rm(list=ls())
library(stargazer)
library(plyr)
library(lfe)
library(zoo)
library(scales)
library(rdrobust)
library(data.table)
library(ggplot2)
library(dplyr)
library(fst)
library(fixest)
zdata[,Selling_premium:=zdata$sales_price/zdata$adj_purch_price]
zdata[,Renter_fraction:=zdata$renters/zdata$totalpopulation]
zdata[,Purchase_price:=SalesPriceAmount_prev]
zdata[,Listing_price:=listing_amount]
zdata[,Selling_price:=sales_price]
zdata[,Listing_premium:=list_premium]
zdata[,Property_tax_last_year:=prop_tax_prev_year]
zdata[,Property_tax_rate_last_year:=prop_tax_rate]

zdata_reg <- zdata[PurchaseYear<2008 & ListingYear>2013 & house_age>0 ]
zdata_reg[,Time_on_market:=as.numeric(sale_date)-as.numeric(listed_date)+1]

zdata_reg[,zip_list_month:=paste(zip,ListingMonth)]
zdata_reg[,tract_list_month:=paste(GEOID,ListingMonth)]

zdata_reg[,zip3:=floor(zip/100)]
setorder(zdata_reg,listed_date)
zdata_reg[,predprice:= 0]

zd <- NULL

listmonths <- unique(zdata_reg$ListingMonth)

# pb <- txtProgressBar(min=1, max=length(listmonths), style=3)

for(i in 1:length(listmonths)) {
  
  # setTxtProgressBar(pb, i)
  
  temp <- CA_all[Sale_month < listmonths[i] & Sale_month> as.Date(paste0((year(listmonths[i])-1),"-",month(listmonths[i]),"-01")) & hpi_inflation>0 & sqft>0 & house_age>0 & !is.na(Purchase_price) & !is.na(hpi_inflation) & !is.na(beds) & !is.na(baths) & !is.na(sqft) & !is.na(house_age) & !is.na(yr) & !is.na(sales_price) & sales_price>0 & LotSizeSquareFeet>1000 & LotSizeSquareFeet<500000 &  sales_price<2000000 & sales_price>100000 &  adj_purch_price<2000000 & adj_purch_price>100000 & abs(sales_price-adj_purch_price) < 100000 ]
  
  temp[,adjbin:=ntile(adj_purch_price,3)]
  adjbinmaxmin <- temp[,.(minap=min(adj_purch_price),maxap=max(adj_purch_price)),by=adjbin]
  
  t <- zdata_reg[ListingMonth==listmonths[i]]
  t[,adjbin:=ifelse(adj_purch_price < adjbinmaxmin[adjbin==1]$maxap,1,
                  ifelse(adj_purch_price < adjbinmaxmin[adjbin==2]$maxap,2,3))]
                         # ifelse(adj_purch_price < adjbinmaxmin[adjbin==3]$maxap,3,
                         #        ifelse(adj_purch_price < adjbinmaxmin[adjbin==4]$maxap,4,5))))]
  
  if(nrow(temp)<30) {
    
    t[,predprice:=adj_purch_price]
    
  } else {
    
    hedonicmodel <- feols(data=temp,sales_price~adj_purch_price+(beds)*factor(adjbin)+(baths)*factor(adjbin)+log(sqft)*factor(adjbin)+log(house_age)*factor(adjbin)+log(LotSizeSquareFeet)*factor(adjbin)|zip3)
    t[,predprice:=(predict(hedonicmodel,newdata = t))]
    
  }
  
  zd <- rbind(zd,t)
}


zdata_reg <- zd
rm(zd)
# zdata_reg[,predprice:=adj_purch_price]#exp(predict(hedonicmodel,newdata = zd))]
# zdata_reg[,predprice:=(predict(hedonicmodel,newdata = zdata_reg))]#
# zdata_reg[,predprice:=exp(predict(hedonicmodel,newdata = zdata_reg))]#
zdata_reg[,nominalloss:=Purchase_price-predprice]
zdata_reg[,nominalloss:=ifelse(nominalloss<=0,1,nominalloss)]
zdata_reg[,lppp:=listing_amount/predprice]
zdata_reg[,sppp:=sales_price/predprice]

zdata_reg <- zdata_reg[abs(predprice-sales_price)<400000]

zdata_reg[,lp:=floor(listing_amount/1000)*1000]
temp <- zdata_reg[,.(predprice=mean(predprice,na.rm=T),adj_purc=mean(adj_purch_price,na.rm=T),.N),by=lp]

Figure 2

# ggplot(temp[N>10 & lp<500000],aes(x=lp,y=adj_purc))+geom_point()+geom_smooth(method="lm")+theme_minimal()+labs(x="Listing price",y="Adjusted purchase price")+ scale_x_continuous(labels = scales::comma)+ scale_y_continuous(labels = scales::comma)+labs(title="Adjusted purchase price")

ggplot(temp[N>10 & lp<1000000 & lp>=300000],aes(x=lp,y=predprice))+geom_point()+theme_minimal()+labs(x="Listing price  ($)",y="Predicted price ($)")+ scale_x_continuous(labels = scales::comma)+ scale_y_continuous(labels = scales::comma)#+labs(title="Predicted price")

ggplot(temp[N>10 & lp<1000000 & lp>=300000],aes(x=lp,y=adj_purc))+geom_point()+theme_minimal()+labs(x="Listing price  ($)",y="Adjusted purchase price ($)")+ scale_x_continuous(labels = scales::comma)+ scale_y_continuous(labels = scales::comma)#+labs(title="Predicted price")

