Aplicar e interpretar modelo de regresión múltiple
Aplicar regresión lineal en los datos de FIFA con la variable dependiene Value y varias variables independientes
library(readr)
library(dplyr)
##
## Attaching package: 'dplyr'
## The following objects are masked from 'package:stats':
##
## filter, lag
## The following objects are masked from 'package:base':
##
## intersect, setdiff, setequal, union
library(ggplot2)
library(caret)
## Warning: package 'caret' was built under R version 4.0.3
## Loading required package: lattice
library(knitr)
getwd()
## [1] "C:/Users/pc/Documents/RStudio"
datos.fifa <- read.csv(file = "data.csv", encoding = "UTF-8")
datos <- select(datos.fifa, Value, Age, Overall, Potential,
Wage, Special, International.Reputation,Weak.Foot,
Skill.Moves, Jersey.Number, Height,
Weight, Crossing, Finishing, HeadingAccuracy,
ShortPassing, Volleys, Dribbling, Curve,
FKAccuracy, LongPassing, BallControl, Acceleration,
SprintSpeed, Agility, Reactions, Balance, ShotPower,
Jumping, Stamina, Strength,LongShots, Aggression,
Interceptions, Positioning, Vision,
Penalties, Composure, Marking, StandingTackle,
SlidingTackle)
kable(head(datos, 10), caption = "Datos de FIFA con variables numéricas (primeros diez)", row.names = 1:nrow(datos))
## Warning in if (is.na(row.names)) row.names = has_rownames(x): la condición tiene
## longitud > 1 y sólo el primer elemento será usado
## Warning in if (row.names) {: la condición tiene longitud > 1 y sólo el primer
## elemento será usado
| Value | Age | Overall | Potential | Wage | Special | International.Reputation | Weak.Foot | Skill.Moves | Jersey.Number | Height | Weight | Crossing | Finishing | HeadingAccuracy | ShortPassing | Volleys | Dribbling | Curve | FKAccuracy | LongPassing | BallControl | Acceleration | SprintSpeed | Agility | Reactions | Balance | ShotPower | Jumping | Stamina | Strength | LongShots | Aggression | Interceptions | Positioning | Vision | Penalties | Composure | Marking | StandingTackle | SlidingTackle | |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 1 | €110.5M | 31 | 94 | 94 | €565K | 2202 | 5 | 4 | 4 | 10 | 5’7 | 159lbs | 84 | 95 | 70 | 90 | 86 | 97 | 93 | 94 | 87 | 96 | 91 | 86 | 91 | 95 | 95 | 85 | 68 | 72 | 59 | 94 | 48 | 22 | 94 | 94 | 75 | 96 | 33 | 28 | 26 |
| 2 | €77M | 33 | 94 | 94 | €405K | 2228 | 5 | 4 | 5 | 7 | 6’2 | 183lbs | 84 | 94 | 89 | 81 | 87 | 88 | 81 | 76 | 77 | 94 | 89 | 91 | 87 | 96 | 70 | 95 | 95 | 88 | 79 | 93 | 63 | 29 | 95 | 82 | 85 | 95 | 28 | 31 | 23 |
| 3 | €118.5M | 26 | 92 | 93 | €290K | 2143 | 5 | 5 | 5 | 10 | 5’9 | 150lbs | 79 | 87 | 62 | 84 | 84 | 96 | 88 | 87 | 78 | 95 | 94 | 90 | 96 | 94 | 84 | 80 | 61 | 81 | 49 | 82 | 56 | 36 | 89 | 87 | 81 | 94 | 27 | 24 | 33 |
| 4 | €72M | 27 | 91 | 93 | €260K | 1471 | 4 | 3 | 1 | 1 | 6’4 | 168lbs | 17 | 13 | 21 | 50 | 13 | 18 | 21 | 19 | 51 | 42 | 57 | 58 | 60 | 90 | 43 | 31 | 67 | 43 | 64 | 12 | 38 | 30 | 12 | 68 | 40 | 68 | 15 | 21 | 13 |
| 5 | €102M | 27 | 91 | 92 | €355K | 2281 | 4 | 5 | 4 | 7 | 5’11 | 154lbs | 93 | 82 | 55 | 92 | 82 | 86 | 85 | 83 | 91 | 91 | 78 | 76 | 79 | 91 | 77 | 91 | 63 | 90 | 75 | 91 | 76 | 61 | 87 | 94 | 79 | 88 | 68 | 58 | 51 |
| 6 | €93M | 27 | 91 | 91 | €340K | 2142 | 4 | 4 | 4 | 10 | 5’8 | 163lbs | 81 | 84 | 61 | 89 | 80 | 95 | 83 | 79 | 83 | 94 | 94 | 88 | 95 | 90 | 94 | 82 | 56 | 83 | 66 | 80 | 54 | 41 | 87 | 89 | 86 | 91 | 34 | 27 | 22 |
| 7 | €67M | 32 | 91 | 91 | €420K | 2280 | 4 | 4 | 4 | 10 | 5’8 | 146lbs | 86 | 72 | 55 | 93 | 76 | 90 | 85 | 78 | 88 | 93 | 80 | 72 | 93 | 90 | 94 | 79 | 68 | 89 | 58 | 82 | 62 | 83 | 79 | 92 | 82 | 84 | 60 | 76 | 73 |
| 8 | €80M | 31 | 91 | 91 | €455K | 2346 | 5 | 4 | 3 | 9 | 6’0 | 190lbs | 77 | 93 | 77 | 82 | 88 | 87 | 86 | 84 | 64 | 90 | 86 | 75 | 82 | 92 | 83 | 86 | 69 | 90 | 83 | 85 | 87 | 41 | 92 | 84 | 85 | 85 | 62 | 45 | 38 |
| 9 | €51M | 32 | 91 | 91 | €380K | 2201 | 4 | 3 | 3 | 15 | 6’0 | 181lbs | 66 | 60 | 91 | 78 | 66 | 63 | 74 | 72 | 77 | 84 | 76 | 75 | 78 | 85 | 66 | 79 | 93 | 84 | 83 | 59 | 88 | 90 | 60 | 63 | 75 | 82 | 87 | 92 | 91 |
