomeClass
We now have 19 variables up from 18.
Lets check the dimension of the new dataset
## [1] 79853 19
## id Perc_Premiumcash Age Income
## Min. : 1 Min. :0.0000 Min. : 7670 Min. : 24030
## 1st Qu.:19964 1st Qu.:0.0340 1st Qu.:14974 1st Qu.: 108010
## Median :39927 Median :0.1670 Median :18625 Median : 166560
## Mean :39927 Mean :0.3143 Mean :18847 Mean : 208847
## 3rd Qu.:59890 3rd Qu.:0.5380 3rd Qu.:22636 3rd Qu.: 252090
## Max. :79853 Max. :1.0000 Max. :37602 Max. :90262600
## Count3-6 Count6_12 Count12andmore Marital_Status
## Min. : 0.0000 Min. : 0.00000 Min. : 0.00000 Min. :0.0000
## 1st Qu.: 0.0000 1st Qu.: 0.00000 1st Qu.: 0.00000 1st Qu.:0.0000
## Median : 0.0000 Median : 0.00000 Median : 0.00000 Median :0.0000
## Mean : 0.2484 Mean : 0.07809 Mean : 0.05994 Mean :0.4987
## 3rd Qu.: 0.0000 3rd Qu.: 0.00000 3rd Qu.: 0.00000 3rd Qu.:1.0000
## Max. :13.0000 Max. :17.00000 Max. :11.00000 Max. :1.0000
## Veh_Owned Dependents Accomodation Risk_Score
## Min. :1.000 Min. :1.000 Min. :0.0000 Min. :91.90
## 1st Qu.:1.000 1st Qu.:2.000 1st Qu.:0.0000 1st Qu.:98.83
## Median :2.000 Median :3.000 Median :1.0000 Median :99.18
## Mean :1.998 Mean :2.503 Mean :0.5013 Mean :99.07
## 3rd Qu.:3.000 3rd Qu.:3.000 3rd Qu.:1.0000 3rd Qu.:99.52
## Max. :3.000 Max. :4.000 Max. :1.0000 Max. :99.89
## Premiums_Paid Sourcing_Channel Residence Premium
## Min. : 2.00 Length:79853 Length:79853 Min. : 1200
## 1st Qu.: 7.00 Class :character Class :character 1st Qu.: 5400
## Median :10.00 Mode :character Mode :character Median : 7500
## Mean :10.86 Mean :10925
## 3rd Qu.:14.00 3rd Qu.:13800
## Max. :60.00 Max. :60000
## Default AgeinYears IncomeClass
## Min. :0.0000 Min. : 21.01 low :33495
## 1st Qu.:1.0000 1st Qu.: 41.02 middle:25779
## Median :1.0000 Median : 51.03 high :20579
## Mean :0.9374 Mean : 51.63
## 3rd Qu.:1.0000 3rd Qu.: 62.02
## Max. :1.0000 Max. :103.02
## tibble [79,853 x 19] (S3: tbl_df/tbl/data.frame)
## $ id : num [1:79853] 1 2 3 4 5 6 7 8 9 10 ...
## $ Perc_Premiumcash: num [1:79853] 0.317 0 0.015 0 0.888 0.512 0 0.994 0.019 0.018 ...
## $ Age : num [1:79853] 11330 30309 16069 23733 19360 ...
## $ Income : num [1:79853] 90050 156080 145020 187560 103050 ...
## $ Count3-6 : num [1:79853] 0 0 1 0 7 0 0 0 0 0 ...
## $ Count6_12 : num [1:79853] 0 0 0 0 3 0 0 0 0 0 ...
## $ Count12andmore : num [1:79853] 0 0 0 0 4 0 0 0 0 0 ...
## $ Marital_Status : Factor w/ 2 levels "0","1": 1 2 1 2 1 1 1 1 2 2 ...
## $ Veh_Owned : num [1:79853] 3 3 1 1 2 1 3 3 2 3 ...
## $ Dependents : num [1:79853] 3 1 1 1 1 4 4 2 4 3 ...
## $ Accomodation : Factor w/ 2 levels "0","1": 2 2 2 1 1 1 2 1 2 2 ...
## $ Risk_Score : num [1:79853] 98.8 99.1 99.2 99.4 98.8 ...
## $ Premiums_Paid : num [1:79853] 8 3 14 13 15 4 8 4 8 8 ...
## $ Sourcing_Channel: Factor w/ 5 levels "A","B","C","D",..: 1 1 3 1 1 2 3 1 1 1 ...
## $ Residence : Factor w/ 2 levels "Rural","Urban": 1 2 2 2 2 1 1 2 2 1 ...
## $ Premium : num [1:79853] 5400 11700 18000 13800 7500 3300 20100 3300 5400 9600 ...
## $ Default : Factor w/ 2 levels "0","1": 2 2 2 2 1 2 2 2 2 2 ...
## $ AgeinYears : num [1:79853] 31 83 44 65 53 ...
## $ IncomeClass : Factor w/ 3 levels "low","middle",..: 1 2 1 2 1 1 3 1 1 2 ...
## id Perc_Premiumcash Age Income
## Min. : 1 Min. :0.0000 Min. : 7670 Min. : 24030
## 1st Qu.:19964 1st Qu.:0.0340 1st Qu.:14974 1st Qu.: 108010
## Median :39927 Median :0.1670 Median :18625 Median : 166560
## Mean :39927 Mean :0.3143 Mean :18847 Mean : 208847
## 3rd Qu.:59890 3rd Qu.:0.5380 3rd Qu.:22636 3rd Qu.: 252090
## Max. :79853 Max. :1.0000 Max. :37602 Max. :90262600
## Count3-6 Count6_12 Count12andmore Marital_Status
## Min. : 0.0000 Min. : 0.00000 Min. : 0.00000 0:40032
## 1st Qu.: 0.0000 1st Qu.: 0.00000 1st Qu.: 0.00000 1:39821
## Median : 0.0000 Median : 0.00000 Median : 0.00000
## Mean : 0.2484 Mean : 0.07809 Mean : 0.05994
## 3rd Qu.: 0.0000 3rd Qu.: 0.00000 3rd Qu.: 0.00000
## Max. :13.0000 Max. :17.00000 Max. :11.00000
## Veh_Owned Dependents Accomodation Risk_Score Premiums_Paid
## Min. :1.000 Min. :1.000 0:39823 Min. :91.90 Min. : 2.00
## 1st Qu.:1.000 1st Qu.:2.000 1:40030 1st Qu.:98.83 1st Qu.: 7.00
## Median :2.000 Median :3.000 Median :99.18 Median :10.00
## Mean :1.998 Mean :2.503 Mean :99.07 Mean :10.86
## 3rd Qu.:3.000 3rd Qu.:3.000 3rd Qu.:99.52 3rd Qu.:14.00
## Max. :3.000 Max. :4.000 Max. :99.89 Max. :60.00
## Sourcing_Channel Residence Premium Default AgeinYears
## A:43134 Rural:31670 Min. : 1200 0: 4998 Min. : 21.01
## B:16512 Urban:48183 1st Qu.: 5400 1:74855 1st Qu.: 41.02
## C:12039 Median : 7500 Median : 51.03
## D: 7559 Mean :10925 Mean : 51.63
## E: 609 3rd Qu.:13800 3rd Qu.: 62.02
## Max. :60000 Max. :103.02
## IncomeClass
## low :33495
## middle:25779
## high :20579
##
##
##
## [1] 79853 18
* Marital Status doesn’t seem to have any impact on the Default on Premium as the similar proportion of Default exists between the Married and the Non Married. * Most of the customers don’t Default on their Premiums