Table 1

stargazer(zdata_reg[,c("Purchase_price","predprice","Listing_price","lppp","sppp","Property_tax_last_year","Property_tax_rate_last_year","purchase_hpi","hpi_inflation","ownership_years","beds","baths","sqft","LotSizeSquareFeet","house_age","LTV_prev","avg_school_rating","avg_school_distance","totalpopulation","medianage","medianhouseholdincome","Renter_fraction")],summary.stat = c("mean","sd","p25","median","p75","n"),digits = 4,
          covariate.labels =c("Purchased price ($)","Predicted price ($)","Listing price ($)","Listing price/Predicted price","Selling price/Predicted price","Effective tax rate","Property taxes paid ($)","HPI_{Purchase}","HPI_{List}/HPI_{Purchase}","Years of ownership","Number of bedrooms","Number of bathrooms","House area (sq. ft)","Lot area (sq. ft)","Age of the house (years)","Loan-to-value_{Purchase}","GreatSchools rating","Distance to schools (miles)","Census tract population","Census tract median age","Census tract median income","Census traction fraction of renters") ,type="text" ) #
## 
## ===========================================================================================================
## Statistic                               Mean       St. Dev.     Pctl(25)      Median      Pctl(75)     N   
## -----------------------------------------------------------------------------------------------------------
## Purchased price ()                  449,528.1000 354,288.2000   225,000      361,500      575,000    25,026
## Predicted price ()                  603,514.1000 430,144.7000 338,198.8000 489,983.0000 729,357.8000 25,026
## Listing price ()                    654,899.4000 459,747.0000 386,082.5000 550,837.5000 779,900.0000 25,026
## Listing price/Predicted price          1.1292       0.3546       0.9272       1.0321       1.1968    25,026
## Selling price/Predicted price          1.0962       0.3397       0.9041       1.0061       1.1593    25,026
## Effective tax rate                   5,643.8920   4,055.4290     3,117       4,710.0      7,001.1    25,026
## Property taxes paid ()                 0.0104       0.0037       0.0081       0.0099       0.0119    25,026
## HPIPurchase                         421,687.7000 246,589.6000   247,200      382,200      543,800    25,026
## HPIList/HPIPurchase                    1.4367       0.6136       0.9895       1.2437       1.7092    25,026
## Years of ownership                    12.5718       2.7665         11           12           14      25,026
## Number of bedrooms                     3.4188       0.8610         3            3            4       25,026
## Number of bathrooms                    2.4713       0.9838       2.0000       2.0000       3.0000    25,026
## House area (sq. ft)                  1,980.0340    817.6019      1,407        1,805        2,382     25,026
## Lot area (sq. ft)                   16,963.6400  93,945.1700     5,662        7,200        10,018    25,026
## Age of the house (years)              39.0676      22.7821         19           35           56      25,026
## Loan-to-valuePurchase                  0.6400       0.4096       0.3941       0.7841       0.8000    25,002
## GreatSchools rating                    6.8593       2.0251       5.3333       7.0000       8.6667    25,000
## Distance to schools (miles)            1.4142       1.1362       0.8000       1.1333       1.6667    25,007
## Census tract population              5,882.0820   2,931.9990   4,132.0000   5,377.0000   6,813.0000  25,021
## Census tract median age               40.0760       7.8132      34.6000      39.2000      44.4000    25,019
## Census tract median income          81,087.6000  30,982.7500  58,000.0000  76,263.0000  99,708.0000  25,018
## Census traction fraction of renters    0.3226       0.1708       0.1923       0.2937       0.4298    25,019
## -----------------------------------------------------------------------------------------------------------

Table 2

# stargazer(hedonicmodelfelm,no.space = T,align = T,omit.stat=c("ser","f", "rsq"),style = "qje",omit.table.layout = "n", dep.var.labels.include = FALSE,covariate.labels = c("log(Purchase price)","log(HPI inflation)","Number of bedrooms","Number of bathrooms","House area","log(Age of the house)","log(Lot area)"), add.lines = list(c("Year", "Yes")),type="text")#

Table 3

controls1 = "log(predprice)+beds+baths+sqft+avg_school_rating+avg_school_distance+walk_score+log(house_age)+log(LotSizeSquareFeet)+LTV_prev+medianage+log(medianhouseholdincome)+Renter_fraction|zip_list_month|"

controls2 = "log(predprice)+beds+baths+sqft+avg_school_rating+avg_school_distance+walk_score+log(house_age)+log(LotSizeSquareFeet)+LTV_prev+medianage+log(medianhouseholdincome)+Renter_fraction|tract_list_month|"


controls3 = "log(predprice)+beds+baths+sqft+avg_school_rating+avg_school_distance+walk_score+log(house_age)+log(LotSizeSquareFeet)+LTV_prev+medianage+log(medianhouseholdincome)+Renter_fraction+log(nominalloss)|tract_list_month|"

controls4 = "log(adj_purch_price)+beds+baths+sqft+avg_school_rating+avg_school_distance+walk_score+log(house_age)+log(LotSizeSquareFeet)+LTV_prev|zip_list_month|"


cluster = "|zip"
instruments = "ownership_years" #
endo_var = "Property_tax_rate_last_year"
regs <- list()
regs[[1]] <- felm(as.formula(paste("I(prop_tax_rate*100)~ownership_years+",controls1,"0",cluster,sep="")),data=zdata_reg)
regs[[2]] <- felm(as.formula(paste("I(prop_tax_rate*100)~ownership_years+",controls2,"0","|GEOID",sep="")),data=zdata_reg)