| 10 | €68M | 25 | 90 | 93 | €94K | 1331 | 3 | 3 | 1 | 1 | 6’2 | 192lbs | 13 | 11 | 15 | 29 | 13 | 12 | 13 | 14 | 26 | 16 | 43 | 60 | 67 | 86 | 49 | 22 | 76 | 41 | 78 | 12 | 34 | 19 | 11 | 70 | 11 | 70 | 27 | 12 | 18 |
kable(tail(datos, 10), caption = "Datos de FIFA con variables numéricas sólamente (últimos diez)")
| Value | Age | Overall | Potential | Wage | Special | International.Reputation | Weak.Foot | Skill.Moves | Jersey.Number | Height | Weight | Crossing | Finishing | HeadingAccuracy | ShortPassing | Volleys | Dribbling | Curve | FKAccuracy | LongPassing | BallControl | Acceleration | SprintSpeed | Agility | Reactions | Balance | ShotPower | Jumping | Stamina | Strength | LongShots | Aggression | Interceptions | Positioning | Vision | Penalties | Composure | Marking | StandingTackle | SlidingTackle | |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 18198 | €60K | 18 | 47 | 61 | €1K | 1362 | 1 | 3 | 2 | 14 | 5’10 | 141lbs | 44 | 44 | 36 | 53 | 43 | 50 | 48 | 46 | 52 | 51 | 68 | 62 | 58 | 41 | 62 | 50 | 55 | 50 | 38 | 37 | 37 | 28 | 39 | 48 | 49 | 52 | 41 | 47 | 38 |
| 18199 | €60K | 18 | 47 | 70 | €1K | 792 | 1 | 2 | 1 | 22 | 5’11 | 154lbs | 14 | 8 | 14 | 19 | 8 | 10 | 13 | 10 | 21 | 11 | 18 | 24 | 22 | 36 | 47 | 26 | 56 | 20 | 38 | 5 | 25 | 6 | 5 | 37 | 14 | 34 | 15 | 11 | 13 |
| 18200 | €70K | 18 | 47 | 69 | €1K | 1303 | 1 | 3 | 2 | 65 | 5’6 | 150lbs | 31 | 31 | 41 | 51 | 26 | 46 | 35 | 31 | 55 | 47 | 60 | 63 | 53 | 46 | 55 | 49 | 57 | 42 | 43 | 30 | 53 | 49 | 35 | 40 | 36 | 40 | 48 | 49 | 49 |
| 18201 | €60K | 18 | 47 | 62 | €1K | 1203 | 1 | 2 | 2 | 21 | 5’9 | 157lbs | 28 | 47 | 47 | 42 | 37 | 39 | 32 | 25 | 30 | 41 | 65 | 48 | 64 | 54 | 80 | 44 | 77 | 31 | 31 | 51 | 26 | 16 | 46 | 37 | 58 | 50 | 15 | 17 | 14 |
| 18202 | €60K | 18 | 47 | 68 | €1K | 1098 | 1 | 3 | 2 | 29 | 6’1 | 168lbs | 22 | 23 | 45 | 25 | 27 | 21 | 21 | 27 | 27 | 32 | 52 | 52 | 39 | 43 | 48 | 39 | 74 | 39 | 52 | 16 | 44 | 45 | 20 | 31 | 38 | 43 | 44 | 47 | 53 |
| 18203 | €60K | 19 | 47 | 65 | €1K | 1307 | 1 | 2 | 2 | 22 | 5’9 | 134lbs | 34 | 38 | 40 | 49 | 25 | 42 | 30 | 34 | 45 | 43 | 54 | 57 | 60 | 49 | 76 | 43 | 55 | 40 | 47 | 38 | 46 | 46 | 39 | 52 | 43 | 45 | 40 | 48 | 47 |
| 18204 | €60K | 19 | 47 | 63 | €1K | 1098 | 1 | 2 | 2 | 21 | 6’3 | 170lbs | 23 | 52 | 52 | 43 | 36 | 39 | 32 | 20 | 25 | 40 | 41 | 39 | 38 | 40 | 52 | 41 | 47 | 43 | 67 | 42 | 47 | 16 | 46 | 33 | 43 | 42 | 22 | 15 | 19 |
| 18205 | €60K | 16 | 47 | 67 | €1K | 1189 | 1 | 3 | 2 | 33 | 5’8 | 148lbs | 25 | 40 | 46 | 38 | 38 | 45 | 38 | 27 | 28 | 44 | 70 | 69 | 50 | 47 | 58 | 45 | 60 | 55 | 32 | 45 | 32 | 15 | 48 | 43 | 55 | 41 | 32 | 13 | 11 |
| 18206 | €60K | 17 | 47 | 66 | €1K | 1228 | 1 | 3 | 2 | 34 | 5’10 | 154lbs | 44 | 50 | 39 | 42 | 40 | 51 | 34 | 32 | 32 | 52 | 61 | 60 | 52 | 21 | 71 | 64 | 42 | 40 | 48 | 34 | 33 | 22 | 44 | 47 | 50 | 46 | 20 | 25 | 27 |
| 18207 | €60K | 16 | 46 | 66 | €1K | 1321 | 1 | 3 | 2 | 33 | 5’10 | 176lbs | 41 | 34 | 46 | 48 | 30 | 43 | 40 | 34 | 44 | 51 | 57 | 55 | 55 | 51 | 63 | 43 | 62 | 47 | 60 | 32 | 56 | 42 | 34 | 49 | 33 | 43 | 40 | 43 | 50 |
paste ("La variable dependiente y es : Value")
## [1] "La variable dependiente y es : Value"
paste ("Las variables independientes X1, X2, X3 ... Xn, son todas las demás: ")
## [1] "Las variables independientes X1, X2, X3 ... Xn, son todas las demás: "
source(file = "misfunciones.r")
datos <- datos %>%
mutate(valor = ifelse (substr(Value, nchar(Value), nchar(Value)) == 'M', fcleanValue(Value) * 1000000, fcleanValue(Value) * 1000)) %>%
filter(valor > 0)
datos <- datos %>%
mutate(salario = ifelse (substr(Wage, nchar(Wage), nchar(Wage)) == 'M', fcleanValue(Wage) * 1000000, fcleanValue(Wage) * 1000)) %>%
filter(salario > 0)
datos <- mutate(datos, estatura = festatura(Height))
datos <- mutate(datos, pesokgs = flbskgs(Weight))
datos <- fnames.minusculas(datos)
datos <- select(datos, -value, -wage, -height, -weight)
Verificacion
kable(head(datos, 10), caption = "Datos de FIFA con variables numéricas (primeros diez)", row.names = 1:nrow(datos))
