# 讀入資料檔並將變數名稱字串轉為變數標籤
library(readr)
x1351 <- read_csv("x1351.csv")
##
## -- Column specification --------------------------------------------------------
## cols(
## .default = col_double(),
## Residence = col_character(),
## Job = col_character(),
## `(非必填。如果有其它想法,歡迎填寫在下方框框裡噢!)` = col_character(),
## `(非必填。如果有其它想法,歡迎填寫在下方框框裡噢!)_1` = col_character(),
## `(非必填。如果有其它想法,歡迎填寫在下方框框裡噢!)_2` = col_character(),
## `(非必填。如果有其它想法,歡迎填寫在下方框框裡噢!)_3` = col_character(),
## `(非必填。如果有其它想法,歡迎填寫在下方框框裡噢!)_4` = col_character()
## )
## i Use `spec()` for the full column specifications.
View(x1351)
nrow(x1351)
## [1] 1043
ncol(x1351)
## [1] 41
# 取出變數名稱當作變數標籤
varlabels <- colnames(x1351)
# 拿掉標籤之後的變數名稱重新命名為V1, V2, ...至v41
colnames(x1351)[1:41] <- paste("v", 1:41, sep="")
# 為變數名稱裝上標籤
sjlabelled::set_label(x1351) <- varlabels
# 批次處理無效值
x1351 <- sjmisc::set_na(x1351, na= "NA")
# 列出每個變數的標籤
library(sjmisc)
library(sjPlot)
names(x1351)
## [1] "v1" "v2" "v3" "v4" "v5" "v6" "v7" "v8" "v9" "v10" "v11" "v12"
## [13] "v13" "v14" "v15" "v16" "v17" "v18" "v19" "v20" "v21" "v22" "v23" "v24"
## [25] "v25" "v26" "v27" "v28" "v29" "v30" "v31" "v32" "v33" "v34" "v35" "v36"
## [37] "v37" "v38" "v39" "v40" "v41"
## 變數1
# (v7)想像有一個大型社會案件,對於這件事的對錯,「有沒有人在情感上受到傷害」,與你的判斷有多相關?
# (1)毫不相關 (2)不太相關 (3)只有一點相關 (4)一定程度相關 (5)特別相關 (6)絕對相關
table(x1351$v7)
##
## 1 2 3 4 5 6
## 57 142 251 517 46 30
x1351$v7r <- rec(x1351$v7, rec = "1=0; 2:3=1; 4:6=2", as.num = F)
frq(x1351$v7)
##
## 對於這件事的對錯,「有沒有人在情感上受到傷害」,與你的判斷有多相關? (x) <numeric>
## # total N=1043 valid N=1043 mean=3.42 sd=1.05
##
## Value | N | Raw % | Valid % | Cum. %
## --------------------------------------
## 1 | 57 | 5.47 | 5.47 | 5.47
## 2 | 142 | 13.61 | 13.61 | 19.08
## 3 | 251 | 24.07 | 24.07 | 43.14
## 4 | 517 | 49.57 | 49.57 | 92.71
## 5 | 46 | 4.41 | 4.41 | 97.12
## 6 | 30 | 2.88 | 2.88 | 100.00
## <NA> | 0 | 0.00 | <NA> | <NA>
frq(x1351$v7r)
##
## 對於這件事的對錯,「有沒有人在情感上受到傷害」,與你的判斷有多相關? (x) <categorical>
## # total N=1043 valid N=1043 mean=1.51 sd=0.60
##
## Value | N | Raw % | Valid % | Cum. %
## --------------------------------------
## 0 | 57 | 5.47 | 5.47 | 5.47
## 1 | 393 | 37.68 | 37.68 | 43.14
## 2 | 593 | 56.86 | 56.86 | 100.00
## <NA> | 0 | 0.00 | <NA> | <NA>
plot_frq(x1351$v7r)
## 變數2
# (v8)那麼,「有沒有人受到差別待遇」與你判斷此事的對錯,有多相關呢?
# (1)毫不相關 (2)不太相關 (3)只有一點相關 (4)一定程度相關 (5)特別相關 (6)絕對相關
table(x1351$v8)
##
## 1 2 3 4 5 6
## 33 87 193 550 124 56
x1351$v8r <- rec(x1351$v8, rec = "1=0; 2:3=1; 4:6=2", as.num = F)
frq(x1351$v8)
##
## 那麼,「有沒有人受到差別待遇」與你判斷此事的對錯,有多相關呢? (x) <numeric>
## # total N=1043 valid N=1043 mean=3.78 sd=1.04
##
## Value | N | Raw % | Valid % | Cum. %
## --------------------------------------
## 1 | 33 | 3.16 | 3.16 | 3.16
## 2 | 87 | 8.34 | 8.34 | 11.51
## 3 | 193 | 18.50 | 18.50 | 30.01
## 4 | 550 | 52.73 | 52.73 | 82.74
## 5 | 124 | 11.89 | 11.89 | 94.63
## 6 | 56 | 5.37 | 5.37 | 100.00
## <NA> | 0 | 0.00 | <NA> | <NA>
frq(x1351$v8r)
##
## 那麼,「有沒有人受到差別待遇」與你判斷此事的對錯,有多相關呢? (x) <categorical>
## # total N=1043 valid N=1043 mean=1.67 sd=0.53
##
## Value | N | Raw % | Valid % | Cum. %
## --------------------------------------
## 0 | 33 | 3.16 | 3.16 | 3.16
## 1 | 280 | 26.85 | 26.85 | 30.01
## 2 | 730 | 69.99 | 69.99 | 100.00
## <NA> | 0 | 0.00 | <NA> | <NA>
plot_frq(x1351$v8r)