*Done in sub-Section 3.8, where we removed “Age in Days” Column
## tibble [79,853 x 17] (S3: tbl_df/tbl/data.frame)
## $ Perc_Premiumcash: num [1:79853] 0.317 0 0.015 0 0.888 0.512 0 0.994 0.019 0.018 ...
## $ Income : num [1:79853] 90050 156080 145020 187560 103050 ...
## $ Count3-6 : num [1:79853] 0 0 1 0 7 0 0 0 0 0 ...
## $ Count6_12 : num [1:79853] 0 0 0 0 3 0 0 0 0 0 ...
## $ Count12andmore : num [1:79853] 0 0 0 0 4 0 0 0 0 0 ...
## $ Marital_Status : num [1:79853] 1 2 1 2 1 1 1 1 2 2 ...
## $ Veh_Owned : num [1:79853] 3 3 1 1 2 1 3 3 2 3 ...
## $ Dependents : num [1:79853] 3 1 1 1 1 4 4 2 4 3 ...
## $ Accomodation : num [1:79853] 2 2 2 1 1 1 2 1 2 2 ...
## $ Risk_Score : num [1:79853] 98.8 99.1 99.2 99.4 98.8 ...
## $ Premiums_Paid : num [1:79853] 8 3 14 13 15 4 8 4 8 8 ...
## $ Sourcing_Channel: num [1:79853] 1 1 3 1 1 2 3 1 1 1 ...
## $ Residence : num [1:79853] 1 2 2 2 2 1 1 2 2 1 ...
## $ Premium : num [1:79853] 5400 11700 18000 13800 7500 3300 20100 3300 5400 9600 ...
## $ Default : num [1:79853] 2 2 2 2 1 2 2 2 2 2 ...
## $ AgeinYears : num [1:79853] 31 83 44 65 53 ...
## $ IncomeClass : num [1:79853] 1 2 1 2 1 1 3 1 1 2 ...
##
## 0 1
## 4998 74855
## tibble [79,853 x 17] (S3: tbl_df/tbl/data.frame)
## $ Perc_Premiumcash: num [1:79853] 0.317 0 0.015 0 0.888 0.512 0 0.994 0.019 0.018 ...
## $ Income : num [1:79853] 90050 156080 145020 187560 103050 ...
## $ Count3-6 : num [1:79853] 0 0 1 0 7 0 0 0 0 0 ...
## $ Count6_12 : num [1:79853] 0 0 0 0 3 0 0 0 0 0 ...
## $ Count12andmore : num [1:79853] 0 0 0 0 4 0 0 0 0 0 ...
## $ Marital_Status : num [1:79853] 1 2 1 2 1 1 1 1 2 2 ...
## $ Veh_Owned : num [1:79853] 3 3 1 1 2 1 3 3 2 3 ...
## $ Dependents : num [1:79853] 3 1 1 1 1 4 4 2 4 3 ...
## $ Accomodation : num [1:79853] 2 2 2 1 1 1 2 1 2 2 ...
## $ Risk_Score : num [1:79853] 98.8 99.1 99.2 99.4 98.8 ...
## $ Premiums_Paid : num [1:79853] 8 3 14 13 15 4 8 4 8 8 ...
## $ Sourcing_Channel: num [1:79853] 1 1 3 1 1 2 3 1 1 1 ...
## $ Residence : num [1:79853] 1 2 2 2 2 1 1 2 2 1 ...
## $ Premium : num [1:79853] 5400 11700 18000 13800 7500 3300 20100 3300 5400 9600 ...
## $ Default : num [1:79853] 1 1 1 1 0 1 1 1 1 1 ...
## $ AgeinYears : num [1:79853] 31 83 44 65 53 ...
## $ IncomeClass : num [1:79853] 1 2 1 2 1 1 3 1 1 2 ...
## Perc_Premiumcash Income Count3-6 Count6_12
## Min. :0.0000 Min. : 24030 Min. : 0.0000 Min. : 0.00000
## 1st Qu.:0.0340 1st Qu.: 108010 1st Qu.: 0.0000 1st Qu.: 0.00000
## Median :0.1670 Median : 166560 Median : 0.0000 Median : 0.00000
## Mean :0.3143 Mean : 208847 Mean : 0.2484 Mean : 0.07809
## 3rd Qu.:0.5380 3rd Qu.: 252090 3rd Qu.: 0.0000 3rd Qu.: 0.00000
## Max. :1.0000 Max. :90262600 Max. :13.0000 Max. :17.00000
## Count12andmore Marital_Status Veh_Owned Dependents
## Min. : 0.00000 Min. :1.000 Min. :1.000 Min. :1.000
## 1st Qu.: 0.00000 1st Qu.:1.000 1st Qu.:1.000 1st Qu.:2.000
## Median : 0.00000 Median :1.000 Median :2.000 Median :3.000
## Mean : 0.05994 Mean :1.499 Mean :1.998 Mean :2.503
## 3rd Qu.: 0.00000 3rd Qu.:2.000 3rd Qu.:3.000 3rd Qu.:3.000
## Max. :11.00000 Max. :2.000 Max. :3.000 Max. :4.000
## Accomodation Risk_Score Premiums_Paid Sourcing_Channel
## Min. :1.000 Min. :91.90 Min. : 2.00 Min. :1.000
## 1st Qu.:1.000 1st Qu.:98.83 1st Qu.: 7.00 1st Qu.:1.000
## Median :2.000 Median :99.18 Median :10.00 Median :1.000
## Mean :1.501 Mean :99.07 Mean :10.86 Mean :1.823
## 3rd Qu.:2.000 3rd Qu.:99.52 3rd Qu.:14.00 3rd Qu.:3.000
## Max. :2.000 Max. :99.89 Max. :60.00 Max. :5.000
## Residence Premium Default AgeinYears
## Min. :1.000 Min. : 1200 Min. :0.0000 Min. : 21.01
## 1st Qu.:1.000 1st Qu.: 5400 1st Qu.:1.0000 1st Qu.: 41.02
## Median :2.000 Median : 7500 Median :1.0000 Median : 51.03
## Mean :1.603 Mean :10925 Mean :0.9374 Mean : 51.63
## 3rd Qu.:2.000 3rd Qu.:13800 3rd Qu.:1.0000 3rd Qu.: 62.02
## Max. :2.000 Max. :60000 Max. :1.0000 Max. :103.02
## IncomeClass
## Min. :1.000
## 1st Qu.:1.000
## Median :2.000
## Mean :1.838
## 3rd Qu.:3.000
## Max. :3.000
## tibble [79,853 x 17] (S3: tbl_df/tbl/data.frame)
## $ Perc_Premiumcash: num [1:79853] 0.317 0 0.015 0 0.888 0.512 0 0.994 0.019 0.018 ...
## $ Income : num [1:79853] 90050 156080 145020 187560 103050 ...
## $ Count3-6 : num [1:79853] 0 0 1 0 7 0 0 0 0 0 ...
## $ Count6_12 : num [1:79853] 0 0 0 0 3 0 0 0 0 0 ...
## $ Count12andmore : num [1:79853] 0 0 0 0 4 0 0 0 0 0 ...
## $ Marital_Status : num [1:79853] 1 2 1 2 1 1 1 1 2 2 ...
## $ Veh_Owned : num [1:79853] 3 3 1 1 2 1 3 3 2 3 ...
## $ Dependents : num [1:79853] 3 1 1 1 1 4 4 2 4 3 ...
## $ Accomodation : num [1:79853] 2 2 2 1 1 1 2 1 2 2 ...
## $ Risk_Score : num [1:79853] 98.8 99.1 99.2 99.4 98.8 ...
## $ Premiums_Paid : num [1:79853] 8 3 14 13 15 4 8 4 8 8 ...
## $ Sourcing_Channel: num [1:79853] 1 1 3 1 1 2 3 1 1 1 ...
## $ Residence : num [1:79853] 1 2 2 2 2 1 1 2 2 1 ...
## $ Premium : num [1:79853] 5400 11700 18000 13800 7500 3300 20100 3300 5400 9600 ...
## $ Default : num [1:79853] 1 1 1 1 0 1 1 1 1 1 ...
## $ AgeinYears : num [1:79853] 31 83 44 65 53 ...
## $ IncomeClass : num [1:79853] 1 2 1 2 1 1 3 1 1 2 ...
## Loading required package: sp
## Loading required package: raster
##
## Attaching package: 'raster'
## The following object is masked from 'package:e1071':
##
## interpolate
## The following objects are masked from 'package:MASS':
##
## area, select
##
## Attaching package: 'usdm'
## The following object is masked from 'package:car':
##
## vif
##
## Attaching package: 'VIF'
## The following object is masked from 'package:usdm':
##
## vif
## The following object is masked from 'package:car':
##
## vif
## Type 'citation("pROC")' for a citation.
##
## Attaching package: 'pROC'
## The following objects are masked from 'package:stats':
##
## cov, smooth, var
## Loading required package: Hmisc
## Loading required package: lattice
## Loading required package: survival
## Loading required package: Formula
##
## Attaching package: 'Hmisc'
## The following objects are masked from 'package:raster':
##
## mask, zoom
## The following object is masked from 'package:e1071':
##
## impute
## The following objects are masked from 'package:base':
##
## format.pval, units
## Loading required package: SparseM
##
## Attaching package: 'SparseM'
## The following object is masked from 'package:base':
##
## backsolve
##
## Attaching package: 'rms'
## The following object is masked from 'package:VIF':
##
## vif
## The following object is masked from 'package:usdm':
##
## vif
## The following objects are masked from 'package:car':
##
## Predict, vif
##
## Call:
## lm(formula = IncomeClass ~ ., data = r)
##
## Coefficients:
## (Intercept) Perc_Premiumcash Income `Count3-6`
## -1.440e+01 -5.866e-02 9.951e-08 1.336e-04
## Count6_12 Count12andmore Marital_Status Veh_Owned
## -3.623e-02 -3.291e-02 4.273e-03 3.189e-03
## Dependents Accomodation Risk_Score Premiums_Paid
## 1.236e-03 2.301e-03 1.535e-01 2.721e-02
## Sourcing_Channel Residence Premium AgeinYears
## 9.240e-02 -2.392e-02 4.442e-05 1.979e-03
## Perc_Premiumcash Income `Count3-6` Count6_12
## 1.206060 1.103221 1.163545 1.133204
## Count12andmore Marital_Status Veh_Owned Dependents
## 1.159067 1.000112 1.000243 1.000402
## Accomodation Risk_Score Premiums_Paid Sourcing_Channel
## 1.000115 1.161790 1.227097 1.086352
## Residence Premium AgeinYears
## 1.001129 1.199955 1.154599
* The Residual vs. Fitted graph determines if we should add a new predictor to the model already containing other predictors. * Since the plot showed did not show a non random pattern, there is no need to add a new predictor to the model# * There is no non-linearity in the relationship between predictor variables and other variables * All the plots - Residual vs. Fitted, Normal Q-Q, Scale-Location and Residual vs. Leverage have all their points close to regressed diagonal line, this showed that the model has a high R Square * Cook’s Distance is used to detect observations that strongly influence fitted values of the model: It is used to identify influential data points; hence data point at “75339” will strongly influence the fitted values of the model because of its large Cook’s Distance. Hence the Removing Outliers in the Income Class Variable will help the fitness of the model.
* There are Outliers that is extreme values in Income, Count 3-6 months, Count 6-12 months, Count 12andmore, Risk Score, Premium Paid, Premium and Age in Years