# .printtable(regs)

stargazer(regs,no.space = T,align = T,omit.stat=c("ser","f", "rsq"),style = "qje",omit.table.layout = "n", dep.var.labels.include = F,covariate.labels = c("Ownership years","log(Predicted price)","Number of bedrooms","Number of bathrooms","House area","GreatSchools rating","Distance to schools","Distance to amenities","log(Age of the house)","log(Lot area)","Loan-to-value_{Purchase}","Census tract median age","log(Census tract median income)","Census tract fraction of renters"),type="text")#
## 
## ====================================================
##                                     (1)       (2)   
## ----------------------------------------------------
## Ownership years                  -0.053*** -0.050***
##                                   (0.001)   (0.001) 
## log(Predicted price)             -0.757*** -0.817***
##                                   (0.017)   (0.023) 
## Number of bedrooms               0.015***   0.011*  
##                                   (0.004)   (0.007) 
## Number of bathrooms               0.006**    0.006  
##                                   (0.003)   (0.008) 
## House area                       0.0002*** 0.0002***
##                                  (0.00001) (0.00002)
## GreatSchools rating              0.014***    0.014  
##                                   (0.003)   (0.009) 
## Distance to schools                0.002    -0.001  
##                                   (0.004)   (0.011) 
## Distance to amenities            -0.0003** -0.001** 
##                                  (0.0001)  (0.0003) 
## log(Age of the house)            -0.084*** -0.109***
##                                   (0.008)   (0.012) 
## log(Lot area)                    0.036***  0.035*** 
##                                   (0.006)   (0.010) 
## Loan-to-valuePurchase            0.037***  0.032*** 
##                                   (0.007)   (0.010) 
## Census tract median age           0.002**           
##                                   (0.001)   (0.000) 
## log(Census tract median income)  0.119***           
##                                   (0.020)   (0.000) 
## Census tract fraction of renters  0.087**           
##                                   (0.035)   (0.000) 
## N                                 23,966    23,966  
## Adjusted R2                        0.648     0.680  
## ====================================================

Table 5

olsformula <- as.formula(paste("log(Listing_price)~Property_tax_rate_last_year+",controls1,"0",cluster,sep=""))
ivformula <- as.formula(paste("log(Listing_price)~",controls1,"(",endo_var,"~",instruments,")",cluster,sep=""))
ivformula_tract <-as.formula(paste("log(Listing_price)~",controls2,"(",endo_var,"~",instruments,")","|GEOID",sep="")) 
ivformula_tract_loss <-as.formula(paste("log(Listing_price)~",controls3,"(",endo_var,"~",instruments,")","|GEOID",sep=""))

regs <- list()

regs[[1]] <- felm(olsformula,data=zdata_reg)
regs[[2]] <- felm(ivformula,data=zdata_reg)
regs[[3]] <- felm(ivformula_tract,data=zdata_reg)
regs[[4]] <- felm(ivformula_tract_loss,data=zdata_reg)