## Warning in if (is.na(row.names)) row.names = has_rownames(x): la condición tiene
## longitud > 1 y sólo el primer elemento será usado
## Warning in if (row.names) {: la condición tiene longitud > 1 y sólo el primer
## elemento será usado
| age | overall | potential | special | international.reputation | weak.foot | skill.moves | jersey.number | crossing | finishing | headingaccuracy | shortpassing | volleys | dribbling | curve | fkaccuracy | longpassing | ballcontrol | acceleration | sprintspeed | agility | reactions | balance | shotpower | jumping | stamina | strength | longshots | aggression | interceptions | positioning | vision | penalties | composure | marking | standingtackle | slidingtackle | valor | salario | estatura | pesokgs | |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 1 | 31 | 94 | 94 | 2202 | 5 | 4 | 4 | 10 | 84 | 95 | 70 | 90 | 86 | 97 | 93 | 94 | 87 | 96 | 91 | 86 | 91 | 95 | 95 | 85 | 68 | 72 | 59 | 94 | 48 | 22 | 94 | 94 | 75 | 96 | 33 | 28 | 26 | 110500000 | 565000 | 1.70 | 72.12 |
| 2 | 33 | 94 | 94 | 2228 | 5 | 4 | 5 | 7 | 84 | 94 | 89 | 81 | 87 | 88 | 81 | 76 | 77 | 94 | 89 | 91 | 87 | 96 | 70 | 95 | 95 | 88 | 79 | 93 | 63 | 29 | 95 | 82 | 85 | 95 | 28 | 31 | 23 | 77000000 | 405000 | 1.88 | 83.01 |
| 3 | 26 | 92 | 93 | 2143 | 5 | 5 | 5 | 10 | 79 | 87 | 62 | 84 | 84 | 96 | 88 | 87 | 78 | 95 | 94 | 90 | 96 | 94 | 84 | 80 | 61 | 81 | 49 | 82 | 56 | 36 | 89 | 87 | 81 | 94 | 27 | 24 | 33 | 118500000 | 290000 | 1.75 | 68.04 |
| 4 | 27 | 91 | 93 | 1471 | 4 | 3 | 1 | 1 | 17 | 13 | 21 | 50 | 13 | 18 | 21 | 19 | 51 | 42 | 57 | 58 | 60 | 90 | 43 | 31 | 67 | 43 | 64 | 12 | 38 | 30 | 12 | 68 | 40 | 68 | 15 | 21 | 13 | 72000000 | 260000 | 1.93 | 76.20 |
| 5 | 27 | 91 | 92 | 2281 | 4 | 5 | 4 | 7 | 93 | 82 | 55 | 92 | 82 | 86 | 85 | 83 | 91 | 91 | 78 | 76 | 79 | 91 | 77 | 91 | 63 | 90 | 75 | 91 | 76 | 61 | 87 | 94 | 79 | 88 | 68 | 58 | 51 | 102000000 | 355000 | 1.80 | 69.85 |
| 6 | 27 | 91 | 91 | 2142 | 4 | 4 | 4 | 10 | 81 | 84 | 61 | 89 | 80 | 95 | 83 | 79 | 83 | 94 | 94 | 88 | 95 | 90 | 94 | 82 | 56 | 83 | 66 | 80 | 54 | 41 | 87 | 89 | 86 | 91 | 34 | 27 | 22 | 93000000 | 340000 | 1.73 | 73.94 |
| 7 | 32 | 91 | 91 | 2280 | 4 | 4 | 4 | 10 | 86 | 72 | 55 | 93 | 76 | 90 | 85 | 78 | 88 | 93 | 80 | 72 | 93 | 90 | 94 | 79 | 68 | 89 | 58 | 82 | 62 | 83 | 79 | 92 | 82 | 84 | 60 | 76 | 73 | 67000000 | 420000 | 1.73 | 66.22 |
| 8 | 31 | 91 | 91 | 2346 | 5 | 4 | 3 | 9 | 77 | 93 | 77 | 82 | 88 | 87 | 86 | 84 | 64 | 90 | 86 | 75 | 82 | 92 | 83 | 86 | 69 | 90 | 83 | 85 | 87 | 41 | 92 | 84 | 85 | 85 | 62 | 45 | 38 | 80000000 | 455000 | 1.83 | 86.18 |
| 9 | 32 | 91 | 91 | 2201 | 4 | 3 | 3 | 15 | 66 | 60 | 91 | 78 | 66 | 63 | 74 | 72 | 77 | 84 | 76 | 75 | 78 | 85 | 66 | 79 | 93 | 84 | 83 | 59 | 88 | 90 | 60 | 63 | 75 | 82 | 87 | 92 | 91 | 51000000 | 380000 | 1.83 | 82.10 |
| 10 | 25 | 90 | 93 | 1331 | 3 | 3 | 1 | 1 | 13 | 11 | 15 | 29 | 13 | 12 | 13 | 14 | 26 | 16 | 43 | 60 | 67 | 86 | 49 | 22 | 76 | 41 | 78 | 12 | 34 | 19 | 11 | 70 | 11 | 70 | 27 | 12 | 18 | 68000000 | 94000 | 1.88 | 87.09 |
kable(tail(datos, 10), caption = "Datos de FIFA con variables numéricas sólamente (últimos diez)", row.names = 1:nrow(datos))
## Warning in if (is.na(row.names)) row.names = has_rownames(x): la condición tiene
## longitud > 1 y sólo el primer elemento será usado
## Warning in if (row.names) {: la condición tiene longitud > 1 y sólo el primer
## elemento será usado
| age | overall | potential | special | international.reputation | weak.foot | skill.moves | jersey.number | crossing | finishing | headingaccuracy | shortpassing | volleys | dribbling | curve | fkaccuracy | longpassing | ballcontrol | acceleration | sprintspeed | agility | reactions | balance | shotpower | jumping | stamina | strength | longshots | aggression | interceptions | positioning | vision | penalties | composure | marking | standingtackle | slidingtackle | valor | salario | estatura | pesokgs | |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 17946 | 18 | 47 | 61 | 1362 | 1 | 3 | 2 | 14 | 44 | 44 | 36 | 53 | 43 | 50 | 48 | 46 | 52 | 51 | 68 | 62 | 58 | 41 | 62 | 50 | 55 | 50 | 38 | 37 | 37 | 28 | 39 | 48 | 49 | 52 | 41 | 47 | 38 | 60000 | 1000 | 1.78 | 63.96 |
