Objetivo.
Determinar y simular muestreo.
Descripción.
Con un conjunto de datos utilizar mecanismos de programación para determinar muestreos mediante técnicas de aleatorio simple, aleatorio sistemático, aleatorio estratificado y por conglomerados.
1. Cargar librerías.
library(dplyr)
##
## Attaching package: 'dplyr'
## The following objects are masked from 'package:stats':
##
## filter, lag
## The following objects are masked from 'package:base':
##
## intersect, setdiff, setequal, union
library(mosaic)
## Warning: package 'mosaic' was built under R version 4.0.3
## Registered S3 method overwritten by 'mosaic':
## method from
## fortify.SpatialPolygonsDataFrame ggplot2
##
## The 'mosaic' package masks several functions from core packages in order to add
## additional features. The original behavior of these functions should not be affected by this.
##
## Attaching package: 'mosaic'
## The following object is masked from 'package:Matrix':
##
## mean
## The following object is masked from 'package:ggplot2':
##
## stat
## The following objects are masked from 'package:dplyr':
##
## count, do, tally
## The following objects are masked from 'package:stats':
##
## binom.test, cor, cor.test, cov, fivenum, IQR, median, prop.test,
## quantile, sd, t.test, var
## The following objects are masked from 'package:base':
##
## max, mean, min, prod, range, sample, sum
library(readr)
library(ggplot2)
library(knitr)
library(fdth)
##
## Attaching package: 'fdth'
## The following objects are masked from 'package:mosaic':
##
## sd, var
## The following objects are masked from 'package:stats':
##
## sd, var
2. Cargar datos.
2.1. Cargar datos de nombres de personas * Se carga un conjunto de 100 nombres de personas con sus atributo de género y la actividad deportiva o cultura que practican, * Cargando un datos llamando a una función que construye los datos. * El argumento encoding significa que acepte acentos en los datos.
source("https://raw.githubusercontent.com/rpizarrog/probabilidad-y-estad-stica/master/construir%20datos%20y%20funciones%20caso%209.r", encoding = "UTF-8")
kable(head(personas, 10), caption = "Los primeros diez registros de nombres en el conjunto dedatos")
Los primeros diez registros de nombres en el conjunto dedatos
| JUAN |
M |
NO |
NO |
NO |
SI |
NO |
SI |
NO |
NO |
NO |
NO |
NO |
SI |
| JOSÉ LUIS |
M |
NO |
NO |
NO |
NO |
NO |
NO |
NO |
SI |
NO |
NO |
NO |
NO |
| JOSÉ |
M |
NO |
SI |
NO |
SI |
NO |
NO |
NO |
NO |
NO |
NO |
SI |
SI |
| MARÍA GUADALUPE |
F |
NO |
SI |
NO |
NO |
NO |
NO |
NO |
NO |
NO |
NO |
SI |
SI |
| FRANCISCO |
M |
NO |
NO |
NO |
NO |
NO |
NO |
SI |
NO |
NO |
NO |
NO |
NO |
| GUADALUPE |
F |
NO |
NO |
NO |
NO |
NO |
NO |
NO |
NO |
NO |
NO |
NO |
NO |
| MARÍA |
F |
NO |
SI |
NO |
NO |
SI |
NO |
NO |
NO |
NO |
NO |
NO |
NO |
| JUANA |
F |
NO |
NO |
NO |
NO |
SI |
NO |
NO |
SI |
NO |
NO |
NO |
NO |
| ANTONIO |
M |
NO |
NO |
NO |
NO |
NO |
NO |
NO |
NO |
NO |
NO |
NO |
NO |
| JESÚS |
M |
NO |
NO |
SI |
NO |
NO |
SI |
NO |
NO |
SI |
NO |
NO |
NO |
kable(tail(personas, 10), caption = "Las útimos diez registros de nombres en el conjunto de datos")
Las útimos diez registros de nombres en el conjunto de datos
| 91 |
ANDREA |
F |
NO |
NO |
NO |
NO |
NO |
NO |
NO |
NO |
NO |
NO |
NO |
SI |
| 92 |
ISABEL |
F |
NO |
NO |
NO |
NO |
NO |
NO |
NO |
NO |
NO |
NO |
NO |
NO |
| 93 |
MARÍA TERESA |
F |
NO |
SI |
NO |
NO |
SI |
NO |
NO |
SI |
NO |
NO |
NO |
NO |
| 94 |
IRMA |
F |
SI |
SI |
NO |
NO |
NO |
NO |
NO |
NO |
NO |
NO |
NO |
NO |
| 95 |
CARMEN |
F |
NO |
NO |
NO |
NO |
NO |
NO |
NO |
NO |
NO |
NO |
NO |
NO |
| 96 |
LUCÍA |
F |
NO |
SI |
NO |
SI |
NO |
NO |
NO |
SI |
NO |
NO |
SI |
SI |
| 97 |
ADRIANA |
F |
NO |
NO |
NO |
NO |
NO |
NO |
SI |
NO |
NO |
NO |
NO |
NO |
| 98 |
AGUSTÍN |
M |
NO |
SI |
NO |
NO |
NO |
NO |
NO |
NO |
SI |
NO |
NO |
NO |
| 99 |
MARÍA DE LA LUZ |
F |
NO |
NO |
NO |
NO |
NO |
NO |
SI |
NO |
NO |
NO |
NO |
NO |
| 100 |
GUSTAVO |
M |
NO |
NO |
NO |
NO |
NO |
NO |
NO |
SI |
NO |
NO |
NO |
NO |
2.2. Cargar datos de alumnos.
alumnos <- alumnos <- read_csv("https://raw.githubusercontent.com/rpizarrog/probabilidad-y-estad-stica/master/datos/promedios%20alumnos/datos%20alumnos%20promedios%20SEP%202020.csv")
## Parsed with column specification:
## cols(
## `No. Control` = col_double(),
## Alumno = col_double(),
## Semestre = col_double(),
## `Cr. Apr.` = col_double(),
## Carga = col_double(),
## Promedio = col_double(),
## Carrera = col_character()
## )
kable(head(alumnos, 10), caption = "Los primeros diez registros de alumnos")
Los primeros diez registros de alumnos
| 20190001 |
1 |
11 |
198 |
19 |
80.21 |
SISTEMAS |
| 20190002 |
2 |
11 |
235 |
10 |
84.33 |
SISTEMAS |
| 20190003 |
3 |
9 |
235 |
10 |
95.25 |
SISTEMAS |
| 20190004 |
4 |
9 |
226 |
19 |
95.00 |
SISTEMAS |
| 20190005 |
5 |
10 |
231 |
14 |
82.32 |
SISTEMAS |
| 20190006 |
6 |
9 |
212 |
23 |
95.02 |
SISTEMAS |
| 20190007 |
7 |
12 |
221 |
10 |
79.06 |
SISTEMAS |
| 20190008 |
8 |
9 |
226 |
9 |
92.47 |
SISTEMAS |
| 20190009 |
9 |
9 |
231 |
4 |
91.08 |
SISTEMAS |
| 20190010 |
10 |
11 |
222 |
13 |
80.42 |
SISTEMAS |
kable(tail(alumnos, 10), caption = "Las útimos diez registros de alumnos")
Las útimos diez registros de alumnos
| 20195920 |
5920 |
7 |
169 |
23 |
89.14 |
ADMINISTRACION |
| 20195921 |
5921 |
5 |
109 |
26 |
87.83 |
ADMINISTRACION |
| 20195922 |
5922 |
3 |
55 |
29 |
92.83 |
ADMINISTRACION |
| 20195923 |
5923 |
2 |
23 |
23 |
88.60 |
ADMINISTRACION |
| 20195924 |
5924 |
2 |
27 |
28 |
92.83 |
ADMINISTRACION |
| 20195925 |
5925 |
7 |
94 |
13 |
80.95 |
ADMINISTRACION |
| 20195926 |
5926 |
5 |
103 |
32 |
92.68 |
ADMINISTRACION |
| 20195927 |
5927 |
4 |
79 |
34 |
86.18 |
ADMINISTRACION |
| 20195928 |
5928 |
5 |
108 |
32 |
90.48 |
ADMINISTRACION |
| 20195929 |
5929 |
7 |
169 |
32 |
92.33 |
ADMINISTRACION |
3. Simular muestreos.
3.1 Muestreo aleatorio simple.
N <- nrow(personas)
n <- 10
muestra <- sample(personas$nombres, n)
kable(muestra, caption = "La muestra de personas")
La muestra de personas
| DANIEL |
| JUAN MANUEL |
| MIGUEL |
| GUSTAVO |
| FRANCISCA |
| RAÚL |
| JUAN |
| LUCÍA |
| MARÍA TERESA |
| JORGE |
Con el conjunto de datos de alumnos, hay que encontrar a 100 alumnos, ¿Cuáles?.