stargazer(regs,no.space = T,align = T,omit.stat=c("ser","f", "rsq"),style = "qje",omit.table.layout = "n", dep.var.labels.include = FALSE,
          covariate.labels = c("Effective tax rate","log(Predicted price)","Number of bedrooms","Number of bathrooms","House area","GreatSchools rating","Distance to schools","Distance to amenities","log(Age of the house)","log(Lot area)","Loan-to-value_{Purchase}","Census tract median age","log(Census tract median income)","Census tract fraction of renters","log(Nominal loss)"),
          column.labels=c("OLS","IV"),column.separate=c(1,3),
          add.lines = list(c("zipmonth", "Yes", "Yes", "No","No"),
                           c("tractmonth", "Yes", "Yes", "No","No"),
                           c("Cond. F. Stat","",round(condfstat(regs[[2]])[[1]],2),round(condfstat(regs[[3]])[[1]],2),round(condfstat(regs[[4]])[[1]],2))),type="text")#
## 
## ============================================================================
##                                       OLS                   IV              
##                                       (1)        (2)        (3)       (4)   
## ----------------------------------------------------------------------------
## Effective tax rate                 15.997***                                
##                                     (0.825)                                 
## log(Predicted price)                0.366***   0.320***  0.314***  0.298*** 
##                                     (0.017)    (0.017)    (0.022)   (0.023) 
## Number of bedrooms                  0.009**    0.010**    0.009*    0.009*  
##                                     (0.004)    (0.004)    (0.005)   (0.005) 
## Number of bathrooms                  0.007      0.008     0.012*    0.012*  
##                                     (0.005)    (0.005)    (0.006)   (0.006) 
## House area                         0.0002***  0.0002***  0.0002*** 0.0002***
##                                    (0.00001)  (0.00001)  (0.00002) (0.00002)
## GreatSchools rating                 0.013***   0.014***   0.011*    0.011*  
##                                     (0.003)    (0.003)    (0.006)   (0.006) 
## Distance to schools                  -0.004     -0.004    -0.003    -0.003  
##                                     (0.003)    (0.003)    (0.005)   (0.005) 
## Distance to amenities              -0.0003*** -0.0003*** -0.001*** -0.001***
##                                     (0.0001)   (0.0001)  (0.0002)  (0.0002) 
## log(Age of the house)                -0.001     -0.008   -0.021**  -0.021** 
##                                     (0.005)    (0.005)    (0.008)   (0.008) 
## log(Lot area)                       0.060***   0.061***  0.056***  0.057*** 
##                                     (0.006)    (0.006)    (0.008)   (0.008) 
## Loan-to-valuePurchase                0.003      0.004     -0.001    -0.0004 
##                                     (0.003)    (0.003)    (0.005)   (0.005) 
## Census tract median age             0.003***   0.003***                     
##                                     (0.0005)   (0.0005)   (0.000)   (0.000) 
## log(Census tract median income)     0.076***   0.083***                     
##                                     (0.011)    (0.012)    (0.000)   (0.000) 
## Census tract fraction of renters    0.055***   0.059***                     
##                                     (0.020)    (0.020)    (0.000)   (0.000) 
## log(Nominal loss)                                                   0.001** 
##                                                                    (0.0005) 
## `Property_tax_rate_last_year(fit)`            10.680***  11.499*** 9.942*** 
##                                                (0.960)    (1.447)   (1.525) 
## zipmonth                              Yes        Yes        No        No    
## tractmonth                            Yes        Yes        No        No    
## Cond. F. Stat                                   217.57    115.17     94.83  
## N                                    23,966     23,966    23,966    23,966  
## Adjusted R2                          0.947      0.947      0.953     0.953  
## ============================================================================

Table 6

zhvi <- readRDS("C:/Users/dratnadiwakara2/Documents/OneDrive - Louisiana State University/Raw Data/Zillow Research Data/Zip_Zhvi_SingleFamilyResidence.rds")
zhvi <- data.table(zhvi)
zhvi <- zhvi[state=="CA"]

zhvi <- zhvi[month %in% as.Date(c("2006-01-01","2014-01-01"))]
zhvi <- zhvi[,c("zipcode","month","zhvi")]

zhvi <- dcast(zhvi,zipcode~month,value.var = "zhvi")
names(zhvi) <- c("zipcode","val2006","val2014")

zhvi <- zhvi[complete.cases(zhvi),]
zhvi <- data.table(zhvi)
zhvi[,pricechange:=log(val2014/val2006)]

hist <- ggplot()+geom_histogram(data=zhvi,aes(x=pricechange),fill="dodgerblue4",color="dodgerblue4",alpha=0.75)+labs(x="Price Change 2006 to 2014",y="Number of Zipcodes")+ theme_minimal()+scale_y_continuous(labels = comma)

zhvi[,pricechangeqt:=ntile(pricechange,16)]
zhvi <- zhvi[,c("zipcode","pricechange","pricechangeqt")]
zhvi[,zipcode:=as.numeric(zipcode)]

zdata_reg <- merge(zdata_reg, zhvi, by.x="zip",by.y="zipcode",all.x=T)

# print(hist)
regs <- list()
regs[[1]] <- felm(olsformula,data=zdata_reg[nominalloss>1])
regs[[2]] <- felm(olsformula,data=zdata_reg[nominalloss<=1])
regs[[3]] <- felm(olsformula,data=zdata_reg[pricechangeqt<=4])
regs[[4]] <- felm(olsformula,data=zdata_reg[pricechangeqt %in% 5:16])
regs[[5]] <- felm(ivformula,data=zdata_reg[pricechangeqt<=4])
regs[[6]] <- felm(ivformula,data=zdata_reg[pricechangeqt  %in% 5:16])


stargazer(regs,no.space = T,align = T,omit.stat=c("ser","f", "rsq"),style = "qje",omit.table.layout = "n", dep.var.labels.include = FALSE,
          covariate.labels = c("Effective tax rate","log(Predicted price)"),
          column.labels=c("OLS","IV"),column.separate=c(4,2),
          add.lines = list(c("Controls", "Yes", "Yes", "Yes","Yes","Yes","Yes"),c("zipmonth", "Yes", "Yes", "Yes","Yes","Yes","Yes"),c("Cond. F. Stat","","","","",round(condfstat(regs[[5]])[[1]],2),round(condfstat(regs[[6]])[[1]],2))),
          keep=c("Property_tax_rate_last_year","predprice"),type="text")#
## 
## =============================================================================================
##                                                      OLS                           IV        
##                                       (1)       (2)       (3)       (4)       (5)      (6)   
## ---------------------------------------------------------------------------------------------
## Effective tax rate                 21.626*** 15.654*** 15.370*** 16.180***                   
##                                     (2.589)   (0.885)   (2.025)   (0.882)                    
## log(Predicted price)               0.632***  0.338***  0.462***  0.353***  0.469***  0.302***
##                                     (0.049)   (0.017)   (0.049)   (0.017)   (0.075)  (0.017) 
## `Property_tax_rate_last_year(fit)`                                         15.873*** 9.944***
##                                                                             (4.022)  (0.980) 
## Controls                              Yes       Yes       Yes       Yes       Yes      Yes   
## zipmonth                              Yes       Yes       Yes       Yes       Yes      Yes   
## Cond. F. Stat                                                                10.73    222.29 
## N                                    4,598    19,368     3,776    20,170     3,776    20,170 
## Adjusted R2                          0.944     0.951     0.861     0.934     0.861    0.933  
## =============================================================================================