## 95%
## 450050
## 95%
## 20
## 95%
## 28500
## 95%
## 76.03836
##
## 0 1
## 4998 74855
##
## 0 1
## 0.06259001 0.93740999
## Loading required package: grid
## Registered S3 method overwritten by 'quantmod':
## method from
## as.zoo.data.frame zoo
##
## Attaching package: 'caret'
## The following object is masked from 'package:survival':
##
## cluster
## The following objects are masked from 'package:InformationValue':
##
## confusionMatrix, precision, sensitivity, specificity
##
## Attaching package: 'smotefamily'
## The following object is masked from 'package:DMwR':
##
## SMOTE
## tibble [79,853 x 17] (S3: tbl_df/tbl/data.frame)
## $ Perc_Premiumcash: num [1:79853] 0.317 0 0.015 0 0.888 0.512 0 0.994 0.019 0.018 ...
## $ Income : num [1:79853] 90050 156080 145020 187560 103050 ...
## $ Count3-6 : num [1:79853] 0 0 1 0 7 0 0 0 0 0 ...
## $ Count6_12 : num [1:79853] 0 0 0 0 3 0 0 0 0 0 ...
## $ Count12andmore : num [1:79853] 0 0 0 0 4 0 0 0 0 0 ...
## $ Marital_Status : num [1:79853] 1 2 1 2 1 1 1 1 2 2 ...
## $ Veh_Owned : num [1:79853] 3 3 1 1 2 1 3 3 2 3 ...
## $ Dependents : num [1:79853] 3 1 1 1 1 4 4 2 4 3 ...
## $ Accomodation : num [1:79853] 2 2 2 1 1 1 2 1 2 2 ...
## $ Risk_Score : num [1:79853] 98.8 99.1 99.2 99.4 98.8 ...
## $ Premiums_Paid : num [1:79853] 8 3 14 13 15 4 8 4 8 8 ...
## $ Sourcing_Channel: num [1:79853] 1 1 3 1 1 2 3 1 1 1 ...
## $ Residence : num [1:79853] 1 2 2 2 2 1 1 2 2 1 ...
## $ Premium : num [1:79853] 5400 11700 18000 13800 7500 3300 20100 3300 5400 9600 ...
## $ Default : num [1:79853] 1 1 1 1 0 1 1 1 1 1 ...
## $ AgeinYears : num [1:79853] 31 83 44 65 53 ...
## $ IncomeClass : num [1:79853] 1 2 1 2 1 1 3 1 1 2 ...
##
## 0 1
## 4998 74855
##
## Attaching package: 'dplyr'
## The following objects are masked from 'package:Hmisc':
##
## src, summarize
## The following objects are masked from 'package:raster':
##
## intersect, select, union
## The following object is masked from 'package:gridExtra':
##
## combine
## The following object is masked from 'package:MASS':
##
## select
## The following object is masked from 'package:car':
##
## recode
## The following objects are masked from 'package:stats':
##
## filter, lag
## The following objects are masked from 'package:base':
##
## intersect, setdiff, setequal, union
## Loaded ROSE 0.0-3
##
## 0 1
## 4998 74855
##
## 0 1
## 0.06259001 0.93740999
##
## 0 1
## 54978 74855
##
## 0 1
## 0.4234517 0.5765483
## tibble [129,833 x 18] (S3: tbl_df/tbl/data.frame)
## $ Perc_Premiumcash: num [1:129833] 0.337 1 0.457 1 0.033 0.065 0.163 0.003 0.96 0.614 ...
## $ Income : num [1:129833] 36080 28830 192130 48100 225060 ...
## $ Count3-6 : num [1:129833] 0 1 0 1 1 1 0 2 1 0 ...
## $ Count6_12 : num [1:129833] 0 2 0 0 0 0 0 1 1 0 ...
## $ Count12andmore : num [1:129833] 2 1 0 0 0 1 0 0 0 1 ...
## $ Marital_Status : num [1:129833] 2 2 2 2 2 2 1 1 2 1 ...
## $ Veh_Owned : num [1:129833] 3 2 2 2 2 2 1 3 1 1 ...
## $ Dependents : num [1:129833] 1 1 4 4 4 1 1 3 2 4 ...
## $ Accomodation : num [1:129833] 1 1 1 2 2 1 2 1 2 1 ...
## $ Risk_Score : num [1:129833] 99.6 98.5 98.6 99.3 99.3 ...
## $ Premiums_Paid : num [1:129833] 4 8 9 3 8 11 12 7 8 5 ...
## $ Sourcing_Channel: num [1:129833] 3 1 2 1 1 2 3 1 4 1 ...
## $ Residence : num [1:129833] 1 2 1 1 2 1 1 1 2 2 ...
## $ Premium : num [1:129833] 1200 5700 1200 1200 15900 5400 3300 3300 5400 13800 ...
## $ Default : num [1:129833] 0 0 0 0 0 0 0 0 0 0 ...
## $ AgeinYears : num [1:129833] 37 24 48 48 40 ...
## $ IncomeClass : num [1:129833] 1 1 2 1 2 1 1 1 1 2 ...
## $ class : chr [1:129833] "0" "0" "0" "0" ...
## tibble [129,833 x 17] (S3: tbl_df/tbl/data.frame)
## $ Perc_Premiumcash: num [1:129833] 0.337 1 0.457 1 0.033 0.065 0.163 0.003 0.96 0.614 ...
## $ Income : num [1:129833] 36080 28830 192130 48100 225060 ...
## $ Count3-6 : num [1:129833] 0 1 0 1 1 1 0 2 1 0 ...
## $ Count6_12 : num [1:129833] 0 2 0 0 0 0 0 1 1 0 ...
## $ Count12andmore : num [1:129833] 2 1 0 0 0 1 0 0 0 1 ...
## $ Marital_Status : num [1:129833] 2 2 2 2 2 2 1 1 2 1 ...
## $ Veh_Owned : num [1:129833] 3 2 2 2 2 2 1 3 1 1 ...
## $ Dependents : num [1:129833] 1 1 4 4 4 1 1 3 2 4 ...
## $ Accomodation : num [1:129833] 1 1 1 2 2 1 2 1 2 1 ...
## $ Risk_Score : num [1:129833] 99.6 98.5 98.6 99.3 99.3 ...
## $ Premiums_Paid : num [1:129833] 4 8 9 3 8 11 12 7 8 5 ...
## $ Sourcing_Channel: num [1:129833] 3 1 2 1 1 2 3 1 4 1 ...
## $ Residence : num [1:129833] 1 2 1 1 2 1 1 1 2 2 ...
## $ Premium : num [1:129833] 1200 5700 1200 1200 15900 5400 3300 3300 5400 13800 ...
## $ Default : num [1:129833] 0 0 0 0 0 0 0 0 0 0 ...
## $ AgeinYears : num [1:129833] 37 24 48 48 40 ...
## $ IncomeClass : num [1:129833] 1 1 2 1 2 1 1 1 1 2 ...
##
## 0 1
## 0.2860277 0.7139723
##
## 0 1
## 59976 149710
##
## 0 1
## 0.2860299 0.7139701
##
## 0 1
## 0.2860243 0.7139757
##
## 0 1
## 35986 89826
##
## 0 1
## 23990 59884
## tibble [83,874 x 17] (S3: tbl_df/tbl/data.frame)
## $ Perc_Premiumcash: num [1:83874] 0.317 0.015 0.888 0.994 0.5 0.015 0.635 0.443 0.13 1 ...
## $ Income : num [1:83874] 90050 145020 103050 84090 198030 ...
## $ Count3-6 : num [1:83874] 0 1 7 0 0 0 0 0 0 0 ...
## $ Count6_12 : num [1:83874] 0 0 3 0 0 0 0 0 0 0 ...
## $ Count12andmore : num [1:83874] 0 0 4 0 0 0 0 0 0 1 ...
## $ Marital_Status : num [1:83874] 1 1 1 1 2 2 2 2 1 1 ...
## $ Veh_Owned : num [1:83874] 3 1 2 3 3 3 3 2 3 3 ...
## $ Dependents : num [1:83874] 3 1 1 2 1 1 4 2 3 4 ...
## $ Accomodation : num [1:83874] 2 2 1 1 2 1 1 2 1 2 ...
## $ Risk_Score : num [1:83874] 98.8 99.2 98.8 99 98.8 ...
## $ Premiums_Paid : num [1:83874] 8 14 15 4 16 6 11 5 17 4 ...
## $ Sourcing_Channel: num [1:83874] 1 3 1 1 1 4 2 1 1 3 ...
## $ Residence : num [1:83874] 1 2 2 2 1 1 2 2 2 2 ...
## $ Premium : num [1:83874] 5400 18000 7500 3300 13800 13800 5400 5400 5700 11700 ...
## $ Default : num [1:83874] 1 1 0 1 1 1 1 1 1 1 ...
## $ AgeinYears : num [1:83874] 31 44 53 39 28 ...
## $ IncomeClass : num [1:83874] 1 1 1 1 2 2 1 1 1 2 ...
##
## 0 1
## 0.2860233 0.7139767
##
## 0 1
## 0.2860265 0.7139735
The train and test data have the same proportion of distribution The proportion of defaulting customers is 28.6% for both the Test and Train Data
##
## 0 1
## 16793 41919
##
## 0 1
## 7197 17965
##
## Call:
## glm(formula = Default ~ ., family = binomial, data = traindata)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -2.6769 -0.3818 0.4117 0.6163 6.0552
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) -1.640e+01 1.581e+00 -10.378 < 2e-16 ***
## Perc_Premiumcash -1.978e+00 3.511e-02 -56.351 < 2e-16 ***
## Income 2.614e-08 5.260e-08 0.497 0.619239
## `Count3-6` -5.974e-01 1.509e-02 -39.575 < 2e-16 ***
## Count6_12 -1.209e+00 3.006e-02 -40.215 < 2e-16 ***
## Count12andmore -1.025e+00 3.477e-02 -29.488 < 2e-16 ***
## Marital_Status 2.376e-03 2.372e-02 0.100 0.920222
## Veh_Owned 7.508e-04 1.450e-02 0.052 0.958697
## Dependents -8.566e-03 1.067e-02 -0.803 0.422141
## Accomodation -4.877e-02 2.372e-02 -2.056 0.039792 *
## Risk_Score 1.849e-01 1.587e-02 11.651 < 2e-16 ***
## Premiums_Paid -3.572e-02 2.521e-03 -14.166 < 2e-16 ***
## Sourcing_Channel -3.990e-02 1.123e-02 -3.553 0.000381 ***
## Residence 1.038e-02 2.419e-02 0.429 0.667910
## Premium -1.704e-06 1.703e-06 -1.000 0.317254
## AgeinYears 1.792e-02 9.544e-04 18.780 < 2e-16 ***
## IncomeClass 1.272e-01 1.977e-02 6.434 1.24e-10 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for binomial family taken to be 1)
##
## Null deviance: 70284 on 58711 degrees of freedom
## Residual deviance: 49988 on 58695 degrees of freedom
## AIC: 50022
##
## Number of Fisher Scoring iterations: 5
## 1 2 3 4 5
## 0.8161592766 0.0000118201 0.7131933120 0.9417423230 0.8578121567
## 1 2 3 4 5
## 0.8144683 0.6296101 0.7477110 0.8194214 0.4053168
## [1] 0.8095619
##
## FALSE TRUE
## 0 8299 8494
## 1 2687 39232
## [1] 0.8107464
##
## FALSE TRUE
## 0 3598 3599
## 1 1163 16802
From the Confusion Matrix of the Test Data, the Accuracy of the Logistic Regression Model is 80.95%
The sensitivity is 49.6%
The Specificity is: 93.5%
The Precision is: 75.36%
From the Confusion Matrix we can clearly see that our Train Data is 81.43% accurate in predicting the Default on Payment of Premium by Customers
The Test Data confirmed the same by predicting at 80.94% accurate
The accuracy is almost the same, hence, we can confirm that our model is stable
## [1] 0.8627933
## [1] 0.8644969
## [1] 0.5650974
## [1] 0.5661406
## [1] 0.191057
## [1] 0.1934536
## Loading required package: tibble
## Loading required package: bitops
## Rattle: A free graphical interface for data science with R.
## Version 5.4.0 Copyright (c) 2006-2020 Togaware Pty Ltd.
## Type 'rattle()' to shake, rattle, and roll your data.
## n= 58712
##
## node), split, n, loss, yval, (yprob)
## * denotes terminal node
##
## 1) root 58712 16793 1 (0.28602330 0.71397670)
## 2) Count6_12>=8.225953e-05 9147 1352 0 (0.85219198 0.14780802)
## 4) Count6_12< 0.9998987 4181 0 0 (1.00000000 0.00000000) *
## 5) Count6_12>=0.9998987 4966 1352 0 (0.72774869 0.27225131)
## 10) Count6_12>=1.000712 3128 335 0 (0.89290281 0.10709719) *
## 11) Count6_12< 1.000712 1838 821 1 (0.44668118 0.55331882)
## 22) Count12andmore>=0.0008285095 592 199 0 (0.66385135 0.33614865) *
## 23) Count12andmore< 0.0008285095 1246 428 1 (0.34349920 0.65650080) *
## 3) Count6_12< 8.225953e-05 49565 8998 1 (0.18153939 0.81846061)
## 6) Count3-6>=0.0003006763 10612 5273 1 (0.49689031 0.50310969)
## 12) Count3-6< 0.9998762 2418 0 0 (1.00000000 0.00000000) *
## 13) Count3-6>=0.9998762 8194 2855 1 (0.34842568 0.65157432)
## 26) Count3-6>=1.000119 3485 1380 0 (0.60401722 0.39598278)
## 52) Count3-6< 1.999431 1039 0 0 (1.00000000 0.00000000) *
## 53) Count3-6>=1.999431 2446 1066 1 (0.43581357 0.56418643)
## 106) Count3-6>=2.000011 1227 437 0 (0.64384678 0.35615322) *
## 107) Count3-6< 2.000011 1219 276 1 (0.22641509 0.77358491) *
## 27) Count3-6< 1.000119 4709 750 1 (0.15926948 0.84073052) *
## 7) Count3-6< 0.0003006763 38953 3725 1 (0.09562806 0.90437194)
## 14) Count12andmore>=0.0004795556 1289 616 0 (0.52211016 0.47788984)
## 28) Marital_Status< 1.999752 788 297 0 (0.62309645 0.37690355) *
## 29) Marital_Status>=1.999752 501 182 1 (0.36327345 0.63672655) *
## 15) Count12andmore< 0.0004795556 37664 3052 1 (0.08103229 0.91896771)
## 30) Perc_Premiumcash>=0.3341062 12239 2126 1 (0.17370700 0.82629300)
## 60) Marital_Status< 1.999618 6549 1454 1 (0.22201863 0.77798137)
## 120) Marital_Status>=1.000623 694 0 0 (1.00000000 0.00000000) *
## 121) Marital_Status< 1.000623 5855 760 1 (0.12980359 0.87019641) *
## 61) Marital_Status>=1.999618 5690 672 1 (0.11810193 0.88189807) *
## 31) Perc_Premiumcash< 0.3341062 25425 926 1 (0.03642085 0.96357915) *
##
## Classification tree:
## rpart(formula = Default ~ ., data = traindata, method = "class",
## control = r.ctrl)
##
## Variables actually used in tree construction:
## [1] Count12andmore Count3-6 Count6_12 Marital_Status
## [5] Perc_Premiumcash
##
## Root node error: 16793/58712 = 0.28602
##
## n= 58712
##
## CP nsplit rel error xerror xstd
## 1 0.3836718 0 1.00000 1.00000 0.0065205
## 2 0.0719943 1 0.61633 0.61633 0.0054983
## 3 0.0431728 3 0.47234 0.47234 0.0049323
## 4 0.0198595 4 0.42917 0.42923 0.0047352
## 5 0.0111803 6 0.38945 0.38963 0.0045405
## 6 0.0081582 10 0.34473 0.34633 0.0043105
## 7 0.0058358 11 0.33657 0.32496 0.0041895
## 8 0.0000000 14 0.31334 0.31620 0.0041384
Variables actually used to contruct the tree are 6 of them [[1] Count12andmore Count3-6
[3] Count6_12 Perc_Premiumcash [5] Residence Sourcing_Channel
Many of them are part of the variables that were mentioned earlier as most significant in impacting on the odds of Default
* 7% of the clients are classified Defaulters in the far left node, while 43% are non Defaulters on the far right node * The Variables of Importance that will significantly impact on the likelihood of Defaulting on payment of premium are: Accomodation, Count12andmore, Count3-6, Count6_12, Perc_Premiumcash Residence
##
## Classification tree:
## rpart(formula = Default ~ ., data = traindata, method = "class",
## control = r.ctrl)
##
## Variables actually used in tree construction:
## [1] Count3-6 Count6_12
##
## Root node error: 16793/58712 = 0.28602
##
## n= 58712
##
## CP nsplit rel error xerror xstd
## 1 0.383672 0 1.00000 1.00000 0.0065205
## 2 0.071994 1 0.61633 0.61633 0.0054983
## 3 0.043173 3 0.47234 0.47234 0.0049323
## 4 0.029000 4 0.42917 0.42923 0.0047352
* 16% of clients who pay their premiums after Count6-12 months will Default on their premiums * 66% of clients who are not among those who pay their premiums after the Count3-6 months, do not Default on their Premium payment * The response rate for most of the clients showed most of them pay their premium within and after the Count6-12 months period * of the 26% of the total clients that Default on the payment of Premium, most of them- 16% (62%) make their payment within the Count6-12 months period, while the remaining 10% (38%) make their payment after the Count3-6 months period * The company should therefore watch closely those clients that make their payment after the Count6-12 months period since they are the once most likely to Default on payment of Premium