N <- nrow(alumnos)
n <- 100
muestra <- sample(N, n)
kable(alumnos[muestra, ], caption = "La muestra de alumnos")
La muestra de alumnos
| 20192700 |
2700 |
9 |
202 |
19 |
82.26 |
INDUSTRIAL |
| 20191164 |
1164 |
9 |
129 |
18 |
83.79 |
BIOQUIMICA |
| 20191469 |
1469 |
7 |
150 |
36 |
80.81 |
BIOQUIMICA |
| 20195645 |
5645 |
3 |
55 |
29 |
97.67 |
ADMINISTRACION |
| 20193227 |
3227 |
7 |
163 |
30 |
86.30 |
INDUSTRIAL |
| 20194973 |
4973 |
6 |
133 |
33 |
85.54 |
GESTION EMPRESARIAL |
| 20195866 |
5866 |
1 |
NA |
27 |
0.00 |
ADMINISTRACION |
| 20191513 |
1513 |
6 |
67 |
34 |
78.60 |
BIOQUIMICA |
| 20194076 |
4076 |
7 |
144 |
32 |
88.52 |
MECATRONICA |
| 20192521 |
2521 |
9 |
222 |
23 |
86.40 |
ELECTRONICA |
| 20195624 |
5624 |
3 |
55 |
29 |
96.67 |
ADMINISTRACION |
| 20194985 |
4985 |
4 |
55 |
29 |
80.42 |
GESTION EMPRESARIAL |
| 20195075 |
5075 |
5 |
116 |
32 |
87.71 |
GESTION EMPRESARIAL |
| 20195041 |
5041 |
7 |
140 |
35 |
82.27 |
GESTION EMPRESARIAL |
| 20190395 |
395 |
1 |
NA |
27 |
0.00 |
SISTEMAS |
| 20193795 |
3795 |
4 |
66 |
29 |
86.47 |
MECATRONICA |
| 20195683 |
5683 |
1 |
NA |
27 |
0.00 |
ADMINISTRACION |
| 20191577 |
1577 |
9 |
165 |
16 |
78.86 |
CIVIL |
| 20192306 |
2306 |
5 |
89 |
27 |
86.33 |
ELECTRICA |
| 20193510 |
3510 |
3 |
41 |
24 |
76.80 |
MECANICA |
| 20191415 |
1415 |
6 |
123 |
29 |
82.48 |
BIOQUIMICA |
| 20190830 |
830 |
5 |
97 |
26 |
93.50 |
ARQUITECTURA |
| 20190200 |
200 |
7 |
107 |
17 |
79.26 |
SISTEMAS |
| 20195484 |
5484 |
11 |
257 |
5 |
87.44 |
ADMINISTRACION |
| 20190025 |
25 |
11 |
230 |
15 |
84.02 |
SISTEMAS |
| 20192596 |
2596 |
3 |
52 |
25 |
92.67 |
ELECTRONICA |
| 20193863 |
3863 |
1 |
NA |
25 |
0.00 |
MECATRONICA |
| 20190074 |
74 |
10 |
230 |
15 |
83.94 |
SISTEMAS |
| 20191933 |
1933 |
1 |
NA |
27 |
0.00 |
CIVIL |
| 20191691 |
1691 |
4 |
75 |
32 |
84.19 |
CIVIL |
| 20192587 |
2587 |
5 |
90 |
20 |
83.50 |
ELECTRONICA |
| 20190886 |
886 |
1 |
NA |
26 |
0.00 |
ARQUITECTURA |
| 20194827 |
4827 |
7 |
150 |
25 |
88.75 |
GESTION EMPRESARIAL |
| 20194756 |
4756 |
9 |
230 |
15 |
91.77 |
GESTION EMPRESARIAL |
| 20190663 |
663 |
7 |
151 |
23 |
85.22 |
ARQUITECTURA |
| 20192503 |
2503 |
10 |
202 |
23 |
81.25 |
ELECTRONICA |
| 20194892 |
4892 |
1 |
NA |
27 |
0.00 |
GESTION EMPRESARIAL |
| 20194549 |
4549 |
6 |
133 |
23 |
83.25 |
QUIMICA |
| 20190308 |
308 |
4 |
83 |
29 |
91.00 |
SISTEMAS |
| 20192139 |
2139 |
6 |
143 |
30 |
84.77 |
CIVIL |
| 20191319 |
1319 |
7 |
124 |
34 |
83.15 |
BIOQUIMICA |
| 20195755 |
5755 |
4 |
84 |
29 |
87.44 |
ADMINISTRACION |
| 20195920 |
5920 |
7 |
169 |
23 |
89.14 |
ADMINISTRACION |
| 20193632 |
3632 |
1 |
NA |
26 |
0.00 |
MECANICA |
| 20193546 |
3546 |
3 |
48 |
22 |
78.64 |
MECANICA |
| 20191619 |
1619 |
9 |
225 |
10 |
84.85 |
CIVIL |
| 20191632 |
1632 |
9 |
159 |
15 |
80.15 |
CIVIL |
| 20194890 |
4890 |
7 |
170 |
35 |
87.44 |
GESTION EMPRESARIAL |
| 20192090 |
2090 |
4 |
78 |
33 |
83.59 |
CIVIL |
| 20191764 |
1764 |
1 |
NA |
27 |
0.00 |
CIVIL |
| 20190612 |
612 |
1 |
NA |
26 |
0.00 |
ARQUITECTURA |
| 20191097 |
1097 |
7 |
139 |
24 |
84.62 |
ARQUITECTURA |
| 20190796 |
796 |
7 |
116 |
34 |
81.12 |
ARQUITECTURA |
| 20190240 |
240 |
2 |
27 |
28 |
92.33 |
SISTEMAS |
| 20191202 |
1202 |
1 |
NA |
23 |
0.00 |
BIOQUIMICA |
| 20194673 |
4673 |
12 |
219 |
16 |
89.93 |
GESTION EMPRESARIAL |
| 20195370 |
5370 |
5 |
41 |
4 |
81.44 |
INFORMATICA |
| 20191901 |
1901 |
5 |
117 |
31 |
87.08 |
CIVIL |
| 20193696 |
3696 |
11 |
231 |
4 |
83.33 |
MECATRONICA |
| 20193370 |
3370 |
11 |
225 |
10 |
81.86 |
MECANICA |
| 20191197 |
1197 |
3 |
57 |
27 |
82.54 |
BIOQUIMICA |
| 20193032 |
3032 |
3 |
55 |
29 |
89.00 |
INDUSTRIAL |
| 20194867 |
4867 |
1 |
NA |
27 |
0.00 |
GESTION EMPRESARIAL |
| 20191967 |
1967 |
1 |
NA |
27 |
0.00 |
CIVIL |
| 20193638 |
3638 |
7 |
170 |
27 |
86.59 |
MECANICA |
| 20190934 |
934 |
7 |
170 |
28 |
88.58 |
ARQUITECTURA |
| 20194100 |
4100 |
9 |
225 |
5 |
87.96 |
QUIMICA |
| 20195193 |
5193 |
6 |
138 |
33 |
86.21 |
GESTION EMPRESARIAL |
| 20195450 |
5450 |
10 |
262 |
10 |
88.60 |
ADMINISTRACION |
| 20191067 |
1067 |
1 |
NA |
26 |
0.00 |
ARQUITECTURA |
| 20193404 |
3404 |
10 |
172 |
18 |
81.13 |
MECANICA |
| 20194217 |
4217 |
12 |
225 |
10 |
78.46 |
QUIMICA |
| 20191449 |
1449 |
1 |
NA |
23 |
0.00 |
BIOQUIMICA |
| 20192720 |
2720 |
9 |
202 |
24 |
82.28 |
INDUSTRIAL |
| 20195151 |
5151 |
1 |
NA |
27 |
0.00 |
GESTION EMPRESARIAL |
| 20193110 |
3110 |
1 |
NA |
27 |
0.00 |
INDUSTRIAL |
| 20191051 |