## 變數3
# (v9)他「在行為上有沒有展現愛國心」,與你判斷這件事的對錯,有多相關?
# (1)毫不相關 (2)不太相關 (3)只有一點相關 (4)一定程度相關 (5)特別相關 (6)絕對相關
table(x1351$v9)
##
## 1 2 3 4 5 6
## 146 320 303 233 24 17
x1351$v9r <- rec(x1351$v9, rec = "1=0; 2:3=1; 4:6=2", as.num = F)
frq(x1351$v9)
##
## 他「在行為上有沒有展現愛國心」,與你判斷這件事的對錯,有多相關? (x) <numeric>
## # total N=1043 valid N=1043 mean=2.73 sd=1.12
##
## Value | N | Raw % | Valid % | Cum. %
## --------------------------------------
## 1 | 146 | 14.00 | 14.00 | 14.00
## 2 | 320 | 30.68 | 30.68 | 44.68
## 3 | 303 | 29.05 | 29.05 | 73.73
## 4 | 233 | 22.34 | 22.34 | 96.07
## 5 | 24 | 2.30 | 2.30 | 98.37
## 6 | 17 | 1.63 | 1.63 | 100.00
## <NA> | 0 | 0.00 | <NA> | <NA>
frq(x1351$v9r)
##
## 他「在行為上有沒有展現愛國心」,與你判斷這件事的對錯,有多相關? (x) <categorical>
## # total N=1043 valid N=1043 mean=1.12 sd=0.62
##
## Value | N | Raw % | Valid % | Cum. %
## --------------------------------------
## 0 | 146 | 14.00 | 14.00 | 14.00
## 1 | 623 | 59.73 | 59.73 | 73.73
## 2 | 274 | 26.27 | 26.27 | 100.00
## <NA> | 0 | 0.00 | <NA> | <NA>
plot_frq(x1351$v9r)
## 變數4
# (v10)那對於這件事的對錯,他「有沒有不尊重權威」,與你的判斷有多相關?
# (1)毫不相關 (2)不太相關 (3)只有一點相關 (4)一定程度相關 (5)特別相關 (6)絕對相關
table(x1351$v10)
##
## 1 2 3 4 5 6
## 127 307 308 260 21 20
x1351$v10r <- rec(x1351$v10, rec = "1=0; 2:3=1; 4:6=2", as.num = F)
frq(x1351$v10)
##
## 那對於這件事的對錯,他「有沒有不尊重權威」,與你的判斷有多相關? (x) <numeric>
## # total N=1043 valid N=1043 mean=2.81 sd=1.12
##
## Value | N | Raw % | Valid % | Cum. %
## --------------------------------------
## 1 | 127 | 12.18 | 12.18 | 12.18
## 2 | 307 | 29.43 | 29.43 | 41.61
## 3 | 308 | 29.53 | 29.53 | 71.14
## 4 | 260 | 24.93 | 24.93 | 96.07
## 5 | 21 | 2.01 | 2.01 | 98.08
## 6 | 20 | 1.92 | 1.92 | 100.00
## <NA> | 0 | 0.00 | <NA> | <NA>
frq(x1351$v10r)
##
## 那對於這件事的對錯,他「有沒有不尊重權威」,與你的判斷有多相關? (x) <categorical>
## # total N=1043 valid N=1043 mean=1.17 sd=0.62
##
## Value | N | Raw % | Valid % | Cum. %
## --------------------------------------
## 0 | 127 | 12.18 | 12.18 | 12.18
## 1 | 615 | 58.96 | 58.96 | 71.14
## 2 | 301 | 28.86 | 28.86 | 100.00
## <NA> | 0 | 0.00 | <NA> | <NA>
plot_frq(x1351$v10r)
## 變數5
# (v11)那麼,就他「有沒有做出不聖潔、或違反善良風俗的事」呢?對你的判斷有多相關?
# (1)毫不相關 (2)不太相關 (3)只有一點相關 (4)一定程度相關 (5)特別相關 (6)絕對相關
table(x1351$v11)
##
## 1 2 3 4 5 6
## 55 118 272 443 104 51
x1351$v11r <- rec(x1351$v11, rec = "1=0; 2:3=1; 4:6=2", as.num = F)
frq(x1351$v11)
##
## 那麼,就他「有沒有做出不聖潔、或違反善良風俗的事」呢?對你的判斷有多相關? (x) <numeric>
## # total N=1043 valid N=1043 mean=3.55 sd=1.13
##
## Value | N | Raw % | Valid % | Cum. %
## --------------------------------------
## 1 | 55 | 5.27 | 5.27 | 5.27
## 2 | 118 | 11.31 | 11.31 | 16.59
## 3 | 272 | 26.08 | 26.08 | 42.67
## 4 | 443 | 42.47 | 42.47 | 85.14
## 5 | 104 | 9.97 | 9.97 | 95.11
## 6 | 51 | 4.89 | 4.89 | 100.00
## <NA> | 0 | 0.00 | <NA> | <NA>
frq(x1351$v11r)
##
## 那麼,就他「有沒有做出不聖潔、或違反善良風俗的事」呢?對你的判斷有多相關? (x) <categorical>
## # total N=1043 valid N=1043 mean=1.52 sd=0.60
##
## Value | N | Raw % | Valid % | Cum. %
## --------------------------------------
## 0 | 55 | 5.27 | 5.27 | 5.27
## 1 | 390 | 37.39 | 37.39 | 42.67
## 2 | 598 | 57.33 | 57.33 | 100.00
## <NA> | 0 | 0.00 | <NA> | <NA>
plot_frq(x1351$v11r)
## 變數6
# (v14)那他「有沒有展現過關懷弱勢、或關懷受到傷害的人」與你判斷此事的對錯,有多相關呢? *
# (1)毫不相關 (2)不太相關 (3)只有一點相關 (4)一定程度相關 (5)特別相關 (6)絕對相關
table(x1351$v14)
##
## 1 2 3 4 5 6
## 96 205 303 353 62 24
x1351$v14r <- rec(x1351$v14, rec = "1=0; 2:3=1; 4:6=2", as.num = F)
frq(x1351$v14)
##
## 那他「有沒有展現過關懷弱勢、或關懷受到傷害的人」與你判斷此事的對錯,有多相關呢? (x) <numeric>
## # total N=1043 valid N=1043 mean=3.15 sd=1.15
##
## Value | N | Raw % | Valid % | Cum. %
## --------------------------------------
## 1 | 96 | 9.20 | 9.20 | 9.20
## 2 | 205 | 19.65 | 19.65 | 28.86
## 3 | 303 | 29.05 | 29.05 | 57.91
## 4 | 353 | 33.84 | 33.84 | 91.75
## 5 | 62 | 5.94 | 5.94 | 97.70
## 6 | 24 | 2.30 | 2.30 | 100.00
## <NA> | 0 | 0.00 | <NA> | <NA>
frq(x1351$v14r)
##
## 那他「有沒有展現過關懷弱勢、或關懷受到傷害的人」與你判斷此事的對錯,有多相關呢? (x) <categorical>
## # total N=1043 valid N=1043 mean=1.33 sd=0.64
##
## Value | N | Raw % | Valid % | Cum. %
## --------------------------------------
## 0 | 96 | 9.20 | 9.20 | 9.20
## 1 | 508 | 48.71 | 48.71 | 57.91
## 2 | 439 | 42.09 | 42.09 | 100.00
## <NA> | 0 | 0.00 | <NA> | <NA>
plot_frq(x1351$v14r)
