nycdata <- read.csv("https://raw.githubusercontent.com/engine2031/Winter-Bridge-R-2021/main/environmental.csv")

nycdata <- data.frame(nycdata)
nycdata
##       X ozone radiation temperature wind
## 1     1    41       190          67  7.4
## 2     2    36       118          72  8.0
## 3     3    12       149          74 12.6
## 4     4    18       313          62 11.5
## 5     5    23       299          65  8.6
## 6     6    19        99          59 13.8
## 7     7     8        19          61 20.1
## 8     8    16       256          69  9.7
## 9     9    11       290          66  9.2
## 10   10    14       274          68 10.9
## 11   11    18        65          58 13.2
## 12   12    14       334          64 11.5
## 13   13    34       307          66 12.0
## 14   14     6        78          57 18.4
## 15   15    30       322          68 11.5
## 16   16    11        44          62  9.7
## 17   17     1         8          59  9.7
## 18   18    11       320          73 16.6
## 19   19     4        25          61  9.7
## 20   20    32        92          61 12.0
## 21   21    23        13          67 12.0
## 22   22    45       252          81 14.9
## 23   23   115       223          79  5.7
## 24   24    37       279          76  7.4
## 25   25    29       127          82  9.7
## 26   26    71       291          90 13.8
## 27   27    39       323          87 11.5
## 28   28    23       148          82  8.0
## 29   29    21       191          77 14.9
## 30   30    37       284          72 20.7
## 31   31    20        37          65  9.2
## 32   32    12       120          73 11.5
## 33   33    13       137          76 10.3
## 34   34   135       269          84  4.0
## 35   35    49       248          85  9.2
## 36   36    32       236          81  9.2
## 37   37    64       175          83  4.6
## 38   38    40       314          83 10.9
## 39   39    77       276          88  5.1
## 40   40    97       267          92  6.3
## 41   41    97       272          92  5.7
## 42   42    85       175          89  7.4
## 43   43    10       264          73 14.3
## 44   44    27       175          81 14.9
## 45   45     7        48          80 14.3
## 46   46    48       260          81  6.9
## 47   47    35       274          82 10.3
## 48   48    61       285          84  6.3
## 49   49    79       187          87  5.1
## 50   50    63       220          85 11.5
## 51   51    16         7          74  6.9
## 52   52    80       294          86  8.6
## 53   53   108       223          85  8.0
## 54   54    20        81          82  8.6
## 55   55    52        82          86 12.0
## 56   56    82       213          88  7.4
## 57   57    50       275          86  7.4
## 58   58    64       253          83  7.4
## 59   59    59       254          81  9.2
## 60   60    39        83          81  6.9
## 61   61     9        24          81 13.8
## 62   62    16        77          82  7.4
## 63   63   122       255          89  4.0
## 64   64    89       229          90 10.3
## 65   65   110       207          90  8.0
## 66   66    44       192          86 11.5
## 67   67    28       273          82 11.5
## 68   68    65       157          80  9.7
## 69   69    22        71          77 10.3
## 70   70    59        51          79  6.3
## 71   71    23       115          76  7.4
## 72   72    31       244          78 10.9
## 73   73    44       190          78 10.3
## 74   74    21       259          77 15.5
## 75   75     9        36          72 14.3
## 76   76    45       212          79  9.7
## 77   77   168       238          81  3.4
## 78   78    73       215          86  8.0
## 79   79    76       203          97  9.7
## 80   80   118       225          94  2.3
## 81   81    84       237          96  6.3
## 82   82    85       188          94  6.3
## 83   83    96       167          91  6.9
## 84   84    78       197          92  5.1
## 85   85    73       183          93  2.8
## 86   86    91       189          93  4.6
## 87   87    47        95          87  7.4
## 88   88    32        92          84 15.5
## 89   89    20       252          80 10.9
## 90   90    23       220          78 10.3
## 91   91    21       230          75 10.9
## 92   92    24       259          73  9.7
## 93   93    44       236          81 14.9
## 94   94    21       259          76 15.5
## 95   95    28       238          77  6.3
## 96   96     9        24          71 10.9
## 97   97    13       112          71 11.5
## 98   98    46       237          78  6.9
## 99   99    18       224          67 13.8
## 100 100    13        27          76 10.3
## 101 101    24       238          68 10.3
## 102 102    16       201          82  8.0
## 103 103    13       238          64 12.6
## 104 104    23        14          71  9.2
## 105 105    36       139          81 10.3
## 106 106     7        49          69 10.3
## 107 107    14        20          63 16.6
## 108 108    30       193          70  6.9
## 109 109    14       191          75 14.3
## 110 110    18       131          76  8.0
## 111 111    20       223          68 11.5
summary(nycdata)
##        X             ozone         radiation      temperature   
##  Min.   :  1.0   Min.   :  1.0   Min.   :  7.0   Min.   :57.00  
##  1st Qu.: 28.5   1st Qu.: 18.0   1st Qu.:113.5   1st Qu.:71.00  
##  Median : 56.0   Median : 31.0   Median :207.0   Median :79.00  
##  Mean   : 56.0   Mean   : 42.1   Mean   :184.8   Mean   :77.79  
##  3rd Qu.: 83.5   3rd Qu.: 62.0   3rd Qu.:255.5   3rd Qu.:84.50  
##  Max.   :111.0   Max.   :168.0   Max.   :334.0   Max.   :97.00  
##       wind       
##  Min.   : 2.300  
##  1st Qu.: 7.400  
##  Median : 9.700  
##  Mean   : 9.939  
##  3rd Qu.:11.500  
##  Max.   :20.700
mean(nycdata$ozone)