1051 |
6 |
127 |
24 |
88.19 |
ARQUITECTURA |
| 20194783 |
4783 |
1 |
NA |
27 |
0.00 |
GESTION EMPRESARIAL |
| 20195643 |
5643 |
2 |
27 |
28 |
92.67 |
ADMINISTRACION |
| 20194482 |
4482 |
2 |
25 |
30 |
82.00 |
QUIMICA |
| 20194046 |
4046 |
1 |
NA |
25 |
0.00 |
MECATRONICA |
| 20192183 |
2183 |
2 |
27 |
30 |
83.50 |
CIVIL |
| 20190659 |
659 |
1 |
NA |
26 |
0.00 |
ARQUITECTURA |
| 20195318 |
5318 |
1 |
NA |
26 |
0.00 |
TIC |
| 20192101 |
2101 |
2 |
23 |
25 |
80.80 |
CIVIL |
| 20191758 |
1758 |
4 |
80 |
34 |
85.94 |
CIVIL |
| 20192297 |
2297 |
5 |
94 |
33 |
84.77 |
ELECTRICA |
| 20193793 |
3793 |
7 |
128 |
31 |
84.46 |
MECATRONICA |
| 20190822 |
822 |
3 |
48 |
32 |
90.45 |
ARQUITECTURA |
| 20190352 |
352 |
8 |
176 |
32 |
80.47 |
SISTEMAS |
| 20193467 |
3467 |
3 |
42 |
32 |
82.30 |
MECANICA |
| 20190443 |
443 |
7 |
160 |
34 |
90.34 |
SISTEMAS |
| 20190241 |
241 |
5 |
112 |
25 |
91.63 |
SISTEMAS |
| 20194569 |
4569 |
3 |
51 |
30 |
88.64 |
QUIMICA |
| 20193456 |
3456 |
6 |
89 |
32 |
78.30 |
MECANICA |
| 20195534 |
5534 |
8 |
177 |
34 |
86.89 |
ADMINISTRACION |
| 20193666 |
3666 |
12 |
190 |
5 |
78.35 |
MECATRONICA |
| 20192155 |
2155 |
2 |
22 |
26 |
93.40 |
CIVIL |
| 20193527 |
3527 |
1 |
NA |
26 |
0.00 |
MECANICA |
| 20191607 |
1607 |
10 |
231 |
4 |
83.15 |
CIVIL |
3.2. Muestreo aleatorio sistemático, Con el conjunto de datos personas, iniciar en un valor aletorio e identificar los siguientes de 10 en 10 hasta tener diez personas.
N <- nrow(personas)
n = 10
saltos <- round(N / n, 0)
inicio <- round(sample(N, 1) / n, 0)
#inicio
cuales <- seq(from = inicio, to =N, by= saltos)
kable(personas[cuales, ], caption = "La muestra sistematizada de personas")
La muestra sistematizada de personas
| 6 |
GUADALUPE |
F |
NO |
NO |
NO |
NO |
NO |
NO |
NO |
NO |
NO |
NO |
NO |
NO |
| 16 |
MARÍA DEL CARMEN |
F |
NO |
NO |
NO |
NO |
NO |
SI |
NO |
NO |
NO |
NO |
NO |
NO |
| 26 |
JAVIER |
F |
NO |
NO |
NO |
NO |
NO |
SI |
NO |
NO |
NO |
NO |
SI |
NO |
| 36 |
FRANCISCO JAVIER |
F |
SI |
NO |
NO |
NO |
NO |
NO |
NO |
SI |
NO |
NO |
SI |
NO |
| 46 |
TERESA |
F |
NO |
NO |
NO |
NO |
NO |
NO |
NO |
SI |
NO |
NO |
NO |
NO |
| 56 |
YOLANDA |
F |
SI |
NO |
NO |
NO |
SI |
NO |
NO |
NO |
NO |
NO |
NO |
NO |
| 66 |
VÍCTOR MANUEL |
M |
NO |
SI |
SI |
SI |
NO |
NO |
NO |
NO |
NO |
NO |
NO |
NO |
| 76 |
MARÍA ISABEL |
F |
NO |
SI |
NO |
NO |
NO |
NO |
NO |
NO |
NO |
NO |
NO |
SI |
| 86 |
JOSÉ GUADALUPE |
M |
NO |
NO |
NO |
NO |
NO |
SI |
NO |
NO |
NO |
NO |
NO |
SI |
| 96 |
LUCÍA |
F |
NO |
SI |
NO |
SI |
NO |
NO |
NO |
SI |
NO |
NO |
SI |
SI |
Con el conjunto de datos alumnos, hay que encontrar a 100 alumnos, ¿A cuáles?, bajo el muetreo sistematizado.
N <- nrow(alumnos)
n = 100
saltos <- round(N / n, 0)
inicio <- round(sample(N, 1) / n, 0)
cuales <- seq(from = inicio, to =N, by= saltos)
kable(alumnos[cuales, ], caption = "La muestra de alumnos")
La muestra de alumnos
| 20190040 |
40 |
9 |
217 |
18 |
92.00 |
SISTEMAS |
| 20190099 |
99 |
1 |
NA |
27 |
0.00 |
SISTEMAS |
| 20190158 |
158 |
1 |
NA |
27 |
0.00 |
SISTEMAS |
| 20190217 |
217 |
1 |
NA |
27 |
0.00 |
SISTEMAS |
| 20190276 |
276 |
3 |
8 |
22 |
80.00 |
SISTEMAS |
| 20190335 |
335 |
3 |
50 |
28 |
92.00 |
SISTEMAS |
| 20190394 |
394 |
3 |
50 |
28 |
88.55 |
SISTEMAS |
| 20190453 |
453 |
9 |
219 |
16 |
89.98 |
ARQUITECTURA |
| 20190512 |
512 |
9 |
223 |
4 |
90.24 |
ARQUITECTURA |
| 20190571 |
571 |
1 |
NA |
26 |
0.00 |
ARQUITECTURA |
| 20190630 |
630 |
1 |
NA |
26 |
0.00 |
ARQUITECTURA |
| 20190689 |
689 |
1 |
NA |
26 |
0.00 |
ARQUITECTURA |
| 20190748 |
748 |
6 |
117 |
33 |
86.38 |
ARQUITECTURA |
| 20190807 |
807 |
3 |
48 |
32 |
89.82 |
ARQUITECTURA |
| 20190866 |
866 |
6 |
142 |
28 |
88.53 |
ARQUITECTURA |
| 20190925 |
925 |
4 |
80 |
30 |
93.39 |
ARQUITECTURA |
| 20190984 |
984 |
6 |
120 |
28 |
85.59 |
ARQUITECTURA |
| 20191043 |
1043 |
2 |
26 |
26 |
88.33 |
ARQUITECTURA |
| 20191102 |
1102 |
3 |
52 |
28 |
88.33 |
ARQUITECTURA |
| 20191161 |
1161 |
9 |
247 |
11 |
90.62 |
BIOQUIMICA |
| 20191220 |
1220 |
5 |
81 |
34 |
85.44 |
BIOQUIMICA |
| 20191279 |
1279 |
3 |
52 |
30 |
97.92 |
BIOQUIMICA |
| 20191338 |
1338 |
4 |
77 |
22 |
80.47 |
BIOQUIMICA |
| 20191397 |
1397 |
4 |
77 |
28 |
85.71 |
BIOQUIMICA |
| 20191456 |
1456 |
6 |
118 |
34 |
84.35 |
BIOQUIMICA |
| 20191515 |
1515 |
5 |
99 |
26 |
86.86 |
BIOQUIMICA |
| 20191574 |
1574 |
12 |
230 |
5 |
79.42 |
CIVIL |
| 20191633 |
1633 |
11 |
206 |
29 |
79.65 |
CIVIL |
| 20191692 |