Table 7

regs <- list()
regs[[1]] <- felm(ivformula,data=zdata_reg[Listing_price<listing_q2])
regs[[2]] <- felm(ivformula,data=zdata_reg[Listing_price>listing_q2])

    CA <- read_fst("C:/Users/dratnadiwakara2/Documents/OneDrive - Louisiana State University/Projects/Sunk Cost/Processed Data/all_homes_prev/CA_all_homes_prev.fst",columns = c("BuildingAreaSqFt","zip","Bedrooms"),as.data.table = T)
    CA_summary <- CA[,.(
      sqft_lb=quantile(BuildingAreaSqFt,0.25, na.rm=T),
      sqft_hb=quantile(BuildingAreaSqFt,0.75, na.rm=T)),
      by=zip]
    temp <- CA[,.(
      beds_lb=quantile(Bedrooms,0.25, na.rm=T),
      beds_hb=floor(quantile(Bedrooms,0.75, na.rm=T)+0.99)),
      by=zip]
    CA_summary <- merge(CA_summary,temp,by="zip")
    
    
zdata_reg <- merge(zdata_reg,CA_summary,by="zip",all.x=T)
zdata_reg[,outlider_sqft:=ifelse(sqft>sqft_hb ,1,0)]
zdata_reg[,outlider_beds:=ifelse(beds>beds_hb,1,0)]

regs[[3]] <- felm(ivformula,data=zdata_reg[outlider_sqft==0 & outlider_beds==0])
regs[[4]] <- felm(ivformula,data=zdata_reg[outlider_sqft==1 | outlider_beds==1])

    redfin <- read.csv("C:/Users/dratnadiwakara2/Documents/Research/UH computer27/sunkcost_2019/home_sales_redfin.csv")
    redfin$month <- as.Date(redfin$month,origin="1900-01-01")
    redfin <- data.table(redfin)
    redfin <- redfin[redfin$month<="2016-01-01"]
    redfin <- redfin[,.(median_home_sales=median(home_sales)),by=list(zip)]
    redfin[,low_activiy:=ifelse(redfin$median_home_sales<quantile(redfin$median_home_sales,0.75),1,0)]
    
    names(redfin) <- c("zip","median_home_sales_2","low_activity_2")
    
    zdata_reg <- merge(zdata_reg,redfin,by="zip",all.x=TRUE)


regs[[5]] <- felm(ivformula,data=zdata_reg[low_activiy==1])
regs[[6]] <- felm(ivformula,data=zdata_reg[low_activiy==0])




  temp <- zdata_reg[!duplicated(zdata_reg$GEOID)]
  median_age <- median(temp$medianage,na.rm = TRUE)

regs[[7]] <- felm(ivformula,data=zdata_reg[medianage<=median_age])
regs[[8]] <- felm(ivformula,data=zdata_reg[medianage>median_age])

  medincome <- median(temp$medianhouseholdincome,na.rm = TRUE)

regs[[9]] <- felm(ivformula,data=zdata_reg[medianhouseholdincome<=medincome])
regs[[10]] <- felm(ivformula,data=zdata_reg[medianhouseholdincome>medincome])

  median_renterfrac <- median(temp$Renter_fraction,na.rm = TRUE)

regs[[11]] <- felm(ivformula,data=zdata_reg[Renter_fraction<=median_renterfrac])
regs[[12]] <- felm(ivformula,data=zdata_reg[Renter_fraction>median_renterfrac])