## 變數7
# (v15)那麼,就他「做的事有沒有展現公平公正」呢?
# (1)毫不相關 (2)不太相關 (3)只有一點相關 (4)一定程度相關 (5)特別相關 (6)絕對相關
table(x1351$v15)
##
## 1 2 3 4 5 6
## 40 92 236 454 146 75
x1351$v15r <- rec(x1351$v15, rec = "1=0; 2:3=1; 4:6=2", as.num = F)
frq(x1351$v15)
##
## 那麼,就他「做的事有沒有展現公平公正」呢? (x) <numeric>
## # total N=1043 valid N=1043 mean=3.77 sd=1.14
##
## Value | N | Raw % | Valid % | Cum. %
## --------------------------------------
## 1 | 40 | 3.84 | 3.84 | 3.84
## 2 | 92 | 8.82 | 8.82 | 12.66
## 3 | 236 | 22.63 | 22.63 | 35.28
## 4 | 454 | 43.53 | 43.53 | 78.81
## 5 | 146 | 14.00 | 14.00 | 92.81
## 6 | 75 | 7.19 | 7.19 | 100.00
## <NA> | 0 | 0.00 | <NA> | <NA>
frq(x1351$v15r)
##
## 那麼,就他「做的事有沒有展現公平公正」呢? (x) <categorical>
## # total N=1043 valid N=1043 mean=1.61 sd=0.56
##
## Value | N | Raw % | Valid % | Cum. %
## --------------------------------------
## 0 | 40 | 3.84 | 3.84 | 3.84
## 1 | 328 | 31.45 | 31.45 | 35.28
## 2 | 675 | 64.72 | 64.72 | 100.00
## <NA> | 0 | 0.00 | <NA> | <NA>
plot_frq(x1351$v15r)
## 變數8
# (v16) 他「有沒有背叛他的團隊或組織」,與你判斷這件事的對錯,有多相關?
# (1)毫不相關 (2)不太相關 (3)只有一點相關 (4)一定程度相關 (5)特別相關 (6)絕對相關
table(x1351$v16)
##
## 1 2 3 4 5 6
## 78 180 333 366 61 25
x1351$v16r <- rec(x1351$v16, rec = "1=0; 2:3=1; 4:6=2", as.num = F)
frq(x1351$v16)
##
## 他「有沒有背叛他的團隊或組織」,與你判斷這件事的對錯,有多相關? (x) <numeric>
## # total N=1043 valid N=1043 mean=3.22 sd=1.11
##
## Value | N | Raw % | Valid % | Cum. %
## --------------------------------------
## 1 | 78 | 7.48 | 7.48 | 7.48
## 2 | 180 | 17.26 | 17.26 | 24.74
## 3 | 333 | 31.93 | 31.93 | 56.66
## 4 | 366 | 35.09 | 35.09 | 91.75
## 5 | 61 | 5.85 | 5.85 | 97.60
## 6 | 25 | 2.40 | 2.40 | 100.00
## <NA> | 0 | 0.00 | <NA> | <NA>
plot_frq(x1351$v16r)
## 變數9
# (v17)那對於這件事的對錯,他「言行有沒有遵循社會的傳統價值」,與你的判斷有多相關?
# (1)毫不相關 (2)不太相關 (3)只有一點相關 (4)一定程度相關 (5)特別相關 (6)絕對相關
table(x1351$v17)
##
## 1 2 3 4 5 6
## 77 189 349 333 68 27
x1351$v17r <- rec(x1351$v17, rec = "1=0; 2:3=1; 4:6=2", as.num = F)
frq(x1351$v17)
##
## 那對於這件事的對錯,他「言行有沒有遵循社會的傳統價值」,與你的判斷有多相關? (x) <numeric>
## # total N=1043 valid N=1043 mean=3.20 sd=1.12
##
## Value | N | Raw % | Valid % | Cum. %
## --------------------------------------
## 1 | 77 | 7.38 | 7.38 | 7.38
## 2 | 189 | 18.12 | 18.12 | 25.50
## 3 | 349 | 33.46 | 33.46 | 58.96
## 4 | 333 | 31.93 | 31.93 | 90.89
## 5 | 68 | 6.52 | 6.52 | 97.41
## 6 | 27 | 2.59 | 2.59 | 100.00
## <NA> | 0 | 0.00 | <NA> | <NA>
frq(x1351$v17r)
##
## 那對於這件事的對錯,他「言行有沒有遵循社會的傳統價值」,與你的判斷有多相關? (x) <categorical>
## # total N=1043 valid N=1043 mean=1.34 sd=0.61
##
## Value | N | Raw % | Valid % | Cum. %
## --------------------------------------
## 0 | 77 | 7.38 | 7.38 | 7.38
## 1 | 538 | 51.58 | 51.58 | 58.96
## 2 | 428 | 41.04 | 41.04 | 100.00
## <NA> | 0 | 0.00 | <NA> | <NA>
plot_frq(x1351$v17r)