1692 |
8 |
193 |
27 |
80.38 |
CIVIL |
| 20191751 |
1751 |
7 |
175 |
24 |
87.25 |
CIVIL |
| 20191810 |
1810 |
5 |
109 |
30 |
82.48 |
CIVIL |
| 20191869 |
1869 |
3 |
57 |
24 |
90.83 |
CIVIL |
| 20191928 |
1928 |
5 |
100 |
19 |
80.00 |
CIVIL |
| 20191987 |
1987 |
5 |
101 |
28 |
83.71 |
CIVIL |
| 20192046 |
2046 |
8 |
150 |
33 |
81.77 |
CIVIL |
| 20192105 |
2105 |
8 |
178 |
30 |
79.41 |
CIVIL |
| 20192164 |
2164 |
1 |
NA |
27 |
0.00 |
CIVIL |
| 20192223 |
2223 |
9 |
220 |
15 |
83.30 |
ELECTRICA |
| 20192282 |
2282 |
5 |
94 |
26 |
84.09 |
ELECTRICA |
| 20192341 |
2341 |
3 |
46 |
28 |
91.55 |
ELECTRICA |
| 20192400 |
2400 |
1 |
NA |
24 |
0.00 |
ELECTRICA |
| 20192459 |
2459 |
1 |
NA |
24 |
0.00 |
ELECTRICA |
| 20192518 |
2518 |
11 |
192 |
23 |
83.88 |
ELECTRONICA |
| 20192577 |
2577 |
3 |
52 |
25 |
87.67 |
ELECTRONICA |
| 20192636 |
2636 |
5 |
105 |
28 |
92.65 |
ELECTRONICA |
| 20192695 |
2695 |
9 |
226 |
4 |
85.18 |
INDUSTRIAL |
| 20192754 |
2754 |
5 |
93 |
34 |
83.29 |
INDUSTRIAL |
| 20192813 |
2813 |
5 |
98 |
32 |
83.41 |
INDUSTRIAL |
| 20192872 |
2872 |
7 |
156 |
36 |
84.71 |
INDUSTRIAL |
| 20192931 |
2931 |
2 |
27 |
24 |
82.83 |
INDUSTRIAL |
| 20192990 |
2990 |
9 |
235 |
10 |
84.96 |
INDUSTRIAL |
| 20193049 |
3049 |
2 |
27 |
24 |
81.50 |
INDUSTRIAL |
| 20193108 |
3108 |
8 |
123 |
34 |
82.50 |
INDUSTRIAL |
| 20193167 |
3167 |
2 |
27 |
28 |
88.33 |
INDUSTRIAL |
| 20193226 |
3226 |
1 |
NA |
27 |
0.00 |
INDUSTRIAL |
| 20193285 |
3285 |
2 |
27 |
24 |
81.00 |
INDUSTRIAL |
| 20193344 |
3344 |
5 |
55 |
27 |
86.69 |
INDUSTRIAL |
| 20193403 |
3403 |
9 |
175 |
28 |
83.45 |
MECANICA |
| 20193462 |
3462 |
7 |
83 |
30 |
78.05 |
MECANICA |
| 20193521 |
3521 |
7 |
137 |
34 |
86.20 |
MECANICA |
| 20193580 |
3580 |
8 |
175 |
21 |
85.34 |
MECANICA |
| 20193639 |
3639 |
3 |
30 |
22 |
83.00 |
MECANICA |
| 20193698 |
3698 |
9 |
219 |
16 |
89.63 |
MECATRONICA |
| 20193757 |
3757 |
1 |
NA |
25 |
0.00 |
MECATRONICA |
| 20193816 |
3816 |
5 |
108 |
30 |
86.71 |
MECATRONICA |
| 20193875 |
3875 |
4 |
67 |
23 |
79.07 |
MECATRONICA |
| 20193934 |
3934 |
3 |
53 |
27 |
86.50 |
MECATRONICA |
| 20193993 |
3993 |
8 |
151 |
27 |
79.53 |
MECATRONICA |
| 20194052 |
4052 |
5 |
110 |
24 |
85.17 |
MECATRONICA |
| 20194111 |
4111 |
9 |
224 |
6 |
91.26 |
QUIMICA |
| 20194170 |
4170 |
10 |
211 |
24 |
80.44 |
QUIMICA |
| 20194229 |
4229 |
3 |
36 |
30 |
89.25 |
QUIMICA |
| 20194288 |
4288 |
13 |
235 |
10 |
78.98 |
QUIMICA |
| 20194347 |
4347 |
7 |
138 |
24 |
85.07 |
QUIMICA |
| 20194406 |
4406 |
4 |
86 |
28 |
81.44 |
QUIMICA |
| 20194465 |
4465 |
9 |
214 |
21 |
89.05 |
QUIMICA |
| 20194524 |
4524 |
10 |
127 |
13 |
78.89 |
QUIMICA |
| 20194583 |
4583 |
7 |
150 |
22 |
86.16 |
QUIMICA |
| 20194642 |
4642 |
2 |
25 |
31 |
89.17 |
QUIMICA |
| 20194701 |
4701 |
9 |
230 |
5 |
94.75 |
GESTION EMPRESARIAL |
| 20194760 |
4760 |
9 |
215 |
20 |
87.38 |
GESTION EMPRESARIAL |
| 20194819 |
4819 |
3 |
54 |
28 |
87.08 |
GESTION EMPRESARIAL |
| 20194878 |
4878 |
3 |
54 |
28 |
87.42 |
GESTION EMPRESARIAL |
| 20194937 |
4937 |
7 |
167 |
33 |
88.00 |
GESTION EMPRESARIAL |
| 20194996 |
4996 |
3 |
54 |
28 |
95.33 |
GESTION EMPRESARIAL |
| 20195055 |
5055 |
1 |
NA |
27 |
0.00 |
GESTION EMPRESARIAL |
| 20195114 |
5114 |
7 |
185 |
25 |
95.74 |
GESTION EMPRESARIAL |
| 20195173 |
5173 |
2 |
37 |
30 |
93.25 |
GESTION EMPRESARIAL |
| 20195232 |
5232 |
3 |
54 |
28 |
89.08 |
GESTION EMPRESARIAL |
| 20195291 |
5291 |
5 |
101 |
28 |
81.27 |
TIC |
| 20195350 |
5350 |
9 |
215 |
16 |
84.57 |
INFORMATICA |
| 20195409 |
5409 |
3 |
55 |
27 |
87.92 |
INFORMATICA |
| 20195468 |
5468 |
11 |
240 |
22 |
84.88 |
ADMINISTRACION |
| 20195527 |
5527 |
1 |
NA |
27 |
0.00 |
ADMINISTRACION |
| 20195586 |
5586 |
1 |
NA |
27 |
0.00 |
ADMINISTRACION |
| 20195645 |
5645 |
3 |
55 |
29 |
97.67 |
ADMINISTRACION |
| 20195704 |
5704 |
5 |
79 |
29 |
86.06 |
ADMINISTRACION |
| 20195763 |
5763 |
5 |
113 |
27 |
92.83 |
ADMINISTRACION |
| 20195822 |
5822 |
5 |
113 |
27 |
95.63 |
ADMINISTRACION |
| 20195881 |
5881 |
7 |
135 |
34 |
83.90 |
ADMINISTRACION |
3.3. Muestreo aleatorio estratificado * Con el conjunto de datos de personas se trata de encontrar 10 , pero que sea representativa de acuerdo y conforme al género femenino y masculino. ¿Cuál es la frecuencia relativa del género femenino?, ¿Cuál es la frecuencia relativa del género masculino?,Ambas frecuencias multiplicar por el tamaño de la muestra para garantizar imparcialidad en la muestra.