stargazer(regs,no.space = T,align = T,omit.stat=c("ser","f", "rsq"),style = "qje",omit.table.layout = "n", dep.var.labels.include = FALSE,
          covariate.labels = c("Effective tax rate"),
          column.labels=c("L Pr.","H Pr","L Sz","H Sz","L Act","H Act","L Ag","H Ag","L Inc","H Inc","L Ren","H Ren"),
          add.lines = list(
            c("Controls", rep("Yes",12)),
            c("zipmonth", rep("Yes",12)),
            c("Cond. F. Stat",round(c(condfstat(regs[[1]])[[1]],condfstat(regs[[2]])[[1]],condfstat(regs[[3]])[[1]],condfstat(regs[[4]])[[1]],condfstat(regs[[5]])[[1]],condfstat(regs[[6]])[[1]],condfstat(regs[[7]])[[1]],condfstat(regs[[8]])[[1]],condfstat(regs[[9]])[[1]],condfstat(regs[[10]])[[1]],condfstat(regs[[11]])[[1]],condfstat(regs[[12]])[[1]]),2))),
          keep=c("Property_tax_rate_last_year"), flip=T,
          type="text")#
## 
## ====================================================================================================================================
##                     L Pr.     H Pr      L Sz     H Sz      L Act    H Act     L Ag     H Ag      L Inc    H Inc    L Ren     H Ren  
##                      (1)       (2)      (3)       (4)       (5)      (6)      (7)       (8)       (9)      (10)     (11)     (12)   
## ------------------------------------------------------------------------------------------------------------------------------------
## Effective tax rate 4.350*** 13.203*** 8.302*** 16.169*** 10.839*** 9.778*** 6.247*** 12.880*** 16.183*** 8.641*** 9.966*** 13.141***
##                    (1.063)   (1.470)  (1.075)   (2.094)   (1.485)  (1.251)  (1.478)   (1.313)   (1.998)  (1.030)  (1.269)   (1.589) 
## Controls             Yes       Yes      Yes       Yes       Yes      Yes      Yes       Yes       Yes      Yes      Yes       Yes   
## zipmonth             Yes       Yes      Yes       Yes       Yes      Yes      Yes       Yes       Yes      Yes      Yes       Yes   
## Cond. F. Stat       118.11    89.79    159.48    71.65    107.39    131.47   57.36    152.94     43.24    200.69   135.55    71.05  
## N                   12,297   11,556    15,556    8,410    10,351    12,347   9,336    14,630     8,464    15,502   15,420    8,546  
## Adjusted R2         0.959     0.958    0.945     0.949     0.940    0.943    0.941     0.943     0.922    0.941    0.949     0.941  
## ====================================================================================================================================

Table 8 (Panel A)

regs <- list()
regs[[1]] <- felm(as.formula(paste("log(sales_price)~Property_tax_rate_last_year+",controls1,"0",cluster,sep="")),data=zdata_reg)
regs[[2]] <- felm(as.formula(paste("log(sales_price)~",controls1,"(",endo_var,"~",instruments,")",cluster,sep="")),data=zdata_reg)
regs[[3]] <- felm(as.formula(paste("log(Time_on_market)~Property_tax_rate_last_year+",controls1,"0",cluster,sep="")),data=zdata_reg)
regs[[4]] <- felm(as.formula(paste("log(Time_on_market)~",controls1,"(",endo_var,"~",instruments,")",cluster,sep="")),data=zdata_reg)


stargazer(regs,no.space = T,align = T,omit.stat=c("ser","f", "rsq"),style = "qje",omit.table.layout = "n", dep.var.labels.include = FALSE,
          covariate.labels = c("Effective tax rate","log(Predicted price)"),
          column.labels=c("log(Sales price)","log(Days on market)"),column.separate=c(2,2),
          add.lines = list(c("Controls", "Yes", "Yes", "Yes","Yes","Yes","Yes"),c("zipmonth", "Yes", "Yes", "Yes","Yes","Yes","Yes"),c("Cond. F. Stat","",round(condfstat(regs[[2]])[[1]],2),"",round(condfstat(regs[[4]])[[1]],2))),
          keep=c("Property_tax_rate_last_year","predprice"),          type="text")# 
## 
## =========================================================================
##                                      log(Sales price)   log(Days on market)
##                                       (1)       (2)        (3)      (4)  
## -------------------------------------------------------------------------
## Effective tax rate                 16.208***             -1.495          
##                                     (0.834)              (1.764)         
## log(Predicted price)               0.367***   0.321***  -0.062**   0.003 
##                                     (0.017)   (0.017)    (0.025)  (0.034)
## `Property_tax_rate_last_year(fit)`           10.863***            6.060* 
##                                               (1.037)             (3.171)
## Controls                              Yes       Yes        Yes      Yes  
## zipmonth                              Yes       Yes        Yes      Yes  
## Cond. F. Stat                                  217.57             217.57 
## N                                   23,966     23,966    23,966   23,966 
## Adjusted R2                          0.923     0.922      0.342    0.341 
## =========================================================================
temp <- zdata_reg

temp[,purch_month_no:=as.numeric(format(temp$PurchaseMonth,"%m"))]
temp[,sale_month_no:=as.numeric(format(temp$sale_date,"%m"))]


temp <- temp[!is.na(temp$predprice) & !is.na(temp$GEOID)]
temp[,zip_purch_list:=paste(temp$zip,temp$purchase_list_year)]

adj_proptax <- felm(Property_tax_rate_last_year~log(predprice)|zip_purch_list,data=temp)
adj_proptax_resid <- data.frame(adj_proptax$residuals)
names(adj_proptax_resid) <- c("adj_proptax_resid")

adj_list <- felm(log(Listing_price)~log(predprice)|zip_purch_list,data=temp)
adj_list_resid <- data.frame(adj_list$residuals)
names(adj_list_resid) <- c("adj_list_resid")

adj_sale <- felm(log(Selling_price)~log(predprice)|zip_purch_list,data=temp)
adj_sale_resid <- data.frame(adj_sale$residuals)
names(adj_sale_resid) <- c("adj_sale_resid")

adj_purch <- felm(log(Purchase_price)~0|zip_purch_list,data=temp)
adj_purch_resid <- data.frame(adj_purch$residuals)
names(adj_purch_resid) <- c("adj_purch_resid")


temp <- cbind(temp,adj_proptax_resid)
temp <- cbind(temp,adj_list_resid)
temp <- cbind(temp,adj_sale_resid)
temp <- cbind(temp,adj_purch_resid)

temp[,DocumentDate_prev:=as.Date(temp$DocumentDate_prev,origin = "1970-01-01")]

temp[,purch_week:=as.numeric(strftime(temp$DocumentDate_prev,format="%V"))-20]
temp[,postJune:=ifelse(purch_week>-2,1,0)]
temp[,zip_purch_year:=paste(zip,PurchaseYear)]