## 變數10
# (v18)那麼,就他「有沒有做令人看了渾身不舒服、甚至是作嘔的事」呢?對你的判斷有多相關?
# (1)毫不相關 (2)不太相關 (3)只有一點相關 (4)一定程度相關 (5)特別相關 (6)絕對相關
table(x1351$v18)
##
## 1 2 3 4 5 6
## 48 101 213 459 146 76
x1351$v18r <- rec(x1351$v18, rec = "1=0; 2:3=1; 4:6=2", as.num = F)
frq(x1351$v18)
##
## 那麼,就他「有沒有做令人看了渾身不舒服、甚至是作嘔的事」呢?對你的判斷有多相關? (x) <numeric>
## # total N=1043 valid N=1043 mean=3.75 sd=1.17
##
## Value | N | Raw % | Valid % | Cum. %
## --------------------------------------
## 1 | 48 | 4.60 | 4.60 | 4.60
## 2 | 101 | 9.68 | 9.68 | 14.29
## 3 | 213 | 20.42 | 20.42 | 34.71
## 4 | 459 | 44.01 | 44.01 | 78.72
## 5 | 146 | 14.00 | 14.00 | 92.71
## 6 | 76 | 7.29 | 7.29 | 100.00
## <NA> | 0 | 0.00 | <NA> | <NA>
frq(x1351$v18r)
##
## 那麼,就他「有沒有做令人看了渾身不舒服、甚至是作嘔的事」呢?對你的判斷有多相關? (x) <categorical>
## # total N=1043 valid N=1043 mean=1.61 sd=0.58
##
## Value | N | Raw % | Valid % | Cum. %
## --------------------------------------
## 0 | 48 | 4.60 | 4.60 | 4.60
## 1 | 314 | 30.11 | 30.11 | 34.71
## 2 | 681 | 65.29 | 65.29 | 100.00
## <NA> | 0 | 0.00 | <NA> | <NA>
plot_frq(x1351$v18r)
## 變數11
# (v20)對於這件事的對錯,他「有沒有做令人覺得殘忍的事」,與你的判斷有多相關?
# (1)毫不相關 (2)不太相關 (3)只有一點相關 (4)一定程度相關 (5)特別相關 (6)絕對相關
table(x1351$v20)
##
## 1 2 3 4 5 6
## 30 60 153 388 228 184
x1351$v20r <- rec(x1351$v20, rec = "1=0; 2:3=1; 4:6=2", as.num = F)
frq(x1351$v20)
##
## 對於這件事的對錯,他「有沒有做令人覺得殘忍的事」,與你的判斷有多相關? (x) <numeric>
## # total N=1043 valid N=1043 mean=4.22 sd=1.23
##
## Value | N | Raw % | Valid % | Cum. %
## --------------------------------------
## 1 | 30 | 2.88 | 2.88 | 2.88
## 2 | 60 | 5.75 | 5.75 | 8.63
## 3 | 153 | 14.67 | 14.67 | 23.30
## 4 | 388 | 37.20 | 37.20 | 60.50
## 5 | 228 | 21.86 | 21.86 | 82.36
## 6 | 184 | 17.64 | 17.64 | 100.00
## <NA> | 0 | 0.00 | <NA> | <NA>
frq(x1351$v20r)
##
## 對於這件事的對錯,他「有沒有做令人覺得殘忍的事」,與你的判斷有多相關? (x) <categorical>
## # total N=1043 valid N=1043 mean=1.74 sd=0.50
##
## Value | N | Raw % | Valid % | Cum. %
## --------------------------------------
## 0 | 30 | 2.88 | 2.88 | 2.88
## 1 | 213 | 20.42 | 20.42 | 23.30
## 2 | 800 | 76.70 | 76.70 | 100.00
## <NA> | 0 | 0.00 | <NA> | <NA>
plot_frq(x1351$v20r)
## 變數12
# (v21)那麼,他「言行有沒有展現忠誠」與你判斷此事的對錯,有多相關呢?
# (1)毫不相關 (2)不太相關 (3)只有一點相關 (4)一定程度相關 (5)特別相關 (6)絕對相關
table(x1351$v21)
##
## 1 2 3 4 5 6
## 58 188 348 351 61 37
x1351$v21r <- rec(x1351$v21, rec = "1=0; 2:3=1; 4:6=2", as.num = F)
frq(x1351$v21)
##
## 那麼,他「言行有沒有展現忠誠」與你判斷此事的對錯,有多相關呢? (x) <numeric>
## # total N=1043 valid N=1043 mean=3.27 sd=1.11
##
## Value | N | Raw % | Valid % | Cum. %
## --------------------------------------
## 1 | 58 | 5.56 | 5.56 | 5.56
## 2 | 188 | 18.02 | 18.02 | 23.59
## 3 | 348 | 33.37 | 33.37 | 56.95
## 4 | 351 | 33.65 | 33.65 | 90.60
## 5 | 61 | 5.85 | 5.85 | 96.45
## 6 | 37 | 3.55 | 3.55 | 100.00
## <NA> | 0 | 0.00 | <NA> | <NA>
frq(x1351$v21r)
##
## 那麼,他「言行有沒有展現忠誠」與你判斷此事的對錯,有多相關呢? (x) <categorical>
## # total N=1043 valid N=1043 mean=1.37 sd=0.59
##
## Value | N | Raw % | Valid % | Cum. %
## --------------------------------------
## 0 | 58 | 5.56 | 5.56 | 5.56
## 1 | 536 | 51.39 | 51.39 | 56.95
## 2 | 449 | 43.05 | 43.05 | 100.00
## <NA> | 0 | 0.00 | <NA> | <NA>
plot_frq(x1351$v21r)
## 變數13
# (v22)他「有沒有做出破壞秩序、甚至造成混亂的事」,與你判斷這件事的對錯,有多相關?
# (1)毫不相關 (2)不太相關 (3)只有一點相關 (4)一定程度相關 (5)特別相關 (6)絕對相關
table(x1351$v22)
##
## 1 2 3 4 5 6
## 27 74 180 424 222 116
x1351$v22r <- rec(x1351$v22, rec = "1=0; 2:3=1; 4:6=2", as.num = F)
frq(x1351$v22)
##
## 他「有沒有做出破壞秩序、甚至造成混亂的事」,與你判斷這件事的對錯,有多相關? (x) <numeric>
## # total N=1043 valid N=1043 mean=4.04 sd=1.16
##
## Value | N | Raw % | Valid % | Cum. %
## --------------------------------------
## 1 | 27 | 2.59 | 2.59 | 2.59
## 2 | 74 | 7.09 | 7.09 | 9.68
## 3 | 180 | 17.26 | 17.26 | 26.94
## 4 | 424 | 40.65 | 40.65 | 67.59
## 5 | 222 | 21.28 | 21.28 | 88.88
## 6 | 116 | 11.12 | 11.12 | 100.00
## <NA> | 0 | 0.00 | <NA> | <NA>
frq(x1351$v22r)
##
## 他「有沒有做出破壞秩序、甚至造成混亂的事」,與你判斷這件事的對錯,有多相關? (x) <categorical>
## # total N=1043 valid N=1043 mean=1.70 sd=0.51
##
## Value | N | Raw % | Valid % | Cum. %
## --------------------------------------
## 0 | 27 | 2.59 | 2.59 | 2.59
## 1 | 254 | 24.35 | 24.35 | 26.94
## 2 | 762 | 73.06 | 73.06 | 100.00
## <NA> | 0 | 0.00 | <NA> | <NA>
plot_frq(x1351$v22r)