N <- nrow(personas)
n <- 10
femeninos <- filter(personas, generos=='F')
masculinos <- filter(personas, generos=='M')
frfem <- nrow(femeninos) / N
frmas <- nrow(masculinos) / N
frfem
## [1] 0.42
frmas
## [1] 0.58
muestraFem <- sample(femeninos, n * frfem)
kable(muestraFem, caption = "La muestra de personas Femenino")
La muestra de personas Femenino
| 26 |
GABRIELA |
F |
NO |
NO |
NO |
NO |
NO |
NO |
NO |
NO |
NO |
NO |
NO |
NO |
26 |
| 36 |
ISABEL |
F |
NO |
NO |
NO |
NO |
NO |
NO |
NO |
NO |
NO |
NO |
NO |
NO |
36 |
| 39 |
CARMEN |
F |
NO |
NO |
NO |
NO |
NO |
NO |
NO |
NO |
NO |
NO |
NO |
NO |
39 |
| 10 |
FRANCISCO JAVIER |
F |
SI |
NO |
NO |
NO |
NO |
NO |
NO |
SI |
NO |
NO |
SI |
NO |
10 |
muestraMas <- sample(masculinos, n * frmas)
kable(muestraMas, caption = "La muestra de personas Masculino")
La muestra de personas Masculino
| 58 |
GUSTAVO |
M |
NO |
NO |
NO |
NO |
NO |
NO |
NO |
SI |
NO |
NO |
NO |
NO |
58 |
| 20 |
RAFAEL |
M |
NO |
NO |
NO |
NO |
NO |
NO |
NO |
SI |
NO |
NO |
NO |
NO |
20 |
| 3 |
JOSÉ |
M |
NO |
SI |
NO |
SI |
NO |
NO |
NO |
NO |
NO |
NO |
SI |
SI |
3 |
| 31 |
ALFREDO |
M |
NO |
NO |
NO |
SI |
NO |
NO |
NO |
NO |
NO |
SI |
NO |
NO |
31 |
| 47 |
RUBEN |
M |
NO |
SI |
NO |
NO |
NO |
NO |
NO |
NO |
NO |
NO |
SI |
NO |
47 |
Simular muestreo estratificado por carreas de alumnos determinando las frecuencias relativas por medio de la función fdt_cat().
N <- nrow(alumnos)
n <- 100
tabla_frec <- data.frame(fdt_cat(alumnos$Carrera))
tabla_frec$muestra <- round(tabla_frec$rf * n, 0)
kable(tabla_frec, caption = "Tabla de frecuencia de alumnos")
Tabla de frecuencia de alumnos
| INDUSTRIAL |
707 |
0.1192444 |
11.924439 |
707 |
11.92444 |
12 |
| ARQUITECTURA |
675 |
0.1138472 |
11.384719 |
1382 |
23.30916 |
11 |
| CIVIL |
648 |
0.1092933 |
10.929330 |
2030 |
34.23849 |
11 |
| GESTION EMPRESARIAL |
585 |
0.0986676 |
9.866757 |
2615 |
44.10525 |
10 |
| QUIMICA |
568 |
0.0958003 |
9.580030 |
3183 |
53.68528 |
10 |
| ADMINISTRACION |
497 |
0.0838253 |
8.382527 |
3680 |
62.06780 |
8 |
| SISTEMAS |
452 |
0.0762355 |
7.623545 |
4132 |
69.69135 |
8 |
| BIOQUIMICA |
441 |
0.0743802 |
7.438016 |
4573 |
77.12936 |
7 |
| MECATRONICA |
432 |
0.0728622 |
7.286220 |
5005 |
84.41558 |
7 |
| MECANICA |
301 |
0.0507674 |
5.076741 |
5306 |
89.49233 |
5 |
| ELECTRICA |
280 |
0.0472255 |
4.722550 |
5586 |
94.21488 |
5 |
| ELECTRONICA |
161 |
0.0271547 |
2.715466 |
5747 |
96.93034 |
3 |
| INFORMATICA |
101 |
0.0170349 |
1.703491 |
5848 |
98.63383 |
2 |
| TIC |
81 |
0.0136617 |
1.366166 |
5929 |
100.00000 |
1 |
¿Cuáles alumnos?. Sólo simular carreras de SISTEMAS Y CIVIL.
N <- nrow(alumnos)
n <- 100
sistemas <- filter(alumnos, Carrera == "SISTEMAS")
civil <- filter(alumnos, Carrera == "CIVIL")
frsistemas <- nrow(sistemas) / N
frcivil <- nrow(civil) / N
frsistemas
## [1] 0.07623545
frcivil
## [1] 0.1092933
muestrasistemas <- sample(sistemas, round(n * frsistemas, 0))
kable(muestrasistemas, caption = "La muestra de alumnos de Sistemas")
La muestra de alumnos de Sistemas
| 20190046 |
46 |
9 |
221 |
14 |
90.71 |
SISTEMAS |
46 |
| 20190130 |
130 |
4 |
87 |
33 |
87.89 |
SISTEMAS |
130 |
| 20190335 |
335 |
3 |
50 |
28 |
92.00 |
SISTEMAS |
335 |
| 20190142 |
142 |
3 |
36 |
23 |
89.13 |
SISTEMAS |
142 |
| 20190199 |
199 |
1 |
NA |
27 |
0.00 |
SISTEMAS |
199 |
| 20190030 |
30 |
11 |
226 |
9 |
81.78 |
SISTEMAS |
30 |
| 20190052 |
52 |
10 |
138 |
31 |
79.33 |
SISTEMAS |
52 |
| 20190448 |
448 |
1 |
NA |
27 |
0.00 |
SISTEMAS |
448 |
muestracivil <- sample(civil, round(n * frcivil, 0))
kable(muestracivil, caption = "La muestra de alumnos de Civil")