Table 9

dscregs <- list()
dscregs[[1]] <- felm(log(Purchase_price)~postJune+purch_week|zip_purch_year|0|zip,data=temp)
dscregs[[2]] <- felm(beds~postJune+purch_week|zip_purch_year|0|zip,data=temp)
dscregs[[3]] <- felm(baths~postJune+purch_week|zip_purch_year|0|zip,data=temp)
dscregs[[4]] <- felm(log(sqft)~postJune+purch_week|zip_purch_year|0|zip,data=temp)
dscregs[[5]] <- felm(log(house_age)~postJune+purch_week|zip_purch_year|0|zip,data=temp)
# dscregs[[6]] <- felm(log(0.0001+LTV_prev)~postJune|zip_purch_year|0|zip,data=temp)


stargazer(dscregs,no.space = T,align = T,omit.stat=c("ser","f", "rsq"),style = "qje",omit.table.layout = "n", dep.var.labels.include = F,
          covariate.labels = c("Purchased after June 01"),
          add.lines = list(c("zippurchmonth", "Yes", "Yes", "Yes","Yes","Yes","Yes")),
          column.labels=c("log(Purchase price)","No beds","No baths","log(House area)","log(Age of house)","log(Loan-to-value)"),type = "text")
## 
## ===============================================================================================
##                         log(Purchase price) No beds  No baths log(House area) log(Age of house)
##                                 (1)           (2)      (3)          (4)              (5)       
## -----------------------------------------------------------------------------------------------
## Purchased after June 01      0.037***       -0.042** -0.034*     -0.025**          0.023*      
##                               (0.010)       (0.019)  (0.020)      (0.010)          (0.013)     
## purch_week                    0.0004         0.001   -0.00001     0.0003           -0.001      
##                              (0.0003)       (0.001)  (0.001)     (0.0004)         (0.0004)     
## zippurchmonth                   Yes           Yes      Yes          Yes              Yes       
## N                             25,021         25,021   25,021      25,021           25,021      
## Adjusted R2                    0.645         0.173    0.145        0.182            0.485      
## ===============================================================================================
          # keep=c("Property_tax_rate_last_year","predprice"),
          # type="text")#

Table 10 (Panel A)

regs = list()
regs[[1]] = felm(Property_tax_rate_last_year~postJune+purch_week+log(predprice)+beds+baths+sqft+avg_school_rating+avg_school_distance+walk_score+log(house_age)+log(LotSizeSquareFeet)+LTV_prev+medianage+log(medianhouseholdincome)+Renter_fraction|zip_purch_list|0|zip,data=temp)
regs[[2]] = felm(log(Listing_price)~postJune+purch_week+log(predprice)+beds+baths+sqft+avg_school_rating+avg_school_distance+walk_score+log(house_age)+log(LotSizeSquareFeet)+LTV_prev+medianage+log(medianhouseholdincome)+Renter_fraction|zip_purch_list|0|zip,data=temp)
regs[[3]] = felm(log(Selling_price)~postJune+purch_week+log(predprice)+beds+baths+sqft+avg_school_rating+avg_school_distance+walk_score+log(house_age)+log(LotSizeSquareFeet)+LTV_prev+medianage+log(medianhouseholdincome)+Renter_fraction|zip_purch_list|0|zip,data=temp)


stargazer(regs,no.space = T,align = T,omit.stat=c("ser","f", "rsq"),style = "qje",omit.table.layout = "n", dep.var.labels.include = FALSE,
          covariate.labels = c("Purchased after June 01","Week of purchase","log(Predicted price)"),
          column.labels=c("Effective tax rate","log(Listing price)","log(Selling price)"),
          add.lines = list(c("Controls", "Yes", "Yes", "Yes","Yes","Yes","Yes"),c("zippurchmonth", "Yes", "Yes", "Yes","Yes","Yes","Yes")),
          keep=c("postJune","predprice","purch_week"),type="text")#
## 
## ================================================================================
##                         Effective tax rate log(Listing price) log(Selling price)
##                                (1)                (2)                (3)        
## --------------------------------------------------------------------------------
## Purchased after June 01     -0.0002***         -0.012***           -0.011**     
##                              (0.0001)           (0.004)            (0.005)      
## Week of purchase            0.00001***         0.0004***           0.0004**     
##                             (0.00000)           (0.0001)           (0.0002)     
## log(Predicted price)        -0.007***           0.249***           0.256***     
##                              (0.0002)           (0.014)            (0.014)      
## Controls                       Yes                Yes                Yes        
## zippurchmonth                  Yes                Yes                Yes        
## N                             23,966             23,966             23,966      
## Adjusted R2                   0.670              0.942              0.936       
## ================================================================================