| 17947 | 18 | 47 | 70 | 792 | 1 | 2 | 1 | 22 | 14 | 8 | 14 | 19 | 8 | 10 | 13 | 10 | 21 | 11 | 18 | 24 | 22 | 36 | 47 | 26 | 56 | 20 | 38 | 5 | 25 | 6 | 5 | 37 | 14 | 34 | 15 | 11 | 13 | 60000 | 1000 | 1.80 | 69.85 |
| 17948 | 18 | 47 | 69 | 1303 | 1 | 3 | 2 | 65 | 31 | 31 | 41 | 51 | 26 | 46 | 35 | 31 | 55 | 47 | 60 | 63 | 53 | 46 | 55 | 49 | 57 | 42 | 43 | 30 | 53 | 49 | 35 | 40 | 36 | 40 | 48 | 49 | 49 | 70000 | 1000 | 1.68 | 68.04 |
| 17949 | 18 | 47 | 62 | 1203 | 1 | 2 | 2 | 21 | 28 | 47 | 47 | 42 | 37 | 39 | 32 | 25 | 30 | 41 | 65 | 48 | 64 | 54 | 80 | 44 | 77 | 31 | 31 | 51 | 26 | 16 | 46 | 37 | 58 | 50 | 15 | 17 | 14 | 60000 | 1000 | 1.75 | 71.21 |
| 17950 | 18 | 47 | 68 | 1098 | 1 | 3 | 2 | 29 | 22 | 23 | 45 | 25 | 27 | 21 | 21 | 27 | 27 | 32 | 52 | 52 | 39 | 43 | 48 | 39 | 74 | 39 | 52 | 16 | 44 | 45 | 20 | 31 | 38 | 43 | 44 | 47 | 53 | 60000 | 1000 | 1.85 | 76.20 |
| 17951 | 19 | 47 | 65 | 1307 | 1 | 2 | 2 | 22 | 34 | 38 | 40 | 49 | 25 | 42 | 30 | 34 | 45 | 43 | 54 | 57 | 60 | 49 | 76 | 43 | 55 | 40 | 47 | 38 | 46 | 46 | 39 | 52 | 43 | 45 | 40 | 48 | 47 | 60000 | 1000 | 1.75 | 60.78 |
| 17952 | 19 | 47 | 63 | 1098 | 1 | 2 | 2 | 21 | 23 | 52 | 52 | 43 | 36 | 39 | 32 | 20 | 25 | 40 | 41 | 39 | 38 | 40 | 52 | 41 | 47 | 43 | 67 | 42 | 47 | 16 | 46 | 33 | 43 | 42 | 22 | 15 | 19 | 60000 | 1000 | 1.91 | 77.11 |
| 17953 | 16 | 47 | 67 | 1189 | 1 | 3 | 2 | 33 | 25 | 40 | 46 | 38 | 38 | 45 | 38 | 27 | 28 | 44 | 70 | 69 | 50 | 47 | 58 | 45 | 60 | 55 | 32 | 45 | 32 | 15 | 48 | 43 | 55 | 41 | 32 | 13 | 11 | 60000 | 1000 | 1.73 | 67.13 |
| 17954 | 17 | 47 | 66 | 1228 | 1 | 3 | 2 | 34 | 44 | 50 | 39 | 42 | 40 | 51 | 34 | 32 | 32 | 52 | 61 | 60 | 52 | 21 | 71 | 64 | 42 | 40 | 48 | 34 | 33 | 22 | 44 | 47 | 50 | 46 | 20 | 25 | 27 | 60000 | 1000 | 1.78 | 69.85 |
| 17955 | 16 | 46 | 66 | 1321 | 1 | 3 | 2 | 33 | 41 | 34 | 46 | 48 | 30 | 43 | 40 | 34 | 44 | 51 | 57 | 55 | 55 | 51 | 63 | 43 | 62 | 47 | 60 | 32 | 56 | 42 | 34 | 49 | 33 | 43 | 40 | 43 | 50 | 60000 | 1000 | 1.78 | 79.83 |
70 % datos de entrenamiento
30 % datos de validación
set.seed(2020)
entrena <- createDataPartition(y = datos$overall, p = 0.7, list = FALSE, times = 1)
datos.entrenamiento <- datos[entrena, ]
datos.validacion <- datos[-entrena, ]
kable(head(datos.entrenamiento, 10), caption = "Datos de entrenamiento (primeros diez)", row.names = 1:nrow(datos.entrenamiento))
## Warning in if (is.na(row.names)) row.names = has_rownames(x): la condición tiene
## longitud > 1 y sólo el primer elemento será usado
## Warning in if (row.names) {: la condición tiene longitud > 1 y sólo el primer
## elemento será usado
| age | overall | potential | special | international.reputation | weak.foot | skill.moves | jersey.number | crossing | finishing | headingaccuracy | shortpassing | volleys | dribbling | curve | fkaccuracy | longpassing | ballcontrol | acceleration | sprintspeed | agility | reactions | balance | shotpower | jumping | stamina | strength | longshots | aggression | interceptions | positioning | vision | penalties | composure | marking | standingtackle | slidingtackle | valor | salario | estatura | pesokgs | |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 1 | 31 | 94 | 94 | 2202 | 5 | 4 | 4 | 10 | 84 | 95 | 70 | 90 | 86 | 97 | 93 | 94 | 87 | 96 | 91 | 86 | 91 | 95 | 95 | 85 | 68 | 72 | 59 | 94 | 48 | 22 | 94 | 94 | 75 | 96 | 33 | 28 | 26 | 110500000 | 565000 | 1.70 | 72.12 |
| 2 | 33 | 94 | 94 | 2228 | 5 | 4 | 5 | 7 | 84 | 94 | 89 | 81 | 87 | 88 | 81 | 76 | 77 | 94 | 89 | 91 | 87 | 96 | 70 | 95 | 95 | 88 | 79 | 93 | 63 | 29 | 95 | 82 | 85 | 95 | 28 | 31 | 23 | 77000000 | 405000 | 1.88 | 83.01 |
| 3 | 26 | 92 | 93 | 2143 | 5 | 5 | 5 | 10 | 79 | 87 | 62 | 84 | 84 | 96 | 88 | 87 | 78 | 95 | 94 | 90 | 96 | 94 | 84 | 80 | 61 | 81 | 49 | 82 | 56 | 36 | 89 | 87 | 81 | 94 | 27 | 24 | 33 | 118500000 | 290000 | 1.75 | 68.04 |