La muestra de alumnos de Civil
| 20191982 |
1982 |
6 |
120 |
31 |
81.36 |
CIVIL |
414 |
| 20191847 |
1847 |
5 |
122 |
30 |
86.00 |
CIVIL |
279 |
| 20192207 |
2207 |
6 |
38 |
35 |
77.38 |
CIVIL |
639 |
| 20192128 |
2128 |
6 |
118 |
34 |
78.44 |
CIVIL |
560 |
| 20192184 |
2184 |
1 |
NA |
27 |
0.00 |
CIVIL |
616 |
| 20191794 |
1794 |
6 |
137 |
34 |
87.66 |
CIVIL |
226 |
| 20191740 |
1740 |
5 |
113 |
30 |
88.63 |
CIVIL |
172 |
| 20192009 |
2009 |
4 |
82 |
31 |
82.71 |
CIVIL |
441 |
| 20191578 |
1578 |
10 |
205 |
25 |
81.95 |
CIVIL |
10 |
| 20191905 |
1905 |
7 |
154 |
32 |
82.64 |
CIVIL |
337 |
| 20191984 |
1984 |
6 |
133 |
30 |
86.79 |
CIVIL |
416 |
3.4 Muestreo por conglomorados.
N <- nrow(alumnos)
n <- 100
locdurangomx <- read.csv("https://raw.githubusercontent.com/rpizarrog/probabilidad-y-estad-stica/master/datos/locdurangomx.csv", encoding = "UTF-8")
localidades50 <- locdurangomx[sample(nrow(locdurangomx), 5), ]
alumlocalidades <- sample(localidades50, N, replace = TRUE)
alumnos$localidad <- alumlocalidades$Nom_Loc
alumnos$latitud <- alumlocalidades$Lat_Decimal
alumnos$longitud <- alumlocalidades$Lon_Decimal
kable(head(alumnos, 10), caption = "Los primeros diez registros de alumnos")
Los primeros diez registros de alumnos
| 20190001 |
1 |
11 |
198 |
19 |
80.21 |
SISTEMAS |
Rancho el Bajío |
24.22719 |
-104.7093 |
| 20190002 |
2 |
11 |
235 |
10 |
84.33 |
SISTEMAS |
José Gamboa |
24.07609 |
-104.5546 |
| 20190003 |
3 |
9 |
235 |
10 |
95.25 |
SISTEMAS |
Rancho el Bajío |
24.22719 |
-104.7093 |
| 20190004 |
4 |
9 |
226 |
19 |
95.00 |
SISTEMAS |
Rancho el Bajío |
24.22719 |
-104.7093 |
| 20190005 |
5 |
10 |
231 |
14 |
82.32 |
SISTEMAS |
Rancho el Bajío |
24.22719 |
-104.7093 |
| 20190006 |
6 |
9 |
212 |
23 |
95.02 |
SISTEMAS |
Residencial Los Arcos [Fraccionamiento] |
24.09682 |
-104.6913 |
| 20190007 |
7 |
12 |
221 |
10 |
79.06 |
SISTEMAS |
Rancho el Bajío |
24.22719 |
-104.7093 |
| 20190008 |
8 |
9 |
226 |
9 |
92.47 |
SISTEMAS |
Rancho San Pablo |
23.78263 |
-104.4304 |
| 20190009 |
9 |
9 |
231 |
4 |
91.08 |
SISTEMAS |
Rancho San Pablo |
23.78263 |
-104.4304 |
| 20190010 |
10 |
11 |
222 |
13 |
80.42 |
SISTEMAS |
José Gamboa |
24.07609 |
-104.5546 |
kable(tail(alumnos, 10), caption = "Las útimos diez registros de alumnos")
Las útimos diez registros de alumnos
| 20195920 |
5920 |
7 |
169 |
23 |
89.14 |
ADMINISTRACION |
Residencial Los Arcos [Fraccionamiento] |
24.09682 |
-104.6913 |
| 20195921 |
5921 |
5 |
109 |
26 |
87.83 |
ADMINISTRACION |
Rancho el Bajío |
24.22719 |
-104.7093 |
| 20195922 |
5922 |
3 |
55 |
29 |
92.83 |
ADMINISTRACION |
José Gamboa |
24.07609 |
-104.5546 |
| 20195923 |
5923 |
2 |
23 |
23 |
88.60 |
ADMINISTRACION |
Tierra Prometida |
24.00826 |
-104.5932 |
| 20195924 |
5924 |
2 |
27 |
28 |
92.83 |
ADMINISTRACION |
José Gamboa |
24.07609 |
-104.5546 |
| 20195925 |
5925 |
7 |
94 |
13 |
80.95 |
ADMINISTRACION |
Rancho el Bajío |
24.22719 |
-104.7093 |
| 20195926 |
5926 |
5 |
103 |
32 |
92.68 |
ADMINISTRACION |
Residencial Los Arcos [Fraccionamiento] |
24.09682 |
-104.6913 |
| 20195927 |
5927 |
4 |
79 |
34 |
86.18 |
ADMINISTRACION |
Tierra Prometida |
24.00826 |
-104.5932 |
| 20195928 |
5928 |
5 |
108 |
32 |
90.48 |
ADMINISTRACION |
Residencial Los Arcos [Fraccionamiento] |
24.09682 |
-104.6913 |
| 20195929 |
5929 |
7 |
169 |
32 |
92.33 |
ADMINISTRACION |
Tierra Prometida |
24.00826 |
-104.5932 |
Encontrar frecuencias por localidad.
N <- nrow(alumnos)
n <- 100
tabla_frec <- data.frame(fdt_cat(alumnos$localidad))
tabla_frec$muestra <- round(tabla_frec$rf * n, 0)
kable(tabla_frec, caption = "Tabla de frecuencia de alumnos por localidad")
Tabla de frecuencia de alumnos por localidad
| José Gamboa |
1216 |
0.2050936 |
20.50936 |
1216 |
20.50936 |
21 |
| Tierra Prometida |
1208 |
0.2037443 |
20.37443 |
2424 |
40.88379 |
20 |
| Residencial Los Arcos [Fraccionamiento] |
1180 |
0.1990218 |
19.90218 |
3604 |
60.78597 |
20 |
| Rancho San Pablo |
1174 |
0.1980098 |
19.80098 |
4778 |
80.58695 |
20 |
| Rancho el Bajío |
1151 |
0.1941305 |
19.41305 |
5929 |
100.00000 |
19 |
N <- nrow(alumnos)
n <- 100
loc1 <- filter(alumnos, localidad == tabla_frec$Category[1])
loc2 <- filter(alumnos, localidad == tabla_frec$Category[2])
loc3 <- filter(alumnos, localidad == tabla_frec$Category[3])
loc4 <- filter(alumnos, localidad == tabla_frec$Category[4])
loc5 <- filter(alumnos, localidad == tabla_frec$Category[5])
frloc1 <- nrow(loc1) / N
frloc2 <- nrow(loc2) / N
frloc3 <- nrow(loc3) / N
frloc4 <- nrow(loc4) / N
frloc5 <- nrow(loc5) / N
muestraloc1 <- sample(loc1, round(n * frloc1, 0))
kable(muestraloc1, caption = paste("La muestra de alumnos de Localidad ",tabla_frec$Category[1] ))
La muestra de alumnos de Localidad José Gamboa
| 20194278 |
4278 |
7 |
172 |
32 |
91.36 |
QUIMICA |
José Gamboa |
24.07609 |
-104.5546 |
891 |
| 20194700 |
4700 |
11 |
205 |
30 |
83.65 |
GESTION EMPRESARIAL |
José Gamboa |
24.07609 |
-104.5546 |
977 |
| 20193753 |
3753 |
6 |
109 |
36 |
90.46 |
MECATRONICA |
José Gamboa |
24.07609 |
-104.5546 |
774 |
| 20192092 |
2092 |
8 |
156 |
20 |
80.18 |
CIVIL |
José Gamboa |
24.07609 |
-104.5546 |
404 |
| 20191273 |
1273 |
4 |
82 |
31 |
85.94 |
BIOQUIMICA |
José Gamboa |
24.07609 |
-104.5546 |
249 |
| 20191508 |
1508 |
1 |
NA |
23 |
0.00 |
BIOQUIMICA |
José Gamboa |
24.07609 |
-104.5546 |
292 |
| 20192338 |
2338 |
1 |
NA |
24 |
0.00 |
ELECTRICA |
José Gamboa |
24.07609 |
-104.5546 |
454 |
| 20191070 |
1070 |
8 |
202 |
25 |
82.59 |
ARQUITECTURA |
José Gamboa |
24.07609 |
-104.5546 |
211 |
| 20193755 |
3755 |
5 |
109 |
29 |
91.63 |
MECATRONICA |
José Gamboa |
24.07609 |
-104.5546 |
775 |
| 20192807 |
2807 |
5 |
96 |
32 |
85.18 |
INDUSTRIAL |
José Gamboa |
24.07609 |
-104.5546 |
560 |
| 20194193 |
4193 |
8 |
141 |
28 |
82.17 |
QUIMICA |
José Gamboa |
24.07609 |
-104.5546 |
871 |
| 20190813 |
813 |
2 |
20 |
20 |
88.20 |
ARQUITECTURA |