Table 10 (Panel B)

regs = list()
regs[[1]] = felm(Property_tax_rate_last_year~postJune+purch_week+I(purch_week^2)+log(predprice)+beds+baths+sqft+avg_school_rating+avg_school_distance+walk_score+log(house_age)+log(LotSizeSquareFeet)+LTV_prev+medianage+log(medianhouseholdincome)+Renter_fraction|zip_purch_list|0|zip,data=temp)
regs[[2]] = felm(log(Listing_price)~postJune+purch_week+I(purch_week^2)+log(predprice)+beds+baths+sqft+avg_school_rating+avg_school_distance+walk_score+log(house_age)+log(LotSizeSquareFeet)+LTV_prev+medianage+log(medianhouseholdincome)+Renter_fraction|zip_purch_list|0|zip,data=temp)
regs[[3]] = felm(log(Selling_price)~postJune+purch_week+I(purch_week^2)+log(predprice)+beds+baths+sqft+avg_school_rating+avg_school_distance+walk_score+log(house_age)+log(LotSizeSquareFeet)+LTV_prev+medianage+log(medianhouseholdincome)+Renter_fraction|zip_purch_list|0|zip,data=temp)

stargazer(regs,no.space = T,align = T,omit.stat=c("ser","f", "rsq"),style = "qje",omit.table.layout = "n", dep.var.labels.include = FALSE,
          covariate.labels = c("Purchased after June 01","Week of purchase","Week of purchase^{2}","log(Predicted price)"),
          column.labels=c("Effective tax rate","log(Listing price)","log(Selling price)"),
          add.lines = list(c("Controls", "Yes", "Yes", "Yes","Yes","Yes","Yes"),c("zippurchmonth", "Yes", "Yes", "Yes","Yes","Yes","Yes")),
          keep=c("postJune","predprice","purch_week"),type="text")#,    type="text"
## 
## ================================================================================
##                         Effective tax rate log(Listing price) log(Selling price)
##                                (1)                (2)                (3)        
## --------------------------------------------------------------------------------
## Purchased after June 01     -0.0002***          -0.011**           -0.010*      
##                              (0.0001)           (0.005)            (0.006)      
## Week of purchase            0.00002***           0.0004             0.0003      
##                             (0.00000)           (0.0002)           (0.0002)     
## Week of purchase2            -0.00000           0.00000            0.00000      
##                             (0.00000)          (0.00001)          (0.00001)     
## log(Predicted price)        -0.007***           0.249***           0.256***     
##                              (0.0002)           (0.014)            (0.014)      
## Controls                       Yes                Yes                Yes        
## zippurchmonth                  Yes                Yes                Yes        
## N                             23,966             23,966             23,966      
## Adjusted R2                   0.670              0.942              0.936       
## ================================================================================

Table 10 (Panel C)

Local linear running variable (3-months)

regs = list()
regs[[1]] = felm(Property_tax_rate_last_year~postJune+purch_week+log(predprice)+beds+baths+sqft+avg_school_rating+avg_school_distance+walk_score+log(house_age)+log(LotSizeSquareFeet)+LTV_prev+medianage+log(medianhouseholdincome)+Renter_fraction|zip_purch_list|0|zip,data=temp[abs(purch_week)<=12])
regs[[2]] = felm(log(Listing_price)~postJune+purch_week+log(predprice)+beds+baths+sqft+avg_school_rating+avg_school_distance+walk_score+log(house_age)+log(LotSizeSquareFeet)+LTV_prev+medianage+log(medianhouseholdincome)+Renter_fraction|zip_purch_list|0|zip,data=temp[abs(purch_week)<=12])
regs[[3]] = felm(log(Selling_price)~postJune+purch_week+log(predprice)+beds+baths+sqft+avg_school_rating+avg_school_distance+walk_score+log(house_age)+log(LotSizeSquareFeet)+LTV_prev+medianage+log(medianhouseholdincome)+Renter_fraction|zip_purch_list|0|zip,data=temp[abs(purch_week)<=12])


stargazer(regs,no.space = T,align = T,omit.stat=c("ser","f", "rsq"),style = "qje",omit.table.layout = "n", dep.var.labels.include = FALSE,
          covariate.labels = c("Purchased after June 01","Week of purchase","log(Predicted price)"),
          column.labels=c("Effective tax rate","log(Listing price)","log(Selling price)"),
          add.lines = list(c("Controls", "Yes", "Yes", "Yes","Yes","Yes","Yes"),c("zippurchmonth", "Yes", "Yes", "Yes","Yes","Yes","Yes")),
          keep=c("postJune","predprice","purch_week"),type="text")#,type="text"
## 
## ================================================================================
##                         Effective tax rate log(Listing price) log(Selling price)
##                                (1)                (2)                (3)        
## --------------------------------------------------------------------------------
## Purchased after June 01     -0.0002**            -0.009            -0.013*      
##                              (0.0001)           (0.007)            (0.007)      
## Week of purchase            0.00002**            0.0002             0.0004      
##                             (0.00001)           (0.001)            (0.001)      
## log(Predicted price)        -0.007***           0.233***           0.241***     
##                              (0.0002)           (0.014)            (0.016)      
## Controls                       Yes                Yes                Yes        
## zippurchmonth                  Yes                Yes                Yes        
## N                             12,662             12,662             12,662      
## Adjusted R2                   0.675              0.942              0.940       
## ================================================================================