| 5 | 27 | 91 | 92 | 2281 | 4 | 5 | 4 | 7 | 93 | 82 | 55 | 92 | 82 | 86 | 85 | 83 | 91 | 91 | 78 | 76 | 79 | 91 | 77 | 91 | 63 | 90 | 75 | 91 | 76 | 61 | 87 | 94 | 79 | 88 | 68 | 58 | 51 | 102000000 | 355000 | 1.80 | 69.85 |
| 6 | 27 | 91 | 91 | 2142 | 4 | 4 | 4 | 10 | 81 | 84 | 61 | 89 | 80 | 95 | 83 | 79 | 83 | 94 | 94 | 88 | 95 | 90 | 94 | 82 | 56 | 83 | 66 | 80 | 54 | 41 | 87 | 89 | 86 | 91 | 34 | 27 | 22 | 93000000 | 340000 | 1.73 | 73.94 |
| 7 | 32 | 91 | 91 | 2280 | 4 | 4 | 4 | 10 | 86 | 72 | 55 | 93 | 76 | 90 | 85 | 78 | 88 | 93 | 80 | 72 | 93 | 90 | 94 | 79 | 68 | 89 | 58 | 82 | 62 | 83 | 79 | 92 | 82 | 84 | 60 | 76 | 73 | 67000000 | 420000 | 1.73 | 66.22 |
| 8 | 31 | 91 | 91 | 2346 | 5 | 4 | 3 | 9 | 77 | 93 | 77 | 82 | 88 | 87 | 86 | 84 | 64 | 90 | 86 | 75 | 82 | 92 | 83 | 86 | 69 | 90 | 83 | 85 | 87 | 41 | 92 | 84 | 85 | 85 | 62 | 45 | 38 | 80000000 | 455000 | 1.83 | 86.18 |
| 11 | 29 | 90 | 90 | 2152 | 4 | 4 | 4 | 9 | 62 | 91 | 85 | 83 | 89 | 85 | 77 | 86 | 65 | 89 | 77 | 78 | 78 | 90 | 78 | 88 | 84 | 78 | 84 | 84 | 80 | 39 | 91 | 77 | 88 | 86 | 34 | 42 | 19 | 77000000 | 205000 | 1.83 | 79.83 |
| 12 | 28 | 90 | 90 | 2190 | 4 | 5 | 3 | 8 | 88 | 76 | 54 | 92 | 82 | 81 | 86 | 84 | 93 | 90 | 64 | 62 | 70 | 89 | 71 | 87 | 30 | 75 | 73 | 92 | 60 | 82 | 79 | 86 | 73 | 85 | 72 | 79 | 69 | 76500000 | 355000 | 1.83 | 76.20 |
| 14 | 32 | 90 | 90 | 2115 | 4 | 2 | 4 | 21 | 84 | 76 | 54 | 93 | 82 | 89 | 82 | 77 | 87 | 94 | 70 | 64 | 92 | 90 | 90 | 72 | 64 | 78 | 52 | 75 | 57 | 50 | 89 | 92 | 75 | 93 | 59 | 53 | 29 | 60000000 | 285000 | 1.73 | 67.13 |
kable(tail(datos.validacion, 10), caption = "Datos de validación (ultimos diez)", row.names = 1:nrow(datos.entrenamiento))
## Warning in if (is.na(row.names)) row.names = has_rownames(x): la condición tiene
## longitud > 1 y sólo el primer elemento será usado
## Warning in if (row.names) {: la condición tiene longitud > 1 y sólo el primer
## elemento será usado
| age | overall | potential | special | international.reputation | weak.foot | skill.moves | jersey.number | crossing | finishing | headingaccuracy | shortpassing | volleys | dribbling | curve | fkaccuracy | longpassing | ballcontrol | acceleration | sprintspeed | agility | reactions | balance | shotpower | jumping | stamina | strength | longshots | aggression | interceptions | positioning | vision | penalties | composure | marking | standingtackle | slidingtackle | valor | salario | estatura | pesokgs | |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 17918 | 19 | 48 | 59 | 1152 | 1 | 3 | 2 | 28 | 28 | 23 | 45 | 27 | 24 | 25 | 21 | 26 | 29 | 28 | 63 | 50 | 47 | 42 | 76 | 35 | 65 | 49 | 49 | 21 | 45 | 46 | 25 | 29 | 37 | 43 | 42 | 54 | 54 | 40000 | 1000 | 1.73 | 72.12 |
| 17924 | 18 | 48 | 63 | 1370 | 1 | 3 | 3 | 24 | 38 | 34 | 49 | 54 | 34 | 49 | 33 | 37 | 50 | 41 | 67 | 61 | 61 | 46 | 59 | 50 | 56 | 64 | 55 | 35 | 52 | 39 | 46 | 45 | 36 | 44 | 44 | 40 | 41 | 60000 | 1000 | 1.85 | 73.03 |
| 17931 | 17 | 48 | 66 | 1296 | 1 | 2 | 2 | 32 | 45 | 46 | 46 | 38 | 27 | 46 | 28 | 24 | 34 | 38 | 61 | 57 | 56 | 47 | 66 | 39 | 59 | 60 | 48 | 33 | 53 | 46 | 43 | 37 | 33 | 38 | 43 | 49 | 45 | 50000 | 1000 | 1.80 | 60.78 |
| 17933 | 18 | 48 | 55 | 1368 | 1 | 3 | 2 | 33 | 33 | 24 | 42 | 54 | 33 | 44 | 34 | 36 | 50 | 47 | 61 | 57 | 57 | 44 | 58 | 47 | 64 | 59 | 66 | 31 | 53 | 49 | 35 | 46 | 37 | 42 | 47 | 49 | 53 | 40000 | 1000 | 1.85 | 81.19 |
| 17939 | 18 | 47 | 67 | 1285 | 1 | 3 | 2 | 32 | 32 | 32 | 45 | 48 | 31 | 41 | 32 | 43 | 47 | 37 | 53 | 55 | 31 | 47 | 61 | 41 | 54 | 61 | 55 | 34 | 44 | 44 | 51 | 54 | 34 | 46 | 35 | 44 | 47 | 60000 | 1000 | 1.75 | 79.83 |
| 17942 | 18 | 47 | 64 | 1191 | 1 | 2 | 2 | 4 | 36 | 25 | 40 | 27 | 27 | 46 | 31 | 25 | 23 | 29 | 64 | 58 | 55 | 54 | 81 | 22 | 56 | 54 | 40 | 22 | 48 | 49 | 35 | 30 | 32 | 32 | 41 | 48 | 48 | 50000 | 1000 | 1.73 | 66.22 |
| 17945 | 19 | 47 | 61 | 1333 | 1 | 3 | 2 | 26 | 31 | 28 | 40 | 53 | 31 | 46 | 39 | 37 | 48 | 48 | 58 | 58 | 60 | 48 | 79 | 42 | 63 | 35 | 51 | 30 | 55 | 44 | 28 | 51 | 44 | 35 | 41 | 44 | 54 | 60000 | 1000 | 1.70 | 66.22 |