José Gamboa |
24.07609 |
-104.5546 |
161 |
| 20193397 |
3397 |
9 |
178 |
23 |
82.05 |
MECANICA |
José Gamboa |
24.07609 |
-104.5546 |
701 |
| 20195406 |
5406 |
3 |
50 |
27 |
89.82 |
INFORMATICA |
José Gamboa |
24.07609 |
-104.5546 |
1106 |
| 20192824 |
2824 |
3 |
61 |
22 |
81.57 |
INDUSTRIAL |
José Gamboa |
24.07609 |
-104.5546 |
564 |
| 20193247 |
3247 |
7 |
179 |
31 |
94.61 |
INDUSTRIAL |
José Gamboa |
24.07609 |
-104.5546 |
665 |
| 20193650 |
3650 |
3 |
52 |
32 |
79.00 |
MECANICA |
José Gamboa |
24.07609 |
-104.5546 |
752 |
| 20192005 |
2005 |
8 |
203 |
18 |
88.86 |
CIVIL |
José Gamboa |
24.07609 |
-104.5546 |
384 |
| 20191003 |
1003 |
2 |
26 |
26 |
90.33 |
ARQUITECTURA |
José Gamboa |
24.07609 |
-104.5546 |
196 |
| 20195076 |
5076 |
6 |
98 |
24 |
86.05 |
GESTION EMPRESARIAL |
José Gamboa |
24.07609 |
-104.5546 |
1048 |
| 20191334 |
1334 |
1 |
NA |
23 |
0.00 |
BIOQUIMICA |
José Gamboa |
24.07609 |
-104.5546 |
260 |
muestraloc2 <- sample(loc2, round(n * frloc2, 0))
kable(muestraloc1, caption = paste("La muestra de alumnos de Localidad ",tabla_frec$Category[2] ))
La muestra de alumnos de Localidad Tierra Prometida
| 20194278 |
4278 |
7 |
172 |
32 |
91.36 |
QUIMICA |
José Gamboa |
24.07609 |
-104.5546 |
891 |
| 20194700 |
4700 |
11 |
205 |
30 |
83.65 |
GESTION EMPRESARIAL |
José Gamboa |
24.07609 |
-104.5546 |
977 |
| 20193753 |
3753 |
6 |
109 |
36 |
90.46 |
MECATRONICA |
José Gamboa |
24.07609 |
-104.5546 |
774 |
| 20192092 |
2092 |
8 |
156 |
20 |
80.18 |
CIVIL |
José Gamboa |
24.07609 |
-104.5546 |
404 |
| 20191273 |
1273 |
4 |
82 |
31 |
85.94 |
BIOQUIMICA |
José Gamboa |
24.07609 |
-104.5546 |
249 |
| 20191508 |
1508 |
1 |
NA |
23 |
0.00 |
BIOQUIMICA |
José Gamboa |
24.07609 |
-104.5546 |
292 |
| 20192338 |
2338 |
1 |
NA |
24 |
0.00 |
ELECTRICA |
José Gamboa |
24.07609 |
-104.5546 |
454 |
| 20191070 |
1070 |
8 |
202 |
25 |
82.59 |
ARQUITECTURA |
José Gamboa |
24.07609 |
-104.5546 |
211 |
| 20193755 |
3755 |
5 |
109 |
29 |
91.63 |
MECATRONICA |
José Gamboa |
24.07609 |
-104.5546 |
775 |
| 20192807 |
2807 |
5 |
96 |
32 |
85.18 |
INDUSTRIAL |
José Gamboa |
24.07609 |
-104.5546 |
560 |
| 20194193 |
4193 |
8 |
141 |
28 |
82.17 |
QUIMICA |
José Gamboa |
24.07609 |
-104.5546 |
871 |
| 20190813 |
813 |
2 |
20 |
20 |
88.20 |
ARQUITECTURA |
José Gamboa |
24.07609 |
-104.5546 |
161 |
| 20193397 |
3397 |
9 |
178 |
23 |
82.05 |
MECANICA |
José Gamboa |
24.07609 |
-104.5546 |
701 |
| 20195406 |
5406 |
3 |
50 |
27 |
89.82 |
INFORMATICA |
José Gamboa |
24.07609 |
-104.5546 |
1106 |
| 20192824 |
2824 |
3 |
61 |
22 |
81.57 |
INDUSTRIAL |
José Gamboa |
24.07609 |
-104.5546 |
564 |
| 20193247 |
3247 |
7 |
179 |
31 |
94.61 |
INDUSTRIAL |
José Gamboa |
24.07609 |
-104.5546 |
665 |
| 20193650 |
3650 |
3 |
52 |
32 |
79.00 |
MECANICA |
José Gamboa |
24.07609 |
-104.5546 |
752 |
| 20192005 |
2005 |
8 |
203 |
18 |
88.86 |
CIVIL |
José Gamboa |
24.07609 |
-104.5546 |
384 |
| 20191003 |
1003 |
2 |
26 |
26 |
90.33 |
ARQUITECTURA |
José Gamboa |
24.07609 |
-104.5546 |
196 |
| 20195076 |
5076 |
6 |
98 |
24 |
86.05 |
GESTION EMPRESARIAL |
José Gamboa |
24.07609 |
-104.5546 |
1048 |
| 20191334 |
1334 |
1 |
NA |
23 |
0.00 |
BIOQUIMICA |
José Gamboa |
24.07609 |
-104.5546 |
260 |
muestraloc3 <- sample(loc3, round(n * frloc3, 0))
kable(muestraloc1, caption = paste("La muestra de alumnos de Localidad ",tabla_frec$Category[3] ))
La muestra de alumnos de Localidad Residencial Los Arcos [Fraccionamiento]
| 20194278 |
4278 |
7 |
172 |
32 |
91.36 |
QUIMICA |
José Gamboa |
24.07609 |
-104.5546 |
891 |
| 20194700 |
4700 |
11 |
205 |
30 |
83.65 |
GESTION EMPRESARIAL |
José Gamboa |
24.07609 |
-104.5546 |
977 |
| 20193753 |
3753 |
6 |
109 |
36 |
90.46 |
MECATRONICA |
José Gamboa |
24.07609 |
-104.5546 |
774 |
| 20192092 |
2092 |
8 |
156 |
20 |
80.18 |
CIVIL |
José Gamboa |
24.07609 |
-104.5546 |
404 |
| 20191273 |
1273 |
4 |
82 |
31 |
85.94 |
BIOQUIMICA |
José Gamboa |
24.07609 |
-104.5546 |
249 |
| 20191508 |
1508 |
1 |
NA |
23 |
0.00 |
BIOQUIMICA |
José Gamboa |
24.07609 |
-104.5546 |
292 |
| 20192338 |
2338 |
1 |
NA |
24 |
0.00 |
ELECTRICA |
José Gamboa |
24.07609 |
-104.5546 |
454 |
| 20191070 |
1070 |
8 |
202 |
25 |
82.59 |
ARQUITECTURA |
José Gamboa |
24.07609 |
-104.5546 |
211 |
| 20193755 |
3755 |
5 |
109 |
29 |
91.63 |
MECATRONICA |
José Gamboa |
24.07609 |
-104.5546 |
775 |
| 20192807 |
2807 |
5 |
96 |
32 |
85.18 |
INDUSTRIAL |
José Gamboa |
24.07609 |
-104.5546 |
560 |
| 20194193 |
4193 |
8 |
141 |
28 |
82.17 |
QUIMICA |
José Gamboa |
24.07609 |
-104.5546 |
871 |
| 20190813 |
813 |
2 |
20 |
20 |
88.20 |
ARQUITECTURA |
José Gamboa |
24.07609 |
-104.5546 |
161 |
| 20193397 |
3397 |
9 |
178 |
23 |
82.05 |
MECANICA |
José Gamboa |
24.07609 |
-104.5546 |
701 |
| 20195406 |
5406 |
3 |
50 |
27 |
89.82 |
INFORMATICA |
José Gamboa |
24.07609 |
-104.5546 |
1106 |
| 20192824 |
2824 |
3 |
61 |
22 |
81.57 |
INDUSTRIAL |
José Gamboa |
24.07609 |
-104.5546 |
564 |
| 20193247 |
3247 |
7 |
179 |
31 |
94.61 |
INDUSTRIAL |
José Gamboa |
24.07609 |
-104.5546 |
665 |
| 20193650 |
3650 |
3 |
52 |
32 |
79.00 |
MECANICA |
José Gamboa |
24.07609 |
-104.5546 |
752 |
| 20192005 |
2005 |
8 |
203 |
18 |
88.86 |
CIVIL |
José Gamboa |
24.07609 |
-104.5546 |
384 |
| 20191003 |
1003 |
2 |
26 |
26 |
90.33 |
ARQUITECTURA |
José Gamboa |
24.07609 |
-104.5546 |
196 |
| 20195076 |
5076 |
6 |
98 |
24 |
86.05 |
GESTION EMPRESARIAL |
José Gamboa |
24.07609 |
-104.5546 |
1048 |
| 20191334 |
1334 |
1 |
NA |
23 |
0.00 |
BIOQUIMICA |
José Gamboa |
24.07609 |
-104.5546 |
260 |
muestraloc4 <- sample(loc4, round(n * frloc4, 0))
kable(muestraloc1, caption = paste("La muestra de alumnos de Localidad ",tabla_frec$Category[4] ))
La muestra de alumnos de Localidad Rancho San Pablo
| 20194278 |
4278 |
7 |
172 |
32 |
91.36 |
QUIMICA |
José Gamboa |
24.07609 |
-104.5546 |
891 |
| 20194700 |
4700 |
11 |
205 |
30 |
83.65 |