## 變數14
# (v23)那對於這件事的對錯,他「在言行上,有沒有遵循神/佛/上帝的教誨」,與你的判斷有多相關?
# (1)毫不相關 (2)不太相關 (3)只有一點相關 (4)一定程度相關 (5)特別相關 (6)絕對相關
table(x1351$v23)
##
## 1 2 3 4 5 6
## 295 325 223 158 29 13
x1351$v23r <- rec(x1351$v23, rec = "1=0; 2:3=1; 4:6=2", as.num = F)
frq(x1351$v23)
##
## 那對於這件事的對錯,他「在言行上,有沒有遵循神/佛/上帝的教誨」,與你的判斷有多相關? (x) <numeric>
## # total N=1043 valid N=1043 mean=2.37 sd=1.19
##
## Value | N | Raw % | Valid % | Cum. %
## --------------------------------------
## 1 | 295 | 28.28 | 28.28 | 28.28
## 2 | 325 | 31.16 | 31.16 | 59.44
## 3 | 223 | 21.38 | 21.38 | 80.82
## 4 | 158 | 15.15 | 15.15 | 95.97
## 5 | 29 | 2.78 | 2.78 | 98.75
## 6 | 13 | 1.25 | 1.25 | 100.00
## <NA> | 0 | 0.00 | <NA> | <NA>
frq(x1351$v23r)
##
## 那對於這件事的對錯,他「在言行上,有沒有遵循神/佛/上帝的教誨」,與你的判斷有多相關? (x) <categorical>
## # total N=1043 valid N=1043 mean=0.91 sd=0.68
##
## Value | N | Raw % | Valid % | Cum. %
## --------------------------------------
## 0 | 295 | 28.28 | 28.28 | 28.28
## 1 | 548 | 52.54 | 52.54 | 80.82
## 2 | 200 | 19.18 | 19.18 | 100.00
## <NA> | 0 | 0.00 | <NA> | <NA>
plot_frq(x1351$v23r)
## 變數15
# (v24)他的「權利有沒有被侵犯、甚至被剝奪」,與你判斷他的對錯,有多相關?
# (1)毫不相關 (2)不太相關 (3)只有一點相關 (4)一定程度相關 (5)特別相關 (6)絕對相關
table(x1351$v24)
##
## 1 2 3 4 5 6
## 29 74 202 451 178 109
x1351$v24r <- rec(x1351$v24, rec = "1=0; 2:3=1; 4:6=2", as.num = F)
frq(x1351$v24)
##
## 他的「權利有沒有被侵犯、甚至被剝奪」,與你判斷他的對錯,有多相關? (x) <numeric>
## # total N=1043 valid N=1043 mean=3.96 sd=1.15
##
## Value | N | Raw % | Valid % | Cum. %
## --------------------------------------
## 1 | 29 | 2.78 | 2.78 | 2.78
## 2 | 74 | 7.09 | 7.09 | 9.88
## 3 | 202 | 19.37 | 19.37 | 29.24
## 4 | 451 | 43.24 | 43.24 | 72.48
## 5 | 178 | 17.07 | 17.07 | 89.55
## 6 | 109 | 10.45 | 10.45 | 100.00
## <NA> | 0 | 0.00 | <NA> | <NA>
frq(x1351$v24r)
##
## 他的「權利有沒有被侵犯、甚至被剝奪」,與你判斷他的對錯,有多相關? (x) <categorical>
## # total N=1043 valid N=1043 mean=1.68 sd=0.52
##
## Value | N | Raw % | Valid % | Cum. %
## --------------------------------------
## 0 | 29 | 2.78 | 2.78 | 2.78
## 1 | 276 | 26.46 | 26.46 | 29.24
## 2 | 738 | 70.76 | 70.76 | 100.00
## <NA> | 0 | 0.00 | <NA> | <NA>
plot_frq(x1351$v24r)
names(x1351)
## [1] "v1" "v2" "v3" "v4" "v5" "v6" "v7" "v8" "v9" "v10"
## [11] "v11" "v12" "v13" "v14" "v15" "v16" "v17" "v18" "v19" "v20"
## [21] "v21" "v22" "v23" "v24" "v25" "v26" "v27" "v28" "v29" "v30"
## [31] "v31" "v32" "v33" "v34" "v35" "v36" "v37" "v38" "v39" "v40"
## [41] "v41" "v7r" "v8r" "v9r" "v10r" "v11r" "v14r" "v15r" "v16r" "v17r"
## [51] "v18r" "v20r" "v21r" "v22r" "v23r" "v24r"
save(x1351, file = "x1351.rda")
load("X1351.rda")
library(dplyr)
##
## Attaching package: 'dplyr'
## The following objects are masked from 'package:stats':
##
## filter, lag
## The following objects are masked from 'package:base':
##
## intersect, setdiff, setequal, union
library(FactoMineR)
library(factoextra)
## Loading required package: ggplot2
## Welcome! Want to learn more? See two factoextra-related books at https://goo.gl/ve3WBa
x1351MCA <- select(x1351, v7r, v8r, v9r, v10r, v11r, v14r, v15r, v16r, v17r, v18r, v20r, v21r, v22r, v23r, v24r)
x1351MCA.nona <- na.omit(x1351MCA)
names(x1351MCA.nona)
## [1] "v7r" "v8r" "v9r" "v10r" "v11r" "v14r" "v15r" "v16r" "v17r" "v18r"
## [11] "v20r" "v21r" "v22r" "v23r" "v24r"
nrow(x1351MCA.nona)
## [1] 1043
names(x1351MCA.nona)
## [1] "v7r" "v8r" "v9r" "v10r" "v11r" "v14r" "v15r" "v16r" "v17r" "v18r"
## [11] "v20r" "v21r" "v22r" "v23r" "v24r"
res <- MCA(x1351MCA.nona, ncp = 5, graph = F)
fviz_screeplot(res, ncp=10)
## Registered S3 methods overwritten by 'car':
## method from
## influence.merMod lme4
## cooks.distance.influence.merMod lme4
## dfbeta.influence.merMod lme4
## dfbetas.influence.merMod lme4
# 維次歸納描述
# install.packages("corrplot")
library(corrplot)
## corrplot 0.84 loaded
corrplot(res$var$cos2, is.corr=FALSE)
# 變數類別關係圖
plot(res, axes=c(1, 2), new.plot=TRUE,
col.var="red", col.ind="black", col.ind.sup="black",
col.quali.sup="darkgreen", col.quanti.sup="blue",
label=c("var"), cex=0.5,