| 17948 | 18 | 47 | 69 | 1303 | 1 | 3 | 2 | 65 | 31 | 31 | 41 | 51 | 26 | 46 | 35 | 31 | 55 | 47 | 60 | 63 | 53 | 46 | 55 | 49 | 57 | 42 | 43 | 30 | 53 | 49 | 35 | 40 | 36 | 40 | 48 | 49 | 49 | 70000 | 1000 | 1.68 | 68.04 |
| 17951 | 19 | 47 | 65 | 1307 | 1 | 2 | 2 | 22 | 34 | 38 | 40 | 49 | 25 | 42 | 30 | 34 | 45 | 43 | 54 | 57 | 60 | 49 | 76 | 43 | 55 | 40 | 47 | 38 | 46 | 46 | 39 | 52 | 43 | 45 | 40 | 48 | 47 | 60000 | 1000 | 1.75 | 60.78 |
| 17955 | 16 | 46 | 66 | 1321 | 1 | 3 | 2 | 33 | 41 | 34 | 46 | 48 | 30 | 43 | 40 | 34 | 44 | 51 | 57 | 55 | 55 | 51 | 63 | 43 | 62 | 47 | 60 | 32 | 56 | 42 | 34 | 49 | 33 | 43 | 40 | 43 | 50 | 60000 | 1000 | 1.78 | 79.83 |
modelo <- lm(formula = valor ~ ., datos.entrenamiento)
summary(modelo)
##
## Call:
## lm(formula = valor ~ ., data = datos.entrenamiento)
##
## Residuals:
## Min 1Q Median 3Q Max
## -19161476 -832836 -60785 700651 56366387
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -6237527.444 1293049.221 -4.824 0.00000142445759378
## age -260441.896 10830.032 -24.048 < 0.0000000000000002
## overall 263151.521 12324.511 21.352 < 0.0000000000000002
## potential -45061.430 9216.102 -4.889 0.00000102388538355
## special -4971.156 1050.494 -4.732 0.00000224521357859
## international.reputation 2096975.406 80512.189 26.045 < 0.0000000000000002
## weak.foot 64861.448 37182.465 1.744 0.081112
## skill.moves 227777.379 60540.118 3.762 0.000169
## jersey.number -5180.184 1478.922 -3.503 0.000462
## crossing -4564.702 3279.621 -1.392 0.163996
## finishing 19777.935 3898.800 5.073 0.00000039756985080
## headingaccuracy -3149.386 2946.924 -1.069 0.285224
## shortpassing -403.627 5483.003 -0.074 0.941319
## volleys 10266.460 3483.094 2.948 0.003209
## dribbling -4145.766 4894.856 -0.847 0.397031
## curve -914.425 3441.961 -0.266 0.790498
## fkaccuracy 19978.179 3058.942 6.531 0.00000000006782730
## longpassing 17968.651 4230.417 4.247 0.00002177436178140
## ballcontrol -23414.482 5821.108 -4.022 0.00005796128114699
## acceleration 7772.372 4605.084 1.688 0.091478
## sprintspeed -1521.284 4289.824 -0.355 0.722876
## agility -1031.663 3552.756 -0.290 0.771528
## reactions 34476.184 5330.003 6.468 0.00000000010278779
## balance 5856.472 3586.184 1.633 0.102480
## shotpower -9906.667 3540.906 -2.798 0.005153
## jumping 549.760 2690.688 0.204 0.838107
## stamina 22668.921 2876.934 7.880 0.00000000000000356
## strength 3944.760 3414.156 1.155 0.247943
## longshots 771.132 3840.908 0.201 0.840883
## aggression 3220.423 2690.702 1.197 0.231379
## interceptions -4011.602 3769.712 -1.064 0.287274
## positioning 9072.650 3724.818 2.436 0.014876
## vision 10036.751 3659.156 2.743 0.006098
## penalties -7407.033 3273.003 -2.263 0.023648
## composure 896.362 3767.794 0.238 0.811962
## marking 9743.854 2960.754 3.291 0.001001
## standingtackle 21022.779 5464.713 3.847 0.000120
## slidingtackle -19840.500 5183.721 -3.827 0.000130
## salario 160.301 1.456 110.081 < 0.0000000000000002
## estatura -1159502.240 664549.743 -1.745 0.081045
## pesokgs 1722.922 5678.866 0.303 0.761596
##
## (Intercept) ***
## age ***
## overall ***
## potential ***
## special ***
## international.reputation ***
## weak.foot .
## skill.moves ***
## jersey.number ***
## crossing
## finishing ***
## headingaccuracy
## shortpassing
## volleys **
## dribbling
## curve
## fkaccuracy ***
## longpassing ***
## ballcontrol ***
## acceleration .
## sprintspeed
## agility
## reactions ***
## balance
## shotpower **
## jumping
## stamina ***
## strength
## longshots
## aggression
## interceptions
## positioning *
## vision **
## penalties *
## composure
## marking **
## standingtackle ***
## slidingtackle ***
## salario ***
## estatura .
## pesokgs
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2527000 on 12504 degrees of freedom
## (25 observations deleted due to missingness)
## Multiple R-squared: 0.8088, Adjusted R-squared: 0.8082
## F-statistic: 1323 on 40 and 12504 DF, p-value: < 0.00000000000000022
Se eligen las variables que el primer modelo no identifica como variables estadisticamente significativas (que no tienen ***) para el valor economico del jugador.
