New package “Epidemic. ta” for forecasting Covid-19 infection cases apply Example For forecasting infection cases in the Novgorod region

That’s Algorithm Developed By

Makarovskikh Tatyana Anatolyevna “Макаровских Татьяна Анатольевна”

Abotaleb mostafa “Аботалеб Мостафа”

Department of Electrical Engineering and Computer Science

South ural state university, Chelyabinsk, Russian federation

# Imports
library(fpp2)
## Warning: package 'fpp2' was built under R version 4.0.3
## Registered S3 method overwritten by 'quantmod':
##   method            from
##   as.zoo.data.frame zoo
## -- Attaching packages --------------------------------------------------------------------------- fpp2 2.4 --
## v ggplot2   3.3.2     v fma       2.4  
## v forecast  8.13      v expsmooth 2.3
## Warning: package 'ggplot2' was built under R version 4.0.3
## Warning: package 'forecast' was built under R version 4.0.3
## 
library(forecast)
library(ggplot2)
library("readxl")
## Warning: package 'readxl' was built under R version 4.0.3
library(moments)
## Warning: package 'moments' was built under R version 4.0.3
library(forecast)
require(forecast)  
require(tseries)
## Loading required package: tseries
## Warning: package 'tseries' was built under R version 4.0.3
require(markovchain)
## Loading required package: markovchain
## Warning: package 'markovchain' was built under R version 4.0.3
## Package:  markovchain
## Version:  0.8.5-3
## Date:     2020-12-03
## BugReport: https://github.com/spedygiorgio/markovchain/issues
require(data.table)
## Loading required package: data.table
#usa population =332002416
# Russia population =145966453
#population in japan = 126279505
#population in china =1442182072
#population in cheleabinsk =1130319
#population in moscow =12537954
#population in  MO =7690863
#Новгородская обл =1250615
# when you use data from russian websites use ==> unlist for define time series
Full_original_data<-read_excel("F:/Phd/ALL Russia Analysis/Regin In Russia 29_11_2020.xlsx",sheet = "Novgorod region")
y_lab<- "COVID 19 Infection cases in Novgorod region"   # input name of data
Actual_date_interval <- c("2020/01/22","2020/11/28")
Forecast_date_interval <- c("2020/11/29","2020/12/5")
validation_data_days <-7
frequency<-"days"
Population <-1250615   # Population size in City for applaying SIR model
# Data Preparation & calculate some of statistics measures
original_data<-Full_original_data$infection

summary(original_data)
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##     0.0   614.5  3569.0  3509.2  5012.5 11615.0
sd(original_data)  # calculate standard deviation
## [1] 2909.362
skewness(original_data)  # calculate Cofficient of skewness
## [1] 0.6498401
kurtosis(original_data)   # calculate Cofficient of kurtosis
## [1] 2.825338
rows <- NROW(original_data)
training_data<-original_data[1:(rows-validation_data_days)]
testing_data<-original_data[(rows-validation_data_days+1):rows]
AD<-fulldate<-seq(as.Date(Actual_date_interval[1]),as.Date(Actual_date_interval[2]), frequency)  #input range for actual date
FD<-seq(as.Date(Forecast_date_interval[1]),as.Date(Forecast_date_interval[2]), frequency)  #input range forecasting date
N_forecasting_days<-nrow(data.frame(FD)) 
validation_dates<-tail(AD,validation_data_days)
validation_data_by_name<-weekdays(validation_dates)
forecasting_data_by_name<-weekdays(FD)
##bats model
# Data Modeling
data_series<-ts(training_data)
autoplot(data_series ,xlab=paste ("Time in  ", frequency, sep=" "), ylab = y_lab, main=paste ("Actual Data :", y_lab, sep=" "))

model_bats<-bats(data_series)
accuracy(model_bats)  # accuracy on training data
##                     ME     RMSE      MAE MPE MAPE      MASE        ACF1
## Training set 0.9921414 6.858737 4.193621 NaN  Inf 0.1043495 -0.02374732
# Print Model Parameters
model_bats
## BATS(1, {0,0}, 1, -)
## 
## Call: bats(y = data_series)
## 
## Parameters
##   Alpha: 1.032357
##   Beta: 0.6855415
##   Damping Parameter: 1
## 
## Seed States:
##            [,1]
## [1,] -5.8265475
## [2,] -0.8534743
## 
## Sigma: 6.858737
## AIC: 2413.433
plot(model_bats,xlab = paste ("Time in  ", frequency ,y_lab , sep=" "),  col.main="black", col.lab="blue", col.sub="black", cex.main=1, cex.lab=1, cex.sub=1,font.main=4, font.lab=4)

# Testing Data Evaluation
forecasting_bats <- predict(model_bats, h=N_forecasting_days+validation_data_days)
validation_forecast<-head(forecasting_bats$mean,validation_data_days)
MAPE_Per_Day<-round(  abs(((testing_data-validation_forecast)/testing_data)*100)  ,3)
paste ("MAPE % For ",validation_data_days,frequency,"by using bats Model for  ==> ",y_lab, sep=" ")
## [1] "MAPE % For  7 days by using bats Model for  ==>  COVID 19 Infection cases in Novgorod region"
MAPE_Mean_All<-paste(round(mean(MAPE_Per_Day),3),"% MAPE ",validation_data_days,frequency,y_lab,sep=" ")
MAPE_bats<-paste(round(MAPE_Per_Day,3),"%")
MAPE_bats_Model<-paste(MAPE_Per_Day ,"%")
paste (" MAPE that's Error of Forecasting for ",validation_data_days," days in bats Model for  ==> ",y_lab, sep=" ")
## [1] " MAPE that's Error of Forecasting for  7  days in bats Model for  ==>  COVID 19 Infection cases in Novgorod region"
paste(MAPE_Mean_All,"%")
## [1] "0.634 % MAPE  7 days COVID 19 Infection cases in Novgorod region %"
paste ("MAPE that's Error of Forecasting day by day for ",validation_data_days," days in bats Model for  ==> ",y_lab, sep=" ")
## [1] "MAPE that's Error of Forecasting day by day for  7  days in bats Model for  ==>  COVID 19 Infection cases in Novgorod region"
data.frame(date_bats=validation_dates,validation_data_by_name,actual_data=testing_data,forecasting_bats=validation_forecast,MAPE_bats_Model)
##    date_bats validation_data_by_name actual_data forecasting_bats
## 1 2020-11-22             воскресенье       10426         10421.44
## 2 2020-11-23             понедельник       10611         