selectMod = "cos2",
invisible=c("ind", "quali.sup"),
autoLab = "yes",
title="")
library(sjmisc)
library(sjPlot)
library(readr)
## 為變數上標籤,為避免中文呈現亂碼,上英文標籤
library(sjlabelled)
##
## Attaching package: 'sjlabelled'
## The following object is masked from 'package:dplyr':
##
## as_label
## The following objects are masked from 'package:sjmisc':
##
## to_character, to_factor, to_label, to_numeric
x1351$v9r <- rec(x1351$v9r, rec = "rev",
var.label="patriotism",
val.labels=c("Irrelevant (0)",
"weak correlation (1)",
"somewhat relation (2)"))
x1351$v10r <- rec(x1351$v10r, rec="rev",
var.label="unholy",
val.labels=c("Irrelevant (0)",
"weak correlation (1)",
"somewhat relation (2)"))
x1351$v16r <- rec(x1351$v16r, rec="rev",
var.label="betray",
val.labels=c("Irrelevant (0)",
"weak correlation (1)",
"somewhat relation (2)"))
x1351$v17r <- rec(x1351$v17r, rec="rev",
var.label="follow tradition",
val.labels=c("Irrelevant (0)",
"weak correlation (1)",
"somewhat relation (2)"))
x1351$v21r <- rec(x1351$v21r, rec="rev",
var.label="loyalty",
val.labels=c("Irrelevant (0)",
"weak correlation (1)",
"somewhat relation (2)"))
x1351$v22r <- rec(x1351$v22r, rec="rev",
var.label="disrupt order",
val.labels=c("Irrelevant (0)",
"weak correlation (1)",
"somewhat relation (2)"))
tab_xtab(x1351$v9r, x1351$v10r,
show.row.prc = TRUE, # 顯示列百分比
show.col.prc = TRUE, # 顯示欄百分比
show.na=FALSE,
show.legend = FALSE,
show.exp = FALSE,
show.cell.prc = FALSE,
tdcol.col = "gray",
tdcol.row = "brown")
| patriotism | unholy | Total | ||
|---|---|---|---|---|
| Irrelevant (0) | weak correlation (1) |
somewhat relation (2) |
||
| Irrelevant (0) |
190 69.3 % 63.1 % |
75 27.4 % 12.2 % |
9 3.3 % 7.1 % |
274 100 % 26.3 % |
| weak correlation (1) |
99 15.9 % 32.9 % |
489 78.5 % 79.5 % |
35 5.6 % 27.6 % |
623 100 % 59.7 % |
|
somewhat relation (2) |
12 8.2 % 4 % |
51 34.9 % 8.3 % |
83 56.8 % 65.4 % |
146 100 % 14 % |
| Total |
301 28.9 % 100 % |
615 59 % 100 % |
127 12.2 % 100 % |
1043 100 % 100 % |
χ2=593.519 · df=4 · Cramer’s V=0.533 · p=0.000 |
tab_xtab(x1351$v9r, x1351$v17r,
show.row.prc = TRUE, # 顯示列百分比
show.col.prc = TRUE, # 顯示欄百分比
show.na=FALSE,
show.legend = FALSE,
show.exp = FALSE,
show.cell.prc = FALSE,
tdcol.col = "gray",
tdcol.row = "brown")
| patriotism | follow tradition | Total | ||
|---|---|---|---|---|
| Irrelevant (0) | weak correlation (1) |
somewhat relation (2) |
||
| Irrelevant (0) |
176 64.2 % 41.1 % |
91 33.2 % 16.9 % |
7 2.6 % 9.1 % |
274 100 % 26.3 % |
| weak correlation (1) |
228 36.6 % 53.3 % |
372 59.7 % 69.1 % |
23 3.7 % 29.9 % |
623 100 % 59.7 % |
|
somewhat relation (2) |
24 16.4 % 5.6 % |
75 51.4 % 13.9 % |
47 32.2 % 61 % |
146 100 % 14 % |
| Total |
428 41 % 100 % |
538 51.6 % 100 % |
77 7.4 % 100 % |
1043 100 % 100 % |
χ2=228.227 · df=4 · Cramer’s V=0.331 · p=0.000 |
tab_xtab(x1351$v9r, x1351$v22r,
show.row.prc = TRUE, # 顯示列百分比
show.col.prc = TRUE, # 顯示欄百分比
show.na=FALSE,
show.legend = FALSE,
show.exp = FALSE,
show.cell.prc = FALSE,
tdcol.col = "gray",
tdcol.row = "brown")
| patriotism | disrupt order | Total | ||
|---|---|---|---|---|
| Irrelevant (0) | weak correlation (1) |
somewhat relation (2) |
||
| Irrelevant (0) |
240 87.6 % 31.5 % |
33 12 % 13 % |
1 0.4 % 3.7 % |
274 100 % 26.3 % |
| weak correlation (1) |
427 68.5 % 56 % |
192 30.8 % 75.6 % |
4 0.6 % 14.8 % |
623 100 % 59.7 % |
|
somewhat relation (2) |
95 65.1 % 12.5 % |
29 19.9 % 11.4 % |
22 15.1 % 81.5 % |
146 100 % 14 % |
| Total |
762 73.1 % 100 % |
254 24.4 % 100 % |
27 2.6 % 100 % |
1043 100 % 100 % |
χ2=142.082 · df=4 · Cramer’s V=0.261 · Fisher’s p=0.000 |
tab_xtab(x1351$v16r, x1351$v10r,
show.row.prc = TRUE, # 顯示列百分比
show.col.prc = TRUE, # 顯示欄百分比
show.na=FALSE,
show.legend = FALSE,
show.exp = FALSE,
show.cell.prc = FALSE,
tdcol.col = "gray",
tdcol.row = "brown")
| betray | unholy | Total | ||
|---|---|---|---|---|
| Irrelevant (0) | weak correlation (1) |
somewhat relation (2) |
||
| Irrelevant (0) |
213 47.1 % 70.8 % |