modelo2 <- lm(formula = valor ~ age + overall + potential + special + international.reputation + jersey.number + finishing + fkaccuracy + longpassing + ballcontrol + reactions + stamina + salario , datos.entrenamiento)
summary(modelo2)
##
## Call:
## lm(formula = valor ~ age + overall + potential + special + international.reputation +
## jersey.number + finishing + fkaccuracy + longpassing + ballcontrol +
## reactions + stamina + salario, data = datos.entrenamiento)
##
## Residuals:
## Min 1Q Median 3Q Max
## -18997420 -824040 -75785 697276 56424654
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -7857348.39 452119.77 -17.379 < 0.0000000000000002
## age -266566.73 10213.53 -26.099 < 0.0000000000000002
## overall 254603.39 10507.57 24.230 < 0.0000000000000002
## potential -44787.95 9087.82 -4.928 0.0000008398819053
## special -3549.32 372.39 -9.531 < 0.0000000000000002
## international.reputation 2102462.29 80084.70 26.253 < 0.0000000000000002
## jersey.number -5350.31 1478.81 -3.618 0.000298
## finishing 22222.02 2169.52 10.243 < 0.0000000000000002
## fkaccuracy 18559.56 2463.89 7.533 0.0000000000000531
## longpassing 16414.29 3085.71 5.319 0.0000001058745305
## ballcontrol -19753.30 4063.23 -4.861 0.0000011792807544
## reactions 36293.34 5005.88 7.250 0.0000000000004408
## stamina 22403.91 2712.00 8.261 < 0.0000000000000002
## salario 160.60 1.46 110.037 < 0.0000000000000002
##
## (Intercept) ***
## age ***
## overall ***
## potential ***
## special ***
## international.reputation ***
## jersey.number ***
## finishing ***
## fkaccuracy ***
## longpassing ***
## ballcontrol ***
## reactions ***
## stamina ***
## salario ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2538000 on 12531 degrees of freedom
## (25 observations deleted due to missingness)
## Multiple R-squared: 0.8068, Adjusted R-squared: 0.8066
## F-statistic: 4026 on 13 and 12531 DF, p-value: < 0.00000000000000022
El valor de Multiple R-square de aproximadamente 80% y Adjusted R-square de aproximadamente 80% representan que tanto representan todas las variables al valor económico del jugador.
Los tres *** de las variables significan que estas variables son estadísticamente significativas para el valor económico del jugador.
prediccion <- predict(object = modelo2, newdata = datos.validacion)
new.datos.validacion <- mutate(datos.validacion, predicho = prediccion)
kable(head(new.datos.validacion, 10), caption = "Primeros diez registros con predicciones")
| age | overall | potential | special | international.reputation | weak.foot | skill.moves | jersey.number | crossing | finishing | headingaccuracy | shortpassing | volleys | dribbling | curve | fkaccuracy | longpassing | ballcontrol | acceleration | sprintspeed | agility | reactions | balance | shotpower | jumping | stamina | strength | longshots | aggression | interceptions | positioning | vision | penalties | composure | marking | standingtackle | slidingtackle | valor | salario | estatura | pesokgs | predicho |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 27 | 91 | 93 | 1471 | 4 | 3 | 1 | 1 | 17 | 13 | 21 | 50 | 13 | 18 | 21 | 19 | 51 | 42 | 57 | 58 | 60 | 90 | 43 | 31 | 67 | 43 | 64 | 12 | 38 | 30 | 12 | 68 | 40 | 68 | 15 | 21 | 13 | 72000000 | 260000 | 1.93 | 76.20 | 53767689 |
| 32 | 91 | 91 | 2201 | 4 | 3 | 3 | 15 | 66 | 60 | 91 | 78 | 66 | 63 | 74 | 72 | 77 | 84 | 76 | 75 | 78 | 85 | 66 | 79 | 93 | 84 | 83 | 59 | 88 | 90 | 60 | 63 | 75 | 82 | 87 | 92 | 91 | 51000000 | 380000 | 1.83 | 82.10 | 71493065 |
| 25 | 90 | 93 | 1331 | 3 | 3 | 1 | 1 | 13 | 11 | 15 | 29 | 13 | 12 | 13 | 14 | 26 | 16 | 43 | 60 | 67 | 86 | 49 | 22 | 76 | 41 | 78 | 12 | 34 | 19 | 11 | 70 | 11 | 70 | 27 | 12 | 18 | 68000000 | 94000 | 1.88 | 87.09 | 25556761 |
| 32 | 90 | 90 | 1946 | 3 | 3 | 2 | 10 | 55 | 42 | 92 | 79 | 47 | 53 | 49 | 51 | 70 | 76 | 68 | 68 | 58 | 85 | 54 | 67 | 91 | 66 | 88 | 43 | 89 | 88 | 48 | 52 | 50 | 82 | 90 | 89 | 89 | 44000000 | 125000 | 1.88 | 78.02 | 28009254 |
| 24 | 89 | 94 | 2092 | 3 | 3 | 4 | 21 | 82 | 84 | 68 | 87 | 88 | 92 | 88 | 88 | 75 | 92 | 87 | 83 | 91 | 86 | 85 | 82 | 75 | 80 | 65 | 88 | 48 | 32 | 84 | 87 | 86 | 84 | 23 | 20 | 20 | 89000000 | 205000 | 1.78 | 74.84 | 43715121 |
| 31 | 89 | 89 | 2161 | 4 | 4 | 3 | 21 | 70 | 89 | 89 | 78 | 90 | 80 | 77 | 76 | 52 | 82 | 75 | 76 | 77 | 91 | 59 | 87 | 88 | 92 | 78 | 79 | 84 | 48 | 93 | 77 | 85 | 82 | 52 | 45 | 39 | 60000000 | 200000 | 1.85 | 77.11 | 43286358 |
| 32 | 89 | 89 | 1473 | 5 | 4 | 1 | 1 | 15 | 13 | 25 | 55 | 11 | 30 | 14 | 11 | 59 | 48 | 54 | 60 | 51 | 84 | 35 | 25 | 77 | 43 | 80 | 16 | 29 | 30 | 12 | 70 | 47 | 70 | 17 | 10 | 11 | 38000000 | 130000 | 1.93 | 92.08 | 32968482 |
| 33 | 89 | 89 | 1841 | 4 | 3 | 2 | 3 | 58 | 33 | 83 | 59 | 45 | 58 | 60 | 31 | 59 | 57 | 63 | 75 | 54 | 82 | 55 | 78 | 89 | 65 | 89 | 49 | 92 | 88 | 28 | 50 | 50 | 84 | 93 | 93 | 90 | 27000000 | 215000 | 1.88 | 84.82 | 43991912 |