GESTION EMPRESARIAL |
José Gamboa |
24.07609 |
-104.5546 |
977 |
| 20193753 |
3753 |
6 |
109 |
36 |
90.46 |
MECATRONICA |
José Gamboa |
24.07609 |
-104.5546 |
774 |
| 20192092 |
2092 |
8 |
156 |
20 |
80.18 |
CIVIL |
José Gamboa |
24.07609 |
-104.5546 |
404 |
| 20191273 |
1273 |
4 |
82 |
31 |
85.94 |
BIOQUIMICA |
José Gamboa |
24.07609 |
-104.5546 |
249 |
| 20191508 |
1508 |
1 |
NA |
23 |
0.00 |
BIOQUIMICA |
José Gamboa |
24.07609 |
-104.5546 |
292 |
| 20192338 |
2338 |
1 |
NA |
24 |
0.00 |
ELECTRICA |
José Gamboa |
24.07609 |
-104.5546 |
454 |
| 20191070 |
1070 |
8 |
202 |
25 |
82.59 |
ARQUITECTURA |
José Gamboa |
24.07609 |
-104.5546 |
211 |
| 20193755 |
3755 |
5 |
109 |
29 |
91.63 |
MECATRONICA |
José Gamboa |
24.07609 |
-104.5546 |
775 |
| 20192807 |
2807 |
5 |
96 |
32 |
85.18 |
INDUSTRIAL |
José Gamboa |
24.07609 |
-104.5546 |
560 |
| 20194193 |
4193 |
8 |
141 |
28 |
82.17 |
QUIMICA |
José Gamboa |
24.07609 |
-104.5546 |
871 |
| 20190813 |
813 |
2 |
20 |
20 |
88.20 |
ARQUITECTURA |
José Gamboa |
24.07609 |
-104.5546 |
161 |
| 20193397 |
3397 |
9 |
178 |
23 |
82.05 |
MECANICA |
José Gamboa |
24.07609 |
-104.5546 |
701 |
| 20195406 |
5406 |
3 |
50 |
27 |
89.82 |
INFORMATICA |
José Gamboa |
24.07609 |
-104.5546 |
1106 |
| 20192824 |
2824 |
3 |
61 |
22 |
81.57 |
INDUSTRIAL |
José Gamboa |
24.07609 |
-104.5546 |
564 |
| 20193247 |
3247 |
7 |
179 |
31 |
94.61 |
INDUSTRIAL |
José Gamboa |
24.07609 |
-104.5546 |
665 |
| 20193650 |
3650 |
3 |
52 |
32 |
79.00 |
MECANICA |
José Gamboa |
24.07609 |
-104.5546 |
752 |
| 20192005 |
2005 |
8 |
203 |
18 |
88.86 |
CIVIL |
José Gamboa |
24.07609 |
-104.5546 |
384 |
| 20191003 |
1003 |
2 |
26 |
26 |
90.33 |
ARQUITECTURA |
José Gamboa |
24.07609 |
-104.5546 |
196 |
| 20195076 |
5076 |
6 |
98 |
24 |
86.05 |
GESTION EMPRESARIAL |
José Gamboa |
24.07609 |
-104.5546 |
1048 |
| 20191334 |
1334 |
1 |
NA |
23 |
0.00 |
BIOQUIMICA |
José Gamboa |
24.07609 |
-104.5546 |
260 |
muestraloc5 <- sample(loc5, round(n * frloc5, 0))
kable(muestraloc1, caption = paste("La muestra de alumnos de Localidad ",tabla_frec$Category[5] ))
La muestra de alumnos de Localidad Rancho el Bajío
| 20194278 |
4278 |
7 |
172 |
32 |
91.36 |
QUIMICA |
José Gamboa |
24.07609 |
-104.5546 |
891 |
| 20194700 |
4700 |
11 |
205 |
30 |
83.65 |
GESTION EMPRESARIAL |
José Gamboa |
24.07609 |
-104.5546 |
977 |
| 20193753 |
3753 |
6 |
109 |
36 |
90.46 |
MECATRONICA |
José Gamboa |
24.07609 |
-104.5546 |
774 |
| 20192092 |
2092 |
8 |
156 |
20 |
80.18 |
CIVIL |
José Gamboa |
24.07609 |
-104.5546 |
404 |
| 20191273 |
1273 |
4 |
82 |
31 |
85.94 |
BIOQUIMICA |
José Gamboa |
24.07609 |
-104.5546 |
249 |
| 20191508 |
1508 |
1 |
NA |
23 |
0.00 |
BIOQUIMICA |
José Gamboa |
24.07609 |
-104.5546 |
292 |
| 20192338 |
2338 |
1 |
NA |
24 |
0.00 |
ELECTRICA |
José Gamboa |
24.07609 |
-104.5546 |
454 |
| 20191070 |
1070 |
8 |
202 |
25 |
82.59 |
ARQUITECTURA |
José Gamboa |
24.07609 |
-104.5546 |
211 |
| 20193755 |
3755 |
5 |
109 |
29 |
91.63 |
MECATRONICA |
José Gamboa |
24.07609 |
-104.5546 |
775 |
| 20192807 |
2807 |
5 |
96 |
32 |
85.18 |
INDUSTRIAL |
José Gamboa |
24.07609 |
-104.5546 |
560 |
| 20194193 |
4193 |
8 |
141 |
28 |
82.17 |
QUIMICA |
José Gamboa |
24.07609 |
-104.5546 |
871 |
| 20190813 |
813 |
2 |
20 |
20 |
88.20 |
ARQUITECTURA |
José Gamboa |
24.07609 |
-104.5546 |
161 |
| 20193397 |
3397 |
9 |
178 |
23 |
82.05 |
MECANICA |
José Gamboa |
24.07609 |
-104.5546 |
701 |
| 20195406 |
5406 |
3 |
50 |
27 |
89.82 |
INFORMATICA |
José Gamboa |
24.07609 |
-104.5546 |
1106 |
| 20192824 |
2824 |
3 |
61 |
22 |
81.57 |
INDUSTRIAL |
José Gamboa |
24.07609 |
-104.5546 |
564 |
| 20193247 |
3247 |
7 |
179 |
31 |
94.61 |
INDUSTRIAL |
José Gamboa |
24.07609 |
-104.5546 |
665 |
| 20193650 |
3650 |
3 |
52 |
32 |
79.00 |
MECANICA |
José Gamboa |
24.07609 |
-104.5546 |
752 |
| 20192005 |
2005 |
8 |
203 |
18 |
88.86 |
CIVIL |
José Gamboa |
24.07609 |
-104.5546 |
384 |
| 20191003 |
1003 |
2 |
26 |
26 |
90.33 |
ARQUITECTURA |
José Gamboa |
24.07609 |
-104.5546 |
196 |
| 20195076 |
5076 |
6 |
98 |
24 |
86.05 |
GESTION EMPRESARIAL |
José Gamboa |
24.07609 |
-104.5546 |
1048 |
| 20191334 |
1334 |
1 |
NA |
23 |
0.00 |
BIOQUIMICA |
José Gamboa |
24.07609 |
-104.5546 |
260 |
Visualizar Mapas.
library(leaflet)
## Warning: package 'leaflet' was built under R version 4.0.3
map<-leaflet() %>%
addTiles() %>%
addMarkers(lat=localidades50$Lat_Decimal[1],lng=localidades50$Lon_Decimal[1] ,popup=paste(localidades50$Nom_Loc[1], " ", tabla_frec$muestra[1])) %>%
addMarkers(lat=localidades50$Lat_Decimal[2],lng=localidades50$Lon_Decimal[2] ,popup=paste(localidades50$Nom_Loc[2], " ", tabla_frec$muestra[2])) %>%
addMarkers(lat=localidades50$Lat_Decimal[3],lng=localidades50$Lon_Decimal[3] ,popup=paste(localidades50$Nom_Loc[3], " ", tabla_frec$muestra[3])) %>%
addMarkers(lat=localidades50$Lat_Decimal[4],lng=localidades50$Lon_Decimal[4] ,popup=paste(localidades50$Nom_Loc[4], " ", tabla_frec$muestra[4])) %>%
addMarkers(lat=localidades50$Lat_Decimal[5],lng=localidades50$Lon_Decimal[5] ,popup=paste(localidades50$Nom_Loc[5], " ", tabla_frec$muestra[5]))
map
Interpretación del caso.
El caso 22 que es el que acabamos de observar, trata o habla sobre el muestreo y los diferentes tipos de muestreo, el cual se utilizó para explicar a detalle la población de cierto estudio que puede ir de diferentes temas como personas, atributos de las mismas, etc. En el caso del muestreo, existen varios tipos del mismo como los son: Los de métodos probabilísticos, de aleatoreos simples, estratificados y sistemáticos, Los que no son probabilísticos son de convenencia y cuotas. Lo que se trata de enseñar en este caso es como se simulan los muestreos, tomando como características u opciones a personas con sus respectivas características como lo son el género de las mismas, si practican algún deporte ya sea cultural o deportivo, etc.