215 47.6 % 35 % |
24 5.3 % 18.9 % |
452 100 % 43.3 % |
| weak correlation (1) |
81 15.8 % 26.9 % |
377 73.5 % 61.3 % |
55 10.7 % 43.3 % |
513 100 % 49.2 % |
|
somewhat relation (2) |
7 9 % 2.3 % |
23 29.5 % 3.7 % |
48 61.5 % 37.8 % |
78 100 % 7.5 % |
| Total |
301 28.9 % 100 % |
615 59 % 100 % |
127 12.2 % 100 % |
1043 100 % 100 % |
χ2=307.589 · df=4 · Cramer’s V=0.384 · p=0.000 |
tab_xtab(x1351$v16r, x1351$v17r,
show.row.prc = TRUE, # 顯示列百分比
show.col.prc = TRUE, # 顯示欄百分比
show.na=FALSE,
show.legend = FALSE,
show.exp = FALSE,
show.cell.prc = FALSE,
tdcol.col = "gray",
tdcol.row = "brown")
| betray | follow tradition | Total | ||
|---|---|---|---|---|
| Irrelevant (0) | weak correlation (1) |
somewhat relation (2) |
||
| Irrelevant (0) |
298 65.9 % 69.6 % |
146 32.3 % 27.1 % |
8 1.8 % 10.4 % |
452 100 % 43.3 % |
| weak correlation (1) |
123 24 % 28.7 % |
362 70.6 % 67.3 % |
28 5.5 % 36.4 % |
513 100 % 49.2 % |
|
somewhat relation (2) |
7 9 % 1.6 % |
30 38.5 % 5.6 % |
41 52.6 % 53.2 % |
78 100 % 7.5 % |
| Total |
428 41 % 100 % |
538 51.6 % 100 % |
77 7.4 % 100 % |
1043 100 % 100 % |
χ2=432.737 · df=4 · Cramer’s V=0.455 · p=0.000 |
tab_xtab(x1351$v16r, x1351$v22r,
show.row.prc = TRUE, # 顯示列百分比
show.col.prc = TRUE, # 顯示欄百分比
show.na=FALSE,
show.legend = FALSE,
show.exp = FALSE,
show.cell.prc = FALSE,
tdcol.col = "gray",
tdcol.row = "brown")
| betray | disrupt order | Total | ||
|---|---|---|---|---|
| Irrelevant (0) | weak correlation (1) |
somewhat relation (2) |
||
| Irrelevant (0) |
416 92 % 54.6 % |
35 7.7 % 13.8 % |
1 0.2 % 3.7 % |
452 100 % 43.3 % |
| weak correlation (1) |
311 60.6 % 40.8 % |
197 38.4 % 77.6 % |
5 1 % 18.5 % |
513 100 % 49.2 % |
|
somewhat relation (2) |
35 44.9 % 4.6 % |
22 28.2 % 8.7 % |
21 26.9 % 77.8 % |
78 100 % 7.5 % |
| Total |
762 73.1 % 100 % |
254 24.4 % 100 % |
27 2.6 % 100 % |
1043 100 % 100 % |
χ2=328.248 · df=4 · Cramer’s V=0.397 · Fisher’s p=0.000 |
tab_xtab(x1351$v21r, x1351$v10r,
show.row.prc = TRUE, # 顯示列百分比
show.col.prc = TRUE, # 顯示欄百分比
show.na=FALSE,
show.legend = FALSE,
show.exp = FALSE,
show.cell.prc = FALSE,
tdcol.col = "gray",
tdcol.row = "brown")
| loyalty | unholy | Total | ||
|---|---|---|---|---|
| Irrelevant (0) | weak correlation (1) |
somewhat relation (2) |
||
| Irrelevant (0) |
211 47 % 70.1 % |
210 46.8 % 34.1 % |
28 6.2 % 22 % |
449 100 % 43 % |
| weak correlation (1) |
87 16.2 % 28.9 % |
392 73.1 % 63.7 % |
57 10.6 % 44.9 % |
536 100 % 51.4 % |
|
somewhat relation (2) |
3 5.2 % 1 % |
13 22.4 % 2.1 % |
42 72.4 % 33.1 % |
58 100 % 5.6 % |
| Total |
301 28.9 % 100 % |
615 59 % 100 % |
127 12.2 % 100 % |
1043 100 % 100 % |
χ2=321.669 · df=4 · Cramer’s V=0.393 · p=0.000 |
tab_xtab(x1351$v21r, x1351$v17r,
show.row.prc = TRUE, # 顯示列百分比
show.col.prc = TRUE, # 顯示欄百分比
show.na=FALSE,
show.legend = FALSE,
show.exp = FALSE,
show.cell.prc = FALSE,
tdcol.col = "gray",
tdcol.row = "brown")
| loyalty | follow tradition | Total | ||
|---|---|---|---|---|
| Irrelevant (0) | weak correlation (1) |
somewhat relation (2) |
||
| Irrelevant (0) |
294 65.5 % 68.7 % |
141 31.4 % 26.2 % |
14 3.1 % 18.2 % |
449 100 % 43 % |
| weak correlation (1) |
131 24.4 % 30.6 % |
380 70.9 % 70.6 % |
25 4.7 % 32.5 % |
536 100 % 51.4 % |
|
somewhat relation (2) |
3 5.2 % 0.7 % |
17 29.3 % 3.2 % |
38 65.5 % 49.4 % |
58 100 % 5.6 % |
| Total |
428 41 % 100 % |
538 51.6 % 100 % |
77 7.4 % 100 % |
1043 100 % 100 % |
χ2=481.250 · df=4 · Cramer’s V=0.480 · Fisher’s p=0.000 |
tab_xtab(x1351$v21r, x1351$v22r,
show.row.prc = TRUE, # 顯示列百分比
show.col.prc = TRUE, # 顯示欄百分比
show.na=FALSE,
show.legend = FALSE,
show.exp = FALSE,
show.cell.prc = FALSE,
tdcol.col = "gray",
tdcol.row = "brown")
| loyalty | disrupt order | Total | ||
|---|---|---|---|---|
| Irrelevant (0) | weak correlation (1) |
somewhat relation (2) |
||
| Irrelevant (0) |
417 92.9 % 54.7 % |
32 7.1 % 12.6 % |
0 0 % 0 % |
449 100 % 43 % |
| weak correlation (1) |
320 59.7 % 42 % |
211 39.4 % 83.1 % |
5 0.9 % 18.5 % |
536 100 % 51.4 % |