| 27 | 88 | 88 | 2017 | 3 | 3 | 4 | 10 | 86 | 77 | 56 | 85 | 74 | 90 | 87 | 77 | 78 | 93 | 94 | 86 | 94 | 83 | 93 | 75 | 53 | 75 | 44 | 84 | 34 | 26 | 83 | 87 | 61 | 83 | 51 | 24 | 22 | 62000000 | 165000 | 1.63 | 58.97 | 36279405 |
| 26 | 88 | 91 | 2137 | 3 | 3 | 4 | 22 | 75 | 79 | 55 | 89 | 65 | 94 | 88 | 76 | 83 | 95 | 75 | 69 | 87 | 77 | 90 | 69 | 64 | 70 | 59 | 87 | 58 | 64 | 78 | 89 | 76 | 86 | 60 | 64 | 51 | 73500000 | 315000 | 1.75 | 78.93 | 59750432 |
kable(tail(new.datos.validacion, 10), caption = "Ultimos diez registros con predicciones")
| age | overall | potential | special | international.reputation | weak.foot | skill.moves | jersey.number | crossing | finishing | headingaccuracy | shortpassing | volleys | dribbling | curve | fkaccuracy | longpassing | ballcontrol | acceleration | sprintspeed | agility | reactions | balance | shotpower | jumping | stamina | strength | longshots | aggression | interceptions | positioning | vision | penalties | composure | marking | standingtackle | slidingtackle | valor | salario | estatura | pesokgs | predicho | |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 5376 | 19 | 48 | 59 | 1152 | 1 | 3 | 2 | 28 | 28 | 23 | 45 | 27 | 24 | 25 | 21 | 26 | 29 | 28 | 63 | 50 | 47 | 42 | 76 | 35 | 65 | 49 | 49 | 21 | 45 | 46 | 25 | 29 | 37 | 43 | 42 | 54 | 54 | 40000 | 1000 | 1.73 | 72.12 | -1780511 |
| 5377 | 18 | 48 | 63 | 1370 | 1 | 3 | 3 | 24 | 38 | 34 | 49 | 54 | 34 | 49 | 33 | 37 | 50 | 41 | 67 | 61 | 61 | 46 | 59 | 50 | 56 | 64 | 55 | 35 | 52 | 39 | 46 | 45 | 36 | 44 | 44 | 40 | 41 | 60000 | 1000 | 1.85 | 73.03 | -1427709 |
| 5378 | 17 | 48 | 66 | 1296 | 1 | 2 | 2 | 32 | 45 | 46 | 46 | 38 | 27 | 46 | 28 | 24 | 34 | 38 | 61 | 57 | 56 | 47 | 66 | 39 | 59 | 60 | 48 | 33 | 53 | 46 | 43 | 37 | 33 | 38 | 43 | 49 | 45 | 50000 | 1000 | 1.80 | 60.78 | -1306960 |
| 5379 | 18 | 48 | 55 | 1368 | 1 | 3 | 2 | 33 | 33 | 24 | 42 | 54 | 33 | 44 | 34 | 36 | 50 | 47 | 61 | 57 | 57 | 44 | 58 | 47 | 64 | 59 | 66 | 31 | 53 | 49 | 35 | 46 | 37 | 42 | 47 | 49 | 53 | 40000 | 1000 | 1.85 | 81.19 | -1654365 |
| 5380 | 18 | 47 | 67 | 1285 | 1 | 3 | 2 | 32 | 32 | 32 | 45 | 48 | 31 | 41 | 32 | 43 | 47 | 37 | 53 | 55 | 31 | 47 | 61 | 41 | 54 | 61 | 55 | 34 | 44 | 44 | 51 | 54 | 34 | 46 | 35 | 44 | 47 | 60000 | 1000 | 1.75 | 79.83 | -1536809 |
| 5381 | 18 | 47 | 64 | 1191 | 1 | 2 | 2 | 4 | 36 | 25 | 40 | 27 | 27 | 46 | 31 | 25 | 23 | 29 | 64 | 58 | 55 | 54 | 81 | 22 | 56 | 54 | 40 | 22 | 48 | 49 | 35 | 30 | 32 | 32 | 41 | 48 | 48 | 50000 | 1000 | 1.73 | 66.22 | -1547318 |
| 5382 | 19 | 47 | 61 | 1333 | 1 | 3 | 2 | 26 | 31 | 28 | 40 | 53 | 31 | 46 | 39 | 37 | 48 | 48 | 58 | 58 | 60 | 48 | 79 | 42 | 63 | 35 | 51 | 30 | 55 | 44 | 28 | 51 | 44 | 35 | 41 | 44 | 54 | 60000 | 1000 | 1.70 | 66.22 | -2620240 |
| 5383 | 18 | 47 | 69 | 1303 | 1 | 3 | 2 | 65 | 31 | 31 | 41 | 51 | 26 | 46 | 35 | 31 | 55 | 47 | 60 | 63 | 53 | 46 | 55 | 49 | 57 | 42 | 43 | 30 | 53 | 49 | 35 | 40 | 36 | 40 | 48 | 49 | 49 | 70000 | 1000 | 1.68 | 68.04 | -2639956 |
| 5384 | 19 | 47 | 65 | 1307 | 1 | 2 | 2 | 22 | 34 | 38 | 40 | 49 | 25 | 42 | 30 | 34 | 45 | 43 | 54 | 57 | 60 | 49 | 76 | 43 | 55 | 40 | 47 | 38 | 46 | 46 | 39 | 52 | 43 | 45 | 40 | 48 | 47 | 60000 | 1000 | 1.75 | 60.78 | -2321330 |
| 5385 | 16 | 46 | 66 | 1321 | 1 | 3 | 2 | 33 | 41 | 34 | 46 | 48 | 30 | 43 | 40 | 34 | 44 | 51 | 57 | 55 | 55 | 51 | 63 | 43 | 62 | 47 | 60 | 32 | 56 | 42 | 34 | 49 | 33 | 43 | 40 | 43 | 50 | 60000 | 1000 | 1.78 | 79.83 | -1963480 |
Ejemplo elaborado de un jugador con distintos valores para saber el valor en el mercado.
nombre <- "Jelitza Bermudez"
jugador <- data.frame(age = 25, overall = 60, potential = 60, special = 1000, international.reputation = 5, jersey.number = 13, finishing = 70, fkaccuracy = 70, longpassing = 60, ballcontrol = 90, reactions = 60, stamina = 80, salario = 150000)
nueva.prediccion <- predict(object = modelo2, newdata = jugador)
paste ("El jugador ", nombre, " debe tener un valor en el mercado de $", round(nueva.prediccion,2))
## [1] "El jugador Jelitza Bermudez debe tener un valor en el mercado de $ 35082811.15"
Por medio del modelo de regresion multiple se facilito la identificacion de las variables con mayor importancia y con mejor correlacion para el valor de un jugador.
El modelo pudo identificar las mas importantes esto ayudo a poder centrarnos en las que tienen mayor valor y poder priorizar las variables.
Las 13 variables que se puede encontrar con mayor relacion saber el valor de cualquier jugador por medio de estas variables.
La facilidad de este modelo nos hizo poder utilizar estadisticamente las variables importantes con la prediccion basandose en el modelo 2 la identificacion del valor de un jugador.