## [1] 42.0991
median(nycdata$ozone)
## [1] 31
mean(nycdata$radiation)
## [1] 184.8018
median(nycdata$radiation)
## [1] 207
nycdata2 <- data.frame(O3=nycdata$ozone, temp = nycdata$temperature)
nycdata2
##      O3 temp
## 1    41   67
## 2    36   72
## 3    12   74
## 4    18   62
## 5    23   65
## 6    19   59
## 7     8   61
## 8    16   69
## 9    11   66
## 10   14   68
## 11   18   58
## 12   14   64
## 13   34   66
## 14    6   57
## 15   30   68
## 16   11   62
## 17    1   59
## 18   11   73
## 19    4   61
## 20   32   61
## 21   23   67
## 22   45   81
## 23  115   79
## 24   37   76
## 25   29   82
## 26   71   90
## 27   39   87
## 28   23   82
## 29   21   77
## 30   37   72
## 31   20   65
## 32   12   73
## 33   13   76
## 34  135   84
## 35   49   85
## 36   32   81
## 37   64   83
## 38   40   83
## 39   77   88
## 40   97   92
## 41   97   92
## 42   85   89
## 43   10   73
## 44   27   81
## 45    7   80
## 46   48   81
## 47   35   82
## 48   61   84
## 49   79   87
## 50   63   85
## 51   16   74
## 52   80   86
## 53  108   85
## 54   20   82
## 55   52   86
## 56   82   88
## 57   50   86
## 58   64   83
## 59   59   81
## 60   39   81
## 61    9   81
## 62   16   82
## 63  122   89
## 64   89   90
## 65  110   90
## 66   44   86
## 67   28   82
## 68   65   80
## 69   22   77
## 70   59   79
## 71   23   76
## 72   31   78
## 73   44   78
## 74   21   77
## 75    9   72
## 76   45   79
## 77  168   81
## 78   73   86
## 79   76   97
## 80  118   94
## 81   84   96
## 82   85   94
## 83   96   91
## 84   78   92
## 85   73   93
## 86   91   93
## 87   47   87
## 88   32   84
## 89   20   80
## 90   23   78
## 91   21   75
## 92   24   73
## 93   44   81
## 94   21   76
## 95   28   77
## 96    9   71
## 97   13   71
## 98   46   78
## 99   18   67
## 100  13   76
## 101  24   68
## 102  16   82
## 103  13   64
## 104  23   71
## 105  36   81
## 106   7   69
## 107  14   63
## 108  30   70
## 109  14   75
## 110  18   76
## 111  20   68
summary(nycdata2)
##        O3             temp      
##  Min.   :  1.0   Min.   :57.00  
##  1st Qu.: 18.0   1st Qu.:71.00  
##  Median : 31.0   Median :79.00  
##  Mean   : 42.1   Mean   :77.79  
##  3rd Qu.: 62.0   3rd Qu.:84.50  
##  Max.   :168.0   Max.   :97.00
mean(nycdata2$O3)
## [1] 42.0991
median(nycdata2$O3)
## [1] 31
mean(nycdata2$temp)
## [1] 77.79279
median(nycdata2$temp)
## [1] 79
nycdata2$temp <- replace(nycdata2$temp,nycdata2$temp == 90, "Rename1")
nycdata2$temp <- replace(nycdata2$temp,nycdata2$temp == 73, "Rename2")
nycdata2$O3 <- replace(nycdata2$O3,nycdata2$O3 > 99, "Rename3")
nycdata2
##          O3    temp
## 1        41      67
## 2        36      72
## 3        12      74
## 4        18      62
## 5        23      65
## 6        19      59
## 7         8      61
## 8        16      69
## 9        11      66
## 10       14      68
## 11       18      58
## 12       14      64
## 13       34      66
## 14        6      57
## 15       30      68
## 16       11      62
## 17        1      59
## 18       11 Rename2
## 19        4      61
## 20       32      61
## 21       23      67
## 22       45      81
## 23  Rename3      79
## 24       37      76
## 25       29      82
## 26       71 Rename1
## 27       39      87
## 28       23      82
## 29       21      77
## 30       37      72
## 31       20      65
## 32       12 Rename2
## 33       13      76
## 34  Rename3      84
## 35       49      85
## 36       32      81
## 37       64      83
## 38       40      83
## 39       77      88
## 40       97      92
## 41       97      92
## 42       85      89
## 43       10 Rename2
## 44       27      81
## 45        7      80
## 46       48      81
## 47       35      82
## 48       61      84
## 49       79      87
## 50       63      85
## 51       16      74
## 52       80      86
## 53  Rename3      85
## 54       20      82
## 55       52      86
## 56       82      88
## 57       50      86
## 58       64      83
## 59       59      81
## 60       39      81
## 61        9      81
## 62       16      82
## 63  Rename3      89
## 64       89 Rename1
## 65  Rename3 Rename1
## 66       44      86
## 67       28      82
## 68       65      80
## 69       22      77
## 70       59      79
## 71       23      76
## 72       31      78
## 73       44      78
## 74       21      77
## 75        9      72
## 76       45      79
## 77  Rename3      81
## 78       73      86
## 79       76      97
## 80  Rename3      94
## 81       84      96
## 82       85      94
## 83       96      91
## 84       78      92
## 85       73      93
## 86       91      93
## 87       47      87
## 88       32      84
## 89       20      80
## 90       23      78
## 91       21      75
## 92       24 Rename2
## 93       44      81
## 94       21      76
## 95       28      77
## 96        9      71
## 97       13      71
## 98       46      78
## 99       18      67
## 100      13      76
## 101      24      68
## 102      16      82
## 103      13      64
## 104      23      71
## 105      36      81
## 106       7      69
## 107      14      63
## 108      30      70
## 109      14      75
## 110      18      76
## 111      20      68