|
somewhat relation (2) |
25 43.1 % 3.3 % |
11 19 % 4.3 % |
22 37.9 % 81.5 % |
58 100 % 5.6 % |
| Total |
762 73.1 % 100 % |
254 24.4 % 100 % |
27 2.6 % 100 % |
1043 100 % 100 % |
χ2=446.509 · df=4 · Cramer’s V=0.463 · Fisher’s p=0.000 |
library(vcd)
## Loading required package: grid
cotabplot(~x1351$v9r +x1351$v10r, shade=TRUE, compress=FALSE, alternate=F)
cotabplot(~x1351$v9r +x1351$v17r, shade=TRUE, compress=FALSE, alternate=F)
cotabplot(~x1351$v9r +x1351$v22r, shade=TRUE, compress=FALSE, alternate=F)
cotabplot(~x1351$v16r +x1351$v10r, shade=TRUE, compress=FALSE, alternate=F)
cotabplot(~x1351$v16r +x1351$v17r, shade=TRUE, compress=FALSE, alternate=F)
cotabplot(~x1351$v16r +x1351$v22r, shade=TRUE, compress=FALSE, alternate=F)
cotabplot(~x1351$v21r +x1351$v10r, shade=TRUE, compress=FALSE, alternate=F)
cotabplot(~x1351$v21r +x1351$v17r, shade=TRUE, compress=FALSE, alternate=F)
cotabplot(~x1351$v21r +x1351$v22r, shade=TRUE, compress=FALSE, alternate=F)
## 確認式分析,二元勝算對數模型
library(car)
## Loading required package: carData
##
## Attaching package: 'car'
## The following object is masked from 'package:dplyr':
##
## recode
library(sjPlot)
load("x1351.rda")
## 模型一:假設重視忠誠原則的人,也會較重視權威性原則
mod.1 <- glm(v9r ~ v10r+v17r+v22r,
data=x1351,
family=binomial)
summary(mod.1)
##
## Call:
## glm(formula = v9r ~ v10r + v17r + v22r, family = binomial, data = x1351)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -2.6677 0.2404 0.3229 0.4477 1.9071
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) -3.5992 0.7113 -5.060 4.19e-07 ***
## v10r1 2.6051 0.2541 10.253 < 2e-16 ***
## v10r2 3.2069 0.3697 8.675 < 2e-16 ***
## v17r1 1.2864 0.3551 3.623 0.000291 ***
## v17r2 1.9641 0.3969 4.949 7.45e-07 ***
## v22r1 2.3113 0.6871 3.364 0.000769 ***
## v22r2 1.9576 0.6639 2.949 0.003191 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for binomial family taken to be 1)
##
## Null deviance: 844.68 on 1042 degrees of freedom
## Residual deviance: 570.85 on 1036 degrees of freedom
## AIC: 584.85
##
## Number of Fisher Scoring iterations: 6
mod.2 <- glm(v16r ~ v10r+v17r+v22r,
data=x1351,
family=binomial)
summary(mod.2)
##
## Call:
## glm(formula = v16r ~ v10r + v17r + v22r, family = binomial, data = x1351)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -3.0043 0.1485 0.2120 0.3077 1.7398
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) -3.3749 0.7228 -4.669 3.03e-06 ***
## v10r1 1.9685 0.3393 5.802 6.56e-09 ***
## v10r2 2.0691 0.4767 4.341 1.42e-05 ***
## v17r1 2.2222 0.3745 5.934 2.95e-09 ***
## v17r2 2.8394 0.4997 5.682 1.33e-08 ***
## v22r1 2.1101 0.7031 3.001 0.00269 **
## v22r2 2.9684 0.6939 4.278 1.89e-05 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for binomial family taken to be 1)
##
## Null deviance: 554.55 on 1042 degrees of freedom
## Residual deviance: 339.82 on 1036 degrees of freedom
## AIC: 353.82
##
## Number of Fisher Scoring iterations: 7
mod.3 <- glm(v21r ~ v10r+v17r+v22r,
data=x1351,
family=binomial)
summary(mod.3)
##
## Call:
## glm(formula = v21r ~ v10r + v17r + v22r, family = binomial, data = x1351)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -3.1891 0.1013 0.1337 0.1950 2.0759
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) -4.2369 0.8286 -5.113 3.16e-07 ***
## v10r1 2.2056 0.4300 5.129 2.92e-07 ***
## v10r2 2.4909 0.6660 3.740 0.000184 ***
## v17r1 2.5000 0.4359 5.735 9.75e-09 ***
## v17r2 3.3409 0.6838 4.886 1.03e-06 ***
## v22r1 3.4842 0.7899 4.411 1.03e-05 ***
## v22r2 3.9594 0.7747 5.111 3.21e-07 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for binomial family taken to be 1)
##
## Null deviance: 447.89 on 1042 degrees of freedom
## Residual deviance: 217.35 on 1036 degrees of freedom
## AIC: 231.35
##
## Number of Fisher Scoring iterations: 7
library(sjPlot)
plot_model(mod.1, type="est", auro.label=F, colors = "gs")
plot_model(mod.2, type="est", auro.label=F, colors = "gs")
plot_model(mod.3, type="est", auro.label=F, colors = "gs")