## train_predict.class_CART
## 0 1
## 0 12799 3994
## 1 1268 40651
## [1] 0.9103761
## test_predict.class_CART
## 0 1
## 0 5473 1724
## 1 596 17369
## [1] 0.9077975
## Warning in max(attr(perf_CTmodel1, "y-values")[[1]] - attr(perf_CTmodel1, : no
## non-missing arguments to max; returning -Inf
## [1] -Inf
## [1] 0.9223711
## [1] 0.2440141
## # A tibble: 6 x 17
## Perc_Premiumcash Income `Count3-6` Count6_12 Count12andmore Marital_Status
## <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 0.317 90050 0 0 0 1
## 2 0.994 84090 0 0 0 1
## 3 0.635 109080 0 0 0 2
## 4 0.443 99080 0 0 0 2
## 5 1 210060 0 0 1 1
## 6 0.991 161040 0 0 0 1
## # ... with 11 more variables: Veh_Owned <dbl>, Dependents <dbl>,
## # Accomodation <dbl>, Risk_Score <dbl>, Premiums_Paid <dbl>,
## # Sourcing_Channel <dbl>, Residence <dbl>, Premium <dbl>, Default <dbl>,
## # AgeinYears <dbl>, IncomeClass <dbl>
## tibble [58,712 x 17] (S3: tbl_df/tbl/data.frame)
## $ Perc_Premiumcash: num [1:58712] 0.317 0.994 0.635 0.443 1 0.991 0.057 0.523 0.225 0.298 ...
## $ Income : num [1:58712] 90050 84090 109080 99080 210060 ...
## $ Count3-6 : num [1:58712] 0 0 0 0 0 0 0 0 0 0 ...
## $ Count6_12 : num [1:58712] 0 0 0 0 0 0 0 0 0 0 ...
## $ Count12andmore : num [1:58712] 0 0 0 0 1 0 0 0 0 0 ...
## $ Marital_Status : num [1:58712] 1 1 2 2 1 1 2 2 2 2 ...
## $ Veh_Owned : num [1:58712] 3 3 3 2 3 2 2 3 2 3 ...
## $ Dependents : num [1:58712] 3 2 4 2 4 2 4 2 4 3 ...
## $ Accomodation : num [1:58712] 2 1 1 2 2 1 1 2 2 2 ...
## $ Risk_Score : num [1:58712] 98.8 99 98.3 98.6 99.7 ...
## $ Premiums_Paid : num [1:58712] 8 4 11 5 4 4 9 11 7 8 ...
## $ Sourcing_Channel: num [1:58712] 1 1 2 1 3 2 1 1 2 1 ...
## $ Residence : num [1:58712] 1 2 2 2 2 2 2 1 1 2 ...
## $ Premium : num [1:58712] 5400 3300 5400 5400 11700 11700 13800 18000 7500 15900 ...
## $ Default : num [1:58712] 1 1 1 1 1 1 1 1 1 1 ...
## $ AgeinYears : num [1:58712] 31 39 55 42 40 ...
## $ IncomeClass : num [1:58712] 1 1 1 1 2 2 2 3 2 3 ...
## tibble [25,162 x 17] (S3: tbl_df/tbl/data.frame)
## $ Perc_Premiumcash: num [1:25162] 0.015 0.888 0.5 0.015 0.13 0 0.012 0.754 0.009 0.214 ...
## $ Income : num [1:25162] 145020 103050 198030 198090 145270 ...
## $ Count3-6 : num [1:25162] 1 7 0 0 0 0 0 0 0 0 ...
## $ Count6_12 : num [1:25162] 0 3 0 0 0 0 0 0 0 0 ...
## $ Count12andmore : num [1:25162] 0 4 0 0 0 0 0 0 0 0 ...
## $ Marital_Status : num [1:25162] 1 1 2 2 1 1 1 2 1 2 ...
## $ Veh_Owned : num [1:25162] 1 2 3 3 3 2 2 2 2 3 ...
## $ Dependents : num [1:25162] 1 1 1 1 3 3 4 4 4 4 ...
## $ Accomodation : num [1:25162] 2 1 2 1 1 2 2 1 1 1 ...
## $ Risk_Score : num [1:25162] 99.2 98.8 98.8 99.3 98.8 ...
## $ Premiums_Paid : num [1:25162] 14 15 16 6 17 15 16 8 9 10 ...
## $ Sourcing_Channel: num [1:25162] 3 1 1 4 1 1 2 1 2 4 ...
## $ Residence : num [1:25162] 2 2 1 1 2 2 2 2 1 2 ...
## $ Premium : num [1:25162] 18000 7500 13800 13800 5700 32700 3300 7500 24300 18000 ...
## $ Default : num [1:25162] 1 0 1 1 1 1 1 1 1 1 ...
## $ AgeinYears : num [1:25162] 44 53 28 58 43 ...
## $ IncomeClass : num [1:25162] 1 1 2 2 1 3 3 1 3 3 ...
## tibble [58,712 x 17] (S3: tbl_df/tbl/data.frame)
## $ Perc_Premiumcash: num [1:58712] 0.317 0.994 0.635 0.443 1 0.991 0.057 0.523 0.225 0.298 ...
## $ Income : num [1:58712] 90050 84090 109080 99080 210060 ...
## $ Count3-6 : num [1:58712] 0 0 0 0 0 0 0 0 0 0 ...
## $ Count6_12 : num [1:58712] 0 0 0 0 0 0 0 0 0 0 ...
## $ Count12andmore : num [1:58712] 0 0 0 0 1 0 0 0 0 0 ...
## $ Marital_Status : num [1:58712] 1 1 2 2 1 1 2 2 2 2 ...
## $ Veh_Owned : num [1:58712] 3 3 3 2 3 2 2 3 2 3 ...
## $ Dependents : num [1:58712] 3 2 4 2 4 2 4 2 4 3 ...
## $ Accomodation : num [1:58712] 2 1 1 2 2 1 1 2 2 2 ...
## $ Risk_Score : num [1:58712] 98.8 99 98.3 98.6 99.7 ...
## $ Premiums_Paid : num [1:58712] 8 4 11 5 4 4 9 11 7 8 ...
## $ Sourcing_Channel: num [1:58712] 1 1 2 1 3 2 1 1 2 1 ...
## $ Residence : num [1:58712] 1 2 2 2 2 2 2 1 1 2 ...
## $ Premium : num [1:58712] 5400 3300 5400 5400 11700 11700 13800 18000 7500 15900 ...
## $ Default : Factor w/ 2 levels "0","1": 2 2 2 2 2 2 2 2 2 2 ...
## $ AgeinYears : num [1:58712] 31 39 55 42 40 ...
## $ IncomeClass : num [1:58712] 1 1 1 1 2 2 2 3 2 3 ...
## tibble [25,162 x 17] (S3: tbl_df/tbl/data.frame)
## $ Perc_Premiumcash: num [1:25162] 0.015 0.888 0.5 0.015 0.13 0 0.012 0.754 0.009 0.214 ...
## $ Income : num [1:25162] 145020 103050 198030 198090 145270 ...
## $ Count3-6 : num [1:25162] 1 7 0 0 0 0 0 0 0 0 ...
## $ Count6_12 : num [1:25162] 0 3 0 0 0 0 0 0 0 0 ...
## $ Count12andmore : num [1:25162] 0 4 0 0 0 0 0 0 0 0 ...
## $ Marital_Status : num [1:25162] 1 1 2 2 1 1 1 2 1 2 ...
## $ Veh_Owned : num [1:25162] 1 2 3 3 3 2 2 2 2 3 ...
## $ Dependents : num [1:25162] 1 1 1 1 3 3 4 4 4 4 ...
## $ Accomodation : num [1:25162] 2 1 2 1 1 2 2 1 1 1 ...
## $ Risk_Score : num [1:25162] 99.2 98.8 98.8 99.3 98.8 ...
## $ Premiums_Paid : num [1:25162] 14 15 16 6 17 15 16 8 9 10 ...
## $ Sourcing_Channel: num [1:25162] 3 1 1 4 1 1 2 1 2 4 ...
## $ Residence : num [1:25162] 2 2 1 1 2 2 2 2 1 2 ...
## $ Premium : num [1:25162] 18000 7500 13800 13800 5700 32700 3300 7500 24300 18000 ...
## $ Default : Factor w/ 2 levels "0","1": 2 1 2 2 2 2 2 2 2 2 ...
## $ AgeinYears : num [1:25162] 44 53 28 58 43 ...
## $ IncomeClass : num [1:25162] 1 1 2 2 1 3 3 1 3 3 ...
## randomForest 4.6-14
## Type rfNews() to see new features/changes/bug fixes.
##
## Attaching package: 'randomForest'
## The following object is masked from 'package:rattle':
##
## importance
## The following object is masked from 'package:dplyr':
##
## combine
## The following object is masked from 'package:gridExtra':
##
## combine
## The following object is masked from 'package:ggplot2':
##
## margin
## [1] 88068 17
## [1] 37744 17
## Warning in randomForest.default(m, y, ...): The response has five or fewer
## unique values. Are you sure you want to do regression?
##
## Call:
## randomForest(formula = testRF$Default ~ ., data = testRF[, -3], ntree = 501, mtry = 4, nodesize = 10)
## Type of random forest: regression
## Number of trees: 501
## No. of variables tried at each split: 4
##
## Mean of squared residuals: 0.03915134
## % Var explained: 80.83
* From around 50 trees, the OOB error is no longer reducing, so lets stick to 51 trees
## IncNodePurity
## Perc_Premiumcash 783.19780
## Income 225.92953
## Count6_12 1485.01216
## Count12andmore 927.38180
## Marital_Status 676.50361
## Veh_Owned 376.73451
## Dependents 276.03663
## Accomodation 546.75904
## Risk_Score 228.63870
## Premiums_Paid 187.93223
## Sourcing_Channel 617.77369
## Residence 375.74655
## Premium 114.69307
## AgeinYears 268.75999
## IncomeClass 27.64421
* Based on the Inc Node Purity mean decrease in Gini Impurity is found with Count 6-12, Count12andmore and Perc_Premiumcash: These are the variables that significantly impact on the tendency to Default on payment of Premium * The variable with the highest impact on increasing the odds of Defaulting on Premium is Count6-12; hence, clients who pay their premiums at Count6-12 will significantly likely Default in ratio 1.5 to 1 compared to the next closest (Count12andmore) * We will see of the tunned Random Forest will have the same findings
## [1] 0.9532634
##
## FALSE TRUE
## 0 21610 3580
## 1 536 62342
## Warning in randomForest.default(m, y, ...): The response has five or fewer
## unique values. Are you sure you want to do regression?
##
## Call:
## randomForest(formula = testRF$Default ~ ., data = testRF[, -3], ntree = 501, mtry = 6, nodesize = 10)
## Type of random forest: regression
## Number of trees: 501
## No. of variables tried at each split: 6
##
## Mean of squared residuals: 0.03906612
## % Var explained: 80.87
## IncNodePurity
## Perc_Premiumcash 763.01624
## Income 234.79646
## Count6_12 1830.71201
## Count12andmore 1029.95886
## Marital_Status 647.32161
## Veh_Owned 300.66494
## Dependents 222.12967
## Accomodation 450.65601
## Risk_Score 235.04529
## Premiums_Paid 188.54532
## Sourcing_Channel 609.83377
## Residence 303.99956
## Premium 111.93613
## AgeinYears 255.13454
## IncomeClass 21.72029
* * The most significant variable according to the IncNodePurity and Importance plot is Count6-12, and closely followed by Count12andmore * Based on the Inc Node Purity mean decrease in Gini Impurity is found with Count 6-12, Count12andmore and Perc_Premiumcash: These are the variables that significantly impact on the tendency to Default on payment of Premium * The variable with the highest impact on increasing the odds of Defaulting on Premium is Count6-12; hence, clients who pay their premiums at Count6-12 will significantly likely Default in ratio 1.5 to 1 compared to the next closest (Count12andmore)
## [1] 0.9529227
##
## FALSE TRUE
## 0 21596 3594
## 1 552 62326
## Warning in randomForest.default(m, y, ...): The response has five or fewer
## unique values. Are you sure you want to do regression?
##
## Call:
## randomForest(formula = testRF$Default ~ ., data = testRF[, -3], ntree = 501, mtry = 8, nodesize = 10)
## Type of random forest: regression
## Number of trees: 501
## No. of variables tried at each split: 8
##
## Mean of squared residuals: 0.03920685
## % Var explained: 80.8
##
## Naive Bayes Classifier for Discrete Predictors
##
## Call:
## naiveBayes.default(x = X, y = Y, laplace = laplace)
##
## A-priori probabilities:
## Y
## 0 1
## 0.2860233 0.7139767
##
## Conditional probabilities:
## Perc_Premiumcash
## Y [,1] [,2]
## 0 0.6251377 0.3010737
## 1 0.2935450 0.3231633
##
## Income
## Y [,1] [,2]
## 0 177081.5 196561.2
## 1 211118.1 530244.9
##
## Count3-6
## Y [,1] [,2]
## 0 0.8919484 1.1100518
## 1 0.2024380 0.5902113
##
## Count6_12
## Y [,1] [,2]
## 0 0.55056212 0.9868819
## 1 0.04608889 0.3161959
##
## Count12andmore
## Y [,1] [,2]
## 0 0.34510263 0.6358870
## 1 0.04220043 0.2471435
##
## Marital_Status
## Y [,1] [,2]
## 0 1.490878 0.4249789
## 1 1.496601 0.4999944
##
## Veh_Owned
## Y [,1] [,2]
## 0 1.996051 0.6930829
## 1 1.991555 0.8173971
##
## Dependents
## Y [,1] [,2]
## 0 2.526841 0.9447477
## 1 2.507598 1.1129422
##
## Accomodation
## Y [,1] [,2]
## 0 1.509999 0.4249616
## 1 1.501753 0.5000029
##
## Risk_Score
## Y [,1] [,2]
## 0 98.88017 0.7334812
## 1 99.07814 0.7139834
##
## Premiums_Paid
## Y [,1] [,2]
## 0 10.39942 5.138887
## 1 10.89451 5.115339
##
## Sourcing_Channel
## Y [,1] [,2]
## 0 1.982715 0.9558652
## 1 1.814810 1.0469143
##
## Residence
## Y [,1] [,2]
## 0 1.598907 0.4188814
## 1 1.601970 0.4894974
##
## Premium
## Y [,1] [,2]
## 0 9647.072 8473.449
## 1 11088.292 9508.307
##
## AgeinYears
## Y [,1] [,2]
## 0 46.31233 11.09544
## 1 51.97731 14.30005
##
## IncomeClass
## Y [,1] [,2]
## 0 1.645859 0.7658256
## 1 1.851404 0.8084522
## Confusion Matrix and Statistics
##
## Reference
## Prediction 0 1
## 0 4038 1539
## 1 3159 16426
##
## Accuracy : 0.8133
## 95% CI : (0.8084, 0.8181)
## No Information Rate : 0.714
## P-Value [Acc > NIR] : < 2.2e-16
##
## Kappa : 0.5098
##
## Mcnemar's Test P-Value : < 2.2e-16
##
## Sensitivity : 0.5611
## Specificity : 0.9143
## Pos Pred Value : 0.7240
## Neg Pred Value : 0.8387
## Prevalence : 0.2860
## Detection Rate : 0.1605
## Detection Prevalence : 0.2216
## Balanced Accuracy : 0.7377
##
## 'Positive' Class : 0
##
The Accuracy of the Naive Bayes Model is 81.13%
We were able to correctly predict 3815 out of 7197 “No” (Defaulters on Premium) (A probability of 53.01% which is our sensitivity)
We were able to correctly predict 16599 out of “17965” Non Defaulters correctly. This is a probability of 92.4%, which is our specificity
This means the ability of Naives Bayes algorithm to predict “Defaulters” is about 53.01%, and about 92.4% for “Non Defaulters”
The overall accuracy is 81.13%, that is the ability of the Naive Bayes model to make predictions on the Non Default is 81.13%
The model has a good accuracy and Specificity, but weak sensitivity
Accuracy : 81.13%
Sensitivity : 53.01%
Specificity : 92.4%
Precision: 73.63%. (The precision is also the Positive Predictive Value )
## [1] 0.813275
## [1] 0.8132899
Lets check the ROC Curve, a plot between sensitivity (True Positive Rate) and false positive rate (1-specificity)
Calculating the ROC on the Train Data
ROC of the Naive Bayes Model using the Train Data
## [1] 0.60878
## [1] 0.6080501
## [1] 0.184992
## [1] 0.1800174
## [1] 0.2175601
## [1] 0.2161001
We can use the caret library to train our KNN model which sets up a grid of tuning parameters.
Method : A string specifying which classification or regression model to use.
Metric : A string that specifies what summary metric will be used to select the optimal model.
PreProcess : A string vector that defines a pre-processing of the predictor data,“scale” would scale our data before building the knn model which is an important step in building a KNN model.
TuneGrid : is a parameter used to provide all possible tuning values.
## k-Nearest Neighbors
##
## 58712 samples
## 16 predictor
## 2 classes: '0', '1'
##
## Pre-processing: centered (16), scaled (16)
## Resampling: Cross-Validated (10 fold)
## Summary of sample sizes: 52840, 52841, 52842, 52841, 52841, 52841, ...
## Resampling results across tuning parameters:
##
## k Accuracy Kappa
## 2 0.8911468 0.7402729
## 3 0.8900568 0.7359039
## 4 0.8801609 0.7096007
## 5 0.8795479 0.7051843
## 6 0.8724285 0.6853605
## 7 0.8718833 0.6810111
## 8 0.8676933 0.6685909
## 9 0.8676764 0.6670504
## 10 0.8650193 0.6590305
## 11 0.8641335 0.6556118
## 12 0.8627370 0.6510580
## 13 0.8616639 0.6474661
## 14 0.8593305 0.6406968
## 15 0.8589217 0.6387629
## 16 0.8570822 0.6331010
## 17 0.8569459 0.6322045
## 18 0.8558387 0.6288448
## 19 0.8556344 0.6278163
## 20 0.8554130 0.6270709
##
## Accuracy was used to select the optimal model using the largest value.
## The final value used for the model was k = 2.
## knn_predictions1
## 0 1
## 17590 41122
## knn_predictions
## 0 1
## 7871 17291
## Confusion Matrix and Statistics
##
## Reference
## Prediction 0 1
## 0 16054 1536
## 1 739 40383
##
## Accuracy : 0.9613
## 95% CI : (0.9597, 0.9628)
## No Information Rate : 0.714
## P-Value [Acc > NIR] : < 2.2e-16
##
## Kappa : 0.9065
##
## Mcnemar's Test P-Value : < 2.2e-16
##
## Sensitivity : 0.9560
## Specificity : 0.9634
## Pos Pred Value : 0.9127
## Neg Pred Value : 0.9820
## Prevalence : 0.2860
## Detection Rate : 0.2734
## Detection Prevalence : 0.2996
## Balanced Accuracy : 0.9597
##
## 'Positive' Class : 0
##
The train data is 96.16% Accurate in predicting the Default on the Payment of Premium
The Sensitivity of the model on the Train Data is 95.72%
The Specificity of the model on the Train Data is 96.34%
Accuracy : 0.9616
Sensitivity : 0.9572
Specificity : 0.9634
Precision: 0.9129
## [1] 0.9610982
## Confusion Matrix and Statistics
##
## Reference
## Prediction 0 1
## 0 6267 1604
## 1 930 16361
##
## Accuracy : 0.8993
## 95% CI : (0.8955, 0.903)
## No Information Rate : 0.714
## P-Value [Acc > NIR] : < 2.2e-16
##
## Kappa : 0.7602
##
## Mcnemar's Test P-Value : < 2.2e-16
##
## Sensitivity : 0.8708
## Specificity : 0.9107
## Pos Pred Value : 0.7962
## Neg Pred Value : 0.9462
## Prevalence : 0.2860
## Detection Rate : 0.2491
## Detection Prevalence : 0.3128
## Balanced Accuracy : 0.8907
##
## 'Positive' Class : 0
##
## [1] 0.2232991
## [1] 0.2209178
## [1] 0
## [1] 0
## [1] 0.1234056
## [1] 0.1274079
##
## Attaching package: 'ipred'
## The following object is masked from 'package:raster':
##
## cv
## ------------------------------------------------------------------------------
## You have loaded plyr after dplyr - this is likely to cause problems.
## If you need functions from both plyr and dplyr, please load plyr first, then dplyr:
## library(plyr); library(dplyr)
## ------------------------------------------------------------------------------
##
## Attaching package: 'plyr'
## The following objects are masked from 'package:dplyr':
##
## arrange, count, desc, failwith, id, mutate, rename, summarise,
## summarize
## The following object is masked from 'package:DMwR':
##
## join
## The following objects are masked from 'package:Hmisc':
##
## is.discrete, summarize
##
## Attaching package: 'TH.data'
## The following object is masked from 'package:MASS':
##
## geyser
## Loaded gbm 2.1.8
##
## TRUE
## 0 7197
## 1 17965
Here with bagging, we call Customers that Defaulted on Premium 0 and those that didn’t 1
With bagging, we have the same proportion of Defaulters at 28.6%, similar to our original data
Lets now apply xGBoost the data
##
## Bagging classification trees with 25 bootstrap replications
##
## Call: bagging.data.frame(formula = Default ~ ., data = traindata, control = rpart.control(maxdepth = 5,
## minsplit = 4))
## [1] 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1
## [37] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1
## [73] 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1
## [109] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## [145] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## [181] 1 1 1 1 1 1 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## [217] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## [253] 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 0 1 1 0 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1
## [289] 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 0 1 1 1 1 1 1 1 1 0 1 1 1 1
## [325] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1
## [361] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## [397] 0 1 1 0 1 0 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1
## [433] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0
## [469] 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## [505] 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## [541] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1
## [577] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## [613] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1
## [649] 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## [685] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## [721] 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1
## [757] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 0 1 1 1 1 1
## [793] 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## [829] 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1
## [865] 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## [901] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## [937] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1
## [973] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 0 1
## [1009] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 1 1 1 1 1 1 1 1 1 1 1 1
## [1045] 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## [1081] 1 1 0 1 1 1 1 1 0 1 1 1 1 1 1 0 1 1 1 1 0 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1
## [1117] 1 1 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## [1153] 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## [1189] 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## [1225] 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## [1261] 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 1 1 1 1 1 1 0 1
## [1297] 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## [1333] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## [1369] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## [1405] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 0 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1
## [1441] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1
## [1477] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 0 1 1 1 1 0 1 1 1 1
## [1513] 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## [1549] 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## [1585] 1 0 1 1 0 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## [1621] 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1
## [1657] 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## [1693] 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0
## [1729] 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 0 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1
## [1765] 1 1 0 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## [1801] 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 0 1 1 1
## [1837] 1 1 1 1 1 0 1 1 1 0 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 0 1 1
## [1873] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1
## [1909] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 0 0 1 1 1 1 1 1 1 1 1 1 1 1
## [1945] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1
## [1981] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## [2017] 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## [2053] 1 1 1 1 1 0 1 0 1 1 1 1 1 1 1 0 1 1 0 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1
## [2089] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1
## [2125] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1
## [2161] 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 1 0 1 1 1 0 1 1 1 1 1 1 1 1
## [2197] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## [2233] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## [2269] 1 1 1 1 0 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## [2305] 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## [2341] 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 0 1 1 1
## [2377] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## [2413] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1
## [2449] 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## [2485] 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 0 1 0 1 1 1 1 1 1 1 1 1 1 1
## [2521] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1
## [2557] 1 1 1 1 1 1 1 1 1 1 0 1 0 1 1 1 1 1 1 1 1 0 1 0 1 1 1 1 1 1 1 1 1 1 1 1
## [2593] 1 1 1 1 0 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## [2629] 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## [2665] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## [2701] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## [2737] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## [2773] 1 1 1 1 0 1 1 1 1 1 1 1 0 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1
## [2809] 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1
## [2845] 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## [2881] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## [2917] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 0 1 1 1 1 1 1 1 1 1 0 1 1
## [2953] 1 1 1 1 1 1 1 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 0 1 1 1 1 1 1 1 1 1
## [2989] 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0
## [3025] 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 0 1
## [3061] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1
## [3097] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 0 1 1 0 1 1 1 1 1 1 1 1 1 1 1
## [3133] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 0 1 1 1 1 1 1
## [3169] 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0
## [3205] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1
## [3241] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1
## [3277] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## [3313] 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0
## [3349] 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## [3385] 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1
## [3421] 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 0 1 1 1 1
## [3457] 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 0 1 1 1 1 1 1 1 1 0 1
## [3493] 1 0 1 1 0 1 1 1 1 1 1 1 1 1 1 0 0 0 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## [3529] 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1
## [3565] 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## [3601] 1 0 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 0 1 0
## [3637] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## [3673] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## [3709] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0
## [3745] 1 1 1 1 1 0 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1
## [3781] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## [3817] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1
## [3853] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1
## [3889] 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 0 1 1 1 1 1 1 1 1 1
## [3925] 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## [3961] 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## [3997] 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1
## [4033] 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1
## [4069] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1
## [4105] 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## [4141] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1
## [4177] 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## [4213] 1 1 1 1 1 1 1 1 1 1 1 1 0 0 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## [4249] 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 0 1 1 0 1 1 1 1 1 1
## [4285] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## [4321] 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 0 1 1 1 1 1
## [4357] 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## [4393] 0 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1
## [4429] 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## [4465] 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 0 1 1 1 1 1 1
## [4501] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1
## [4537] 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 0 0 1 1 1 1
## [4573] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1
## [4609] 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1
## [4645] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## [4681] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1
## [4717] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1
## [4753] 0 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1
## [4789] 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 0 1
## [4825] 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 0 1 1 1 1 1 1 1 1 1
## [4861] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## [4897] 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 0 1 0 1 1 1 1 1 1 1 1
## [4933] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1
## [4969] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## [5005] 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## [5041] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1
## [5077] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## [5113] 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0
## [5149] 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 0 1 1
## [5185] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## [5221] 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## [5257] 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1
## [5293] 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1
## [5329] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## [5365] 1 1 1 0 1 1 1 1 0 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1
## [5401] 1 1 1 1 1 1 1 1 0 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## [5437] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## [5473] 1 1 1 1 1 1 1 1 1 0 1 1 1 1 0 1 1 1 1 1 1 1 0 1 1 1 0 1 1 1 1 1 1 1 1 1
## [5509] 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## [5545] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## [5581] 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1
## [5617] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1
## [5653] 1 1 1 1 0 0 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 0 1
## [5689] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1
## [5725] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1
## [5761] 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0
## [5797] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1
## [5833] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1
## [5869] 1 1 1 1 1 0 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 0 1 1 1 0 1
## [5905] 1 1 1 1 1 0 1 1 1 1 1 1 1 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0
## [5941] 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## [5977] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 0 1 1 1 1 1 1 1 1 1
## [6013] 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## [6049] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## [6085] 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 0
## [6121] 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## [6157] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1
## [6193] 1 1 0 1 1 0 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## [6229] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## [6265] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## [6301] 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 0
## [6337] 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1
## [6373] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1
## [6409] 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## [6445] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## [6481] 1 1 1 1 1 1 0 1 1 1 1 0 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1
## [6517] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1
## [6553] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## [6589] 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1
## [6625] 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 0 1 1 0 1 1 1 1 1 1 1 1 0 1 1
## [6661] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1
## [6697] 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1
## [6733] 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## [6769] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 0 1 1 1 1 1
## [6805] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## [6841] 1 1 1 1 1 1 0 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1
## [6877] 1 1 1 0 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1
## [6913] 1 1 1 0 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1
## [6949] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## [6985] 1 1 1 0 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## [7021] 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## [7057] 1 1 1 1 1 1 1 1 1 1 1 0 1 1 0 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 0 1 1
## [7093] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1
## [7129] 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## [7165] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## [7201] 1 1 1 0 1 1 1 1 1 1 1 1 1 0 1 0 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1
## [7237] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## [7273] 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1
## [7309] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1
## [7345] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## [7381] 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## [7417] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## [7453] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1
## [7489] 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## [7525] 0 1 1 1 0 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1
## [7561] 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## [7597] 1 1 1 1 1 1 0 1 1 1 1 1 1 1 0 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1
## [7633] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## [7669] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## [7705] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1
## [7741] 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0
## [7777] 1 1 1 1 1 1 1 1 1 0 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1
## [7813] 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0
## [7849] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1
## [7885] 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1
## [7921] 0 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## [7957] 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## [7993] 1 1 1 1 1 1 1 0 1 1 1 0 1 0 1 0 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1
## [8029] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## [8065] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1
## [8101] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1
## [8137] 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## [8173] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## [8209] 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## [8245] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1
## [8281] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## [8317] 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## [8353] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1
## [8389] 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 0 1 1 1 1 1 1
## [8425] 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 0 1 1
## [8461] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## [8497] 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1
## [8533] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1
## [8569] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## [8605] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1
## [8641] 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0
## [8677] 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## [8713] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1
## [8749] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 0 1 1 1 1 0 1 1 1 1 1
## [8785] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 0 1 1 1 1 1 1 0 1 1 1 1 1 1
## [8821] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1
## [8857] 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1
## [8893] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## [8929] 1 1 1 1 1 1 1 0 1 1 1 1 1 1 0 1 1 1 1 1 0 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1
## [8965] 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## [9001] 1 1 1 0 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1
## [9037] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## [9073] 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 0 0 1 1 1 1 1 1 1 1 1 1
## [9109] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1
## [9145] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## [9181] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 0 0 1 1 1 1 1
## [9217] 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1
## [9253] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## [9289] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1
## [9325] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## [9361] 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## [9397] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 1 1 1
## [9433] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1
## [9469] 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## [9505] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## [9541] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## [9577] 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 0 1 1 0 1 1
## [9613] 0 1 1 1 1 1 1 0 0 1 1 0 1 1 1 1 0 1 0 1 0 0 1 1 1 0 1 1 0 1 0 0 1 1 0 1
## [9649] 0 0 1 0 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 0 0 0 1 1 1 1 1 0 1 1 0 1 1 1
## [9685] 1 1 0 0 0 1 1 0 0 1 1 1 0 0 1 1 1 1 1 0 1 1 1 1 1 1 0 1 1 1 0 0 1 1 0 1
## [9721] 1 0 1 1 1 0 1 1 0 1 0 1 1 1 1 0 0 1 1 0 0 1 0 1 1 1 1 1 1 1 1 0 0 1 0 0
## [9757] 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 0 0 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 0 0
## [9793] 0 1 1 0 1 0 0 1 1 1 1 1 0 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 0 1 1 1 1 1 0
## [9829] 1 1 1 0 1 0 1 1 0 1 1 1 0 1 1 1 0 1 1 1 0 0 1 1 1 1 1 1 0 0 0 1 0 0 1 1
## [9865] 1 1 1 1 1 1 0 0 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## [9901] 0 0 1 0 0 1 1 1 1 1 0 0 1 1 0 1 1 0 1 0 1 1 1 0 0 0 1 1 1 1 0 1 1 1 0 0
## [9937] 1 1 0 1 1 1 1 1 0 0 0 1 1 1 0 1 1 1 1 1 0 0 1 1 1 1 1 1 0 1 0 1 1 1 1 1
## [9973] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 1 0 1 0 1 0 1 1 1 0 0 1 1 1 1 1 0 1 1
## [10009] 1 1 0 0 1 0 1 1 0 1 1 0 0 1 0 1 1 1 0 1 1 0 1 1 1 0 1 1 1 1 1 1 1 1 1 1
## [10045] 0 1 0 1 0 1 1 0 1 1 1 1 1 0 1 0 1 0 1 1 1 1 1 1 1 1 1 0 1 1 0 1 0 1 1 1
## [10081] 1 1 1 1 1 0 1 1 1 1 0 1 1 1 1 0 1 1 0 1 1 0 0 1 1 1 1 0 1 1 1 0 1 0 1 1
## [10117] 1 1 1 1 1 0 1 1 1 1 1 0 0 1 1 1 1 1 1 1 1 1 1 1 0 0 1 1 0 0 1 1 0 1 1 1
## [10153] 0 1 1 0 1 1 0 1 0 1 1 0 1 0 0 0 1 0 1 1 0 0 0 0 0 0 0 1 0 0 1 0 0 1 0 0
## [10189] 0 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
## [10225] 1 1 0 1 1 0 1 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 1 1 1 0 0 0 1 1
## [10261] 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 0 0 0 0 0 0
## [10297] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 1 1 1 0 1 0 1 1 0 1 0 1 0 0
## [10333] 1 1 0 1 1 0 1 0 0 0 1 0 0 0 0 1 0 0 1 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1
## [10369] 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 1 1 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0
## [10405] 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0
## [10441] 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 1 0 1 1 0 0 0 0 1 0 0 0 0 1
## [10477] 1 1 0 0 0 0 0 1 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [10513] 0 0 0 0 0 0 0 1 1 0 1 1 0 0 0 0 0 0 0 0 1 1 0 0 1 0 1 1 0 0 0 0 1 0 0 0
## [10549] 1 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1
## [10585] 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 1 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0
## [10621] 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1
## [10657] 0 1 0 0 1 1 0 0 0 0 0 1 0 1 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
## [10693] 0 0 0 0 1 1 1 0 0 0 1 1 0 0 1 1 0 1 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0
## [10729] 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [10765] 0 0 0 0 1 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 1 1 0 0 1 0
## [10801] 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0
## [10837] 0 0 0 0 0 0 0 0 1 1 1 0 0 0 1 0 0 1 0 0 0 0 1 0 1 1 0 0 0 0 0 0 0 0 1 0
## [10873] 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 1 0 0 0 0 0
## [10909] 0 1 0 0 0 0 0 1 0 0 0 0 1 1 1 0 1 1 1 0 1 0 1 0 0 0 0 0 0 0 0 1 1 0 0 0
## [10945] 0 0 0 0 0 0 0 0 0 1 0 0 1 1 1 1 0 0 0 1 1 0 0 1 0 1 1 1 0 0 0 0 0 0 1 1
## [10981] 1 1 0 0 0 0 1 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 1 0
## [11017] 0 0 0 0 0 0 0 1 1 0 0 0 1 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 1 0 0 0 0 1 1 1
## [11053] 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [11089] 1 1 1 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0
## [11125] 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
## [11161] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 1
## [11197] 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 1 0 0 1 1 1 0 0
## [11233] 0 0 0 0 0 1 0 0 0 0 0 0 1 1 1 0 0 1 0 0 0 1 1 1 1 0 0 0 0 1 0 0 1 0 0 0
## [11269] 0 0 0 0 1 1 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0
## [11305] 0 0 0 1 0 0 0 1 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 1 0 0 1 0 0
## [11341] 0 0 0 1 1 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [11377] 1 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0
## [11413] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 1 1 1 0 0 0 0 1 0 1 0 1 1 0 0 0
## [11449] 0 1 1 1 0 1 0 0 1 0 1 0 0 0 0 1 1 0 1 1 0 0 0 0 1 0 0 0 1 1 0 0 0 0 0 0
## [11485] 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 1 0 1 0 0 0 0
## [11521] 0 0 1 1 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 1 0 0 0 0 0 0
## [11557] 1 1 1 0 1 0 1 1 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
## [11593] 1 0 0 1 0 0 1 0 0 0 0 1 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1
## [11629] 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 1 0 0 1 0 0 0 0 0 0 0
## [11665] 0 0 0 0 0 0 0 0 0 1 1 1 1 1 0 1 0 0 1 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 1
## [11701] 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 1 1 0 0 1
## [11737] 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 1 1 1 1 0 0 0 0 1 0 0 0 0 1
## [11773] 1 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 1 0 0 1 1 0 0 0 1 0 1 0 0
## [11809] 0 1 1 0 0 0 0 0 0 1 0 0 1 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1
## [11845] 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
## [11881] 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0
## [11917] 0 1 0 1 0 1 0 1 0 0 0 0 1 1 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [11953] 1 0 1 0 0 1 0 0 0 0 0 1 1 0 1 0 0 1 1 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0
## [11989] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 1 0 0 1 0 1 0 0 0 0 0 1 0 1
## [12025] 0 0 0 0 1 1 0 1 1 1 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 1 1 0 0 0 0 0
## [12061] 0 0 0 0 0 1 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 1 0 1 0 0
## [12097] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0
## [12133] 0 0 0 0 0 0 1 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1
## [12169] 0 1 1 1 0 0 0 0 0 1 0 1 1 0 0 1 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0
## [12205] 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 0 1 1 0 1 0 1 1 0 0 0 1 1
## [12241] 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 1 0 0 0 0 0 0 1 1 0 0 0 0 0 1 0 1 0 0 1 1
## [12277] 1 1 0 0 1 0 1 1 1 0 0 1 0 0 0 1 0 0 1 1 1 1 1 0 0 0 0 0 1 1 1 1 0 0 0 0
## [12313] 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0
## [12349] 0 0 0 1 0 0 0 0 0 0 1 0 1 1 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
## [12385] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 1 1
## [12421] 0 0 1 0 0 0 0 1 1 1 0 0 0 0 0 1 0 1 0 1 0 0 0 0 0 1 1 1 0 0 0 0 0 0 1 0
## [12457] 0 1 1 1 1 0 0 1 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 0 0 0 1 0 1 0 0 0 0 0 0 0
## [12493] 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 1 1 0 0 0
## [12529] 0 0 0 0 1 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
## [12565] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 1 0 0 1 0 1 1 1 0
## [12601] 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 1 0 1 1 1 1 0 0 0 0 1
## [12637] 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
## [12673] 0 1 0 1 1 0 0 0 0 0 0 0 1 1 0 0 1 1 0 1 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0
## [12709] 0 1 0 0 1 0 0 0 0 0 0 0 1 0 1 1 0 0 0 0 0 1 0 1 0 1 0 0 1 1 1 0 0 0 1 0
## [12745] 1 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 1
## [12781] 1 1 0 0 0 0 0 0 0 1 1 1 0 0 0 1 0 0 0 0 0 1 1 0 0 0 1 0 0 0 0 0 0 0 0 0
## [12817] 0 0 0 0 1 1 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0
## [12853] 1 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0
## [12889] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 1 1 0 0 0 0 0 0 0 0 0
## [12925] 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 1 1 0 0 1 0 0 0 1 0 0 1 1 0 0 0 0 0 0
## [12961] 0 0 1 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
## [12997] 0 0 0 0 0 1 1 1 0 1 0 0 0 0 1 1 0 0 0 0 1 0 0 0 1 1 1 0 0 0 1 0 1 1 0 0
## [13033] 0 1 1 0 0 1 0 0 1 0 1 1 0 0 0 0 0 1 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0
## [13069] 0 0 0 0 1 0 0 0 0 0 0 1 1 0 0 1 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0
## [13105] 0 1 0 1 1 0 0 0 0 0 0 0 0 0 0 1 1 0 1 1 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0
## [13141] 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 1 0 0 0 0 1 0 0 0 1 1 1 1 0 0 0 0 0
## [13177] 0 0 0 1 1 1 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 1 0 0
## [13213] 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 1 1 1 0 0 1 1 1 0 1 1 0 0 1 1 1 1
## [13249] 0 0 1 1 0 0 0 0 1 1 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1
## [13285] 1 0 0 1 0 1 0 0 0 1 0 0 0 0 1 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 1 0 1 1 0
## [13321] 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 1 1 1 0 1 1 0 0 1 1 0 0 0 0 0 1 0 0 0 1 0
## [13357] 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 1 0 1 0 0 0 0 0 0 0 1 1 0 0 0
## [13393] 0 1 0 0 0 0 0 0 1 1 0 0 1 0 0 0 1 1 0 0 1 0 1 0 0 1 0 0 0 1 0 1 1 0 0 0
## [13429] 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 1 0 0 1 0 0 0 0 0
## [13465] 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 1 1 0 1 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0
## [13501] 0 0 0 0 0 1 0 0 1 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0
## [13537] 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0
## [13573] 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0
## [13609] 0 0 1 0 0 0 0 0 1 0 1 0 0 1 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 1 1 0 1
## [13645] 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 1 1 1 0 0
## [13681] 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 1 0 1 1 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 1
## [13717] 0 0 0 1 0 0 1 1 1 0 0 0 0 0 1 0 1 1 0 0 0 0 1 1 1 1 1 0 1 0 0 0 0 0 0 0
## [13753] 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 1 1 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0
## [13789] 0 0 0 0 1 0 0 0 0 0 0 1 1 0 0 1 0 1 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0
## [13825] 0 0 0 0 0 0 1 0 1 1 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
## [13861] 0 0 0 0 0 0 0 0 0 0 1 0 1 1 0 0 0 0 1 0 1 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0
## [13897] 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 1 1 0 0 0 0 1 1 0 1
## [13933] 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 1 0 0 1 1 1 1 0 0 0 0 0 0 0 1 1 1
## [13969] 0 0 0 0 0 1 0 0 1 1 0 0 0 0 0 0 1 0 1 1 1 1 0 0 1 0 0 0 0 0 1 1 0 1 0 0
## [14005] 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 1 1 0 1 1 0 1 1 0 0 0 0 0 1 0 1 1 0 0 0 0
## [14041] 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 1 1 1 1 1 1
## [14077] 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0
## [14113] 0 0 0 0 0 0 0 0 1 1 1 0 0 1 1 1 1 0 0 1 1 0 0 0 0 0 0 0 1 1 0 1 0 0 0 1
## [14149] 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0
## [14185] 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 1 0 1 0 1 0 0 0 0
## [14221] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0
## [14257] 1 0 0 0 1 1 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 1 1 0 0 1 0 0 0 0
## [14293] 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 1 0 1 0 0 1 0 0 0 0 0 0 0 0 1 0
## [14329] 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 0
## [14365] 1 0 0 0 0 1 0 1 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [14401] 0 0 0 0 1 1 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 1 1 1 0 0 1 0 0 0 1 0 0
## [14437] 0 0 0 0 0 1 1 1 1 1 0 1 0 1 0 0 1 1 0 1 0 1 0 0 0 0 0 0 1 1 1 0 0 0 0 0
## [14473] 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 1 0 0 1 1 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0
## [14509] 0 1 0 0 1 0 1 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 1 1 1 0 0 0 0 0 0 1 0 0 0 0
## [14545] 0 0 0 1 1 0 0 0 0 0 0 1 0 1 0 0 1 0 0 0 1 1 0 0 0 0 0 0 0 0 0 1 0 1 1 0
## [14581] 0 0 0 0 1 1 0 1 0 1 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
## [14617] 0 0 1 0 0 0 0 0 0 1 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
## [14653] 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0
## [14689] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0
## [14725] 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 1 0 0 0 1 0 0 0 0 1 0 0 1
## [14761] 0 0 0 0 0 0 0 1 1 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [14797] 1 1 1 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0
## [14833] 0 0 0 0 1 0 1 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [14869] 1 0 0 0 0 0 1 1 1 0 0 0 1 1 0 0 0 0 0 0 1 0 0 0 0 1 1 0 0 0 0 0 0 1 0 0
## [14905] 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 1 0 0 0 0 0 1 1 0 1 1 1 0 0 1 0 1 1 0 0
## [14941] 1 0 0 0 1 0 0 0 1 0 0 0 0 0 1 1 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 1 0
## [14977] 0 0 1 0 1 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
## [15013] 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 1 0
## [15049] 0 0 0 0 1 1 0 0 0 0 0 0 0 0 1 1 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0
## [15085] 1 0 1 1 0 0 0 1 0 0 0 1 0 1 0 1 0 0 0 1 0 0 0 0 1 1 0 1 0 0 0 1 0 0 0 0
## [15121] 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 1 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 1 1 1
## [15157] 1 1 0 0 1 1 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 1 0 0 1 0 0 0 1 0 0 0 0 1 1 0
## [15193] 0 0 0 0 0 0 0 0 1 1 0 1 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0
## [15229] 0 0 0 0 1 0 0 1 0 0 0 0 0 1 1 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 1 1 1
## [15265] 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1
## [15301] 1 1 0 0 0 0 1 0 1 1 0 0 0 0 0 1 1 0 0 0 0 1 0 0 1 0 0 1 1 0 0 0 1 1 1 1
## [15337] 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 1 0 0 0 0 0 1 0 1 1 1 1 0 0 0
## [15373] 0 0 0 0 0 1 1 0 0 1 0 1 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 1 1 1 1 0 0 0 0
## [15409] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 1 0 0 0 0 0 0 0 0 0 1 1 0 0 0
## [15445] 1 0 0 0 0 1 0 1 0 1 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 1 1 0 1 0 1 1 1 1 1
## [15481] 0 0 0 0 1 1 1 1 1 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [15517] 1 0 1 1 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0
## [15553] 0 1 0 0 0 0 0 1 1 1 1 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 1 1 1 1 0
## [15589] 0 1 1 0 1 1 0 0 0 0 1 1 0 1 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [15625] 0 0 0 0 0 1 0 1 1 0 0 0 0 0 1 0 0 0 1 0 0 1 1 0 0 1 0 0 1 0 0 0 0 0 0 0
## [15661] 0 0 1 1 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
## [15697] 0 0 0 1 0 0 1 0 0 1 0 0 0 0 0 0 1 1 1 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0
## [15733] 1 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 1
## [15769] 1 0 0 0 0 0 1 0 1 0 0 0 1 1 0 0 1 0 0 1 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
## [15805] 0 1 0 0 0 0 1 0 0 1 1 1 0 0 0 0 0 0 0 1 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 1
## [15841] 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 1 0 0 1 0 0 0 0 1 1 1
## [15877] 1 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 1 1 0 0 0 0
## [15913] 0 0 0 0 0 0 1 0 1 0 0 1 0 0 0 0 1 0 1 0 1 0 1 0 0 0 0 1 1 0 0 0 0 1 0 0
## [15949] 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 1 0 0 0 0 0 0
## [15985] 0 0 0 1 0 0 1 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1
## [16021] 1 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0
## [16057] 1 0 0 0 0 0 0 0 0 0 1 1 0 1 1 1 1 0 0 1 0 0 0 0 1 0 0 1 0 0 0 1 1 0 0 0
## [16093] 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 1 0 0 0 1 1 0 0 0 0 1 0 0 0 0 0
## [16129] 1 0 1 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 1 1 0 0 1 1 1 0 0 0 1 0 0 0 0 0 0 0
## [16165] 1 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 1 1 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1
## [16201] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1
## [16237] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## [16273] 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## [16309] 1 1 1 1 1 1 0 1 1 1 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## [16345] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## [16381] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## [16417] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## [16453] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## [16489] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## [16525] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 0 1 1 1 1 1 1 1 1 1 1 1
## [16561] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1
## [16597] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## [16633] 1 1 1 1 0 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1
## [16669] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## [16705] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## [16741] 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## [16777] 1 1 1 1 1 1 1 1 1 1 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## [16813] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## [16849] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1
## [16885] 1 1 0 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1
## [16921] 1 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## [16957] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## [16993] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## [17029] 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1
## [17065] 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1
## [17101] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1
## [17137] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## [17173] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 0 1
## [17209] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 0 1 1 1 1 1 1 1 1
## [17245] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## [17281] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## [17317] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1
## [17353] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## [17389] 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## [17425] 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1
## [17461] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 0 1
## [17497] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1
## [17533] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## [17569] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1
## [17605] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 0 1 1 1 1 1 1 1
## [17641] 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## [17677] 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1
## [17713] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1
## [17749] 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0
## [17785] 1 1 1 1 1 1 1 0 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## [17821] 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1
## [17857] 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## [17893] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## [17929] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## [17965] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## [18001] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## [18037] 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## [18073] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## [18109] 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## [18145] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1
## [18181] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1
## [18217] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 0 1 1 1 1 1 1
## [18253] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## [18289] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## [18325] 1 1 1 1 1 1 1 1 0 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0
## [18361] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## [18397] 0 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## [18433] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## [18469] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1
## [18505] 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1
## [18541] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1
## [18577] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## [18613] 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## [18649] 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 1 1 1 1 1 1 1
## [18685] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0
## [18721] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 0 1
## [18757] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 0 1 1 1
## [18793] 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## [18829] 1 1 1 0 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## [18865] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## [18901] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## [18937] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## [18973] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## [19009] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## [19045] 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1
## [19081] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## [19117] 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## [19153] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 0 1
## [19189] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## [19225] 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1
## [19261] 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1
## [19297] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## [19333] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## [19369] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## [19405] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1
## [19441] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1
## [19477] 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## [19513] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## [19549] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## [19585] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1
## [19621] 1 1 1 1 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1
## [19657] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## [19693] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## [19729] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## [19765] 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## [19801] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## [19837] 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## [19873] 1 0 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## [19909] 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1
## [19945] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## [19981] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## [20017] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## [20053] 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## [20089] 1 1 1 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## [20125] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 0 1 1 1 1 0 1 1 1 1
## [20161] 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## [20197] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## [20233] 1 1 1 1 1 1 1 0 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1
## [20269] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## [20305] 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1
## [20341] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## [20377] 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## [20413] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1
## [20449] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## [20485] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## [20521] 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1
## [20557] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0
## [20593] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1
## [20629] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## [20665] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 0 1 1 1 1 1 1 1
## [20701] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## [20737] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## [20773] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## [20809] 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## [20845] 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## [20881] 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## [20917] 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## [20953] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## [20989] 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1
## [21025] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1
## [21061] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1
## [21097] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## [21133] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 0
## [21169] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1
## [21205] 1 1 0 0 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1
## [21241] 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1
## [21277] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0
## [21313] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## [21349] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1
## [21385] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 0 1 1 0 1 1 1 1 0 1
## [21421] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1
## [21457] 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1
## [21493] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## [21529] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1
## [21565] 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## [21601] 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## [21637] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## [21673] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 0 1 1 1 1 1
## [21709] 0 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1
## [21745] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 0 1
## [21781] 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1
## [21817] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## [21853] 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## [21889] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## [21925] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 1
## [21961] 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1
## [21997] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## [22033] 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1
## [22069] 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1
## [22105] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## [22141] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## [22177] 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## [22213] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1
## [22249] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## [22285] 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## [22321] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## [22357] 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## [22393] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1
## [22429] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## [22465] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1
## [22501] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1
## [22537] 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 0
## [22573] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 0 1
## [22609] 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## [22645] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## [22681] 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## [22717] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## [22753] 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1
## [22789] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1
## [22825] 1 1 1 1 0 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## [22861] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## [22897] 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## [22933] 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## [22969] 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## [23005] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## [23041] 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## [23077] 1 0 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1
## [23113] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1
## [23149] 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1
## [23185] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## [23221] 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 0 1 1 1 1 1 1
## [23257] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## [23293] 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0
## [23329] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## [23365] 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## [23401] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## [23437] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1
## [23473] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## [23509] 1 1 1 1 1 1 0 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## [23545] 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## [23581] 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1
## [23617] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## [23653] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## [23689] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1
## [23725] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## [23761] 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## [23797] 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 0 1 1 1 1 1 1 0
## [23833] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 0 1 1 1 1 1 1 1
## [23869] 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1
## [23905] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## [23941] 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## [23977] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## [24013] 1 1 1 1 1 1 1 1 1 1 0 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## [24049] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## [24085] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1
## [24121] 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## [24157] 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## [24193] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1
## [24229] 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## [24265] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## [24301] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1
## [24337] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 0 1 1 1 1 1 1 1 1 0 1 0 1 1 1 1
## [24373] 1 1 0 1 1 1 0 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## [24409] 1 1 1 1 0 1 1 1 1 1 0 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## [24445] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## [24481] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## [24517] 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## [24553] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## [24589] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## [24625] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## [24661] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0
## [24697] 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## [24733] 1 1 1 1 1 1 1 1 1 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## [24769] 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## [24805] 1 1 1 1 1 0 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1
## [24841] 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## [24877] 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 0 1 1
## [24913] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## [24949] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1
## [24985] 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## [25021] 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1
## [25057] 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## [25093] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1
## [25129] 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## Levels: 0 1
## Confusion Matrix and Statistics
##
## Reference
## Prediction 0 1
## 0 5021 615
## 1 2176 17350
##
## Accuracy : 0.8891
## 95% CI : (0.8851, 0.8929)
## No Information Rate : 0.714
## P-Value [Acc > NIR] : < 2.2e-16
##
## Kappa : 0.7095
##
## Mcnemar's Test P-Value : < 2.2e-16
##
## Sensitivity : 0.9658
## Specificity : 0.6977
## Pos Pred Value : 0.8886
## Neg Pred Value : 0.8909
## Prevalence : 0.7140
## Detection Rate : 0.6895
## Detection Prevalence : 0.7760
## Balanced Accuracy : 0.8317
##
## 'Positive' Class : 1
##
## [1] 0.8890788
## gbm(formula = Default ~ ., distribution = "bernoulli", data = train_boost,
## n.trees = 5000, interaction.depth = 4, shrinkage = 0.01)
## A gradient boosted model with bernoulli loss function.
## 5000 iterations were performed.
## There were 16 predictors of which 0 had non-zero influence.
##
## y_pred 0 1
## 0 0 0
## 1 0 0
## Confusion Matrix and Statistics
##
## Reference
## Prediction 0 1
## 0 0 0
## 1 0 0
##
## Accuracy : NaN
## 95% CI : (NA, NA)
## No Information Rate : NA
## P-Value [Acc > NIR] : NA
##
## Kappa : NaN
##
## Mcnemar's Test P-Value : NA
##
## Sensitivity : NA
## Specificity : NA
## Pos Pred Value : NA
## Neg Pred Value : NA
## Prevalence : NaN
## Detection Rate : NaN
## Detection Prevalence : NaN
## Balanced Accuracy : NA
##
## 'Positive' Class : 1
##
In the case of Default in Premium Payment, which is our negative (0), while Non Default is Positive (1). The desired result is Non Default (1), but the essence of creating a Model is to accurately detect Defaults or negatives. Hence the Model that has the highest Specificity will be most desirable since it will be able more to correctly the Default in Payment of Premiums
The ability to detect the Default in Payment of Premium will help the Insurance Company look at the Profile of these likely class of customers and improve campaigns for them to prevent default or help them reduce the exposure to these clients.
The ability accurately predict Defaulting Customers will improve and sustain the income stream of the insurance company.
The Model with the best Specificity is Random Forest (99.03%) followed by CART Model (97.01%).
Accuracy talks about the rate of total number of correctly predicted cases, in both positive and negative classes versus overall predicted cases. Accuracy is also important because it helps us identify the Quality of the Model in Question
Sensitivity is the most important performance metric since we are looking for the best model that can predict odds of Default, based on our Models with the Best Sensitivity is Bagging, followed by KNN and then Random Forest.
The model with highest accuracy is KNN, followed Random Forest an d then CART
If a Model can have high accuracy and high Specificity it will be very good in this situation of predicting Defaulting Clients and Non Defaulting Clients, since the Insurance Company still need to have clients that will continue to make payments on their premiums while making efforts to reduce exposure to those Non Paying Clients.
The preferred Model we will be deploying is our KNN, it has the second highest Sensitivity and Specificity and the highest accuracy
The company should therefore keenly look at the profile of the clients who fall in the group
We also look at the variables that significantly impct on Paying premiums in Period Count6-12
The maximum correlation is 1.535e-01, which represent correlation between Income Class and Risk_Score. Hence customers with high income will have high risk (high credit), hence they are more desirable and won’t likely Default on their Premiums
The most correlated variable to to Income Class is Premiums_Paid followed by Perc_Premiumcash, the third most correlated is Premium. Hence, the more the Percentage of Premium paid in Cash, the more the Income Class, which ultimately reduce the propensity to Default on Premiums Payment
There is a positive correlation between Premium and Income, no of Premium Paid, Risk Score and Sourcing Channel
There is a negative correlation between Premium Paid via Cash Credit and Sourcing Channel, Accommodation, Risk Score
There is a positive correlation between Percentage of Premium by Cash Credit and Count 3-6 months, Count 6-12 months
As we can see only 6.2% of the Customers default on their premium payment
Although the data is not a balanced data, it is a very large dataset, hence even the 6.2% of Default is still a very high number in absolute value, hence we can still get to have accurate predictions in Model Building if we use the Database as it is
The ability to detect the Default in Payment of Premium will help the Insurance Company look at the Profile of these likely class of customers and improve campaigns for them to prevent default or help them reduce the exposure to these clients.
The ability accurately predict Defaulting Customers will improve and sustain the income stream of the insurance company.
#======================================================================= # # T H E - E N D # #=======================================================================
purl(“Insurance Premium Default for Capstone Project.Rmd”, documentation = 1)