Load Data
library (readr)
## Warning: package 'readr' was built under R version 4.0.3
Data1<-read_csv("EconData.csv")
##
## -- Column specification --------------------------------------------------------
## cols(
## meaning_code = col_character(),
## code = col_character(),
## Year = col_double(),
## Numbers = col_number(),
## sales = col_number(),
## payroll = col_number(),
## paid_employee = col_number()
## )
## Warning: 109 parsing failures.
## row col expected actual file
## 1475 sales a number D 'EconData.csv'
## 1475 payroll a number D 'EconData.csv'
## 1475 paid_employee a number i 'EconData.csv'
## 1477 sales a number D 'EconData.csv'
## 1477 payroll a number D 'EconData.csv'
## .... ............. ........ ...... ..............
## See problems(...) for more details.
library (dplyr)
## Warning: package 'dplyr' was built under R version 4.0.3
##
## Attaching package: 'dplyr'
## The following objects are masked from 'package:stats':
##
## filter, lag
## The following objects are masked from 'package:base':
##
## intersect, setdiff, setequal, union
Data2<-select(Data1, meaning_code, Year, sales)
Data2<-filter(Data2,
meaning_code == "Metal ore mining")
library(ggplot2)
## Warning: package 'ggplot2' was built under R version 4.0.3
ggplot(Data2, aes(x = Year, y = sales)) +
geom_point() +
labs(title = "Metal Ore Mining Sales Comparison Between Years")

library(readxl)
## Warning: package 'readxl' was built under R version 4.0.3
Data3 <- read_excel("C:/Users/tyang/Desktop/Fat_Supply_Quantity_Data.xlsx")
ggplot(Data3, aes(x = Country, y=Eggs)) +
geom_point()

library(readr)
Data4 <- read_csv("C:/Users/tyang/Desktop/timeseries.csv")
##
## -- Column specification --------------------------------------------------------
## cols(
## Month = col_character(),
## Year = col_double(),
## Wholesalers = col_number(),
## Durable_Goods = col_number(),
## Motors = col_number(),
## Furniture = col_number(),
## Lumber = col_number(),
## Equipment = col_number(),
## computer = col_number(),
## metals = col_number(),
## appliances = col_number(),
## Hardwares = col_number(),
## Machinary = col_number()
## )
ggplot(Data4, aes(x = Month, y = Wholesalers)) +
geom_line() +
labs(titile = "wholesale over days",
x = "Time",
y = "Sales")
## Warning: Removed 1 row(s) containing missing values (geom_path).

library(ggplot2)
data(economics, package = "ggplot2")
ggplot(economics, aes(x = date, y = psavert)) +
geom_line() +
labs(title = "Personal Savings Rate",
x = "Date",
y = "Personal Savings Rate")

library(ggplot2)
library(scales)
## Warning: package 'scales' was built under R version 4.0.3
##
## Attaching package: 'scales'
## The following object is masked from 'package:readr':
##
## col_factor
Data5 <- ggplot(economics, aes(x = date, y = psavert)) +
geom_line(color = "indianred3",
size=1 ) +
geom_smooth() +
scale_x_date(date_breaks = '5 years',
labels = date_format("%b-%y")) +
labs(title = "Personal Savings Rate",
subtitle = "1967 to 2015",
x = "",
y = "Personal Savings Rate") +
theme_minimal()
Data5
## `geom_smooth()` using method = 'loess' and formula 'y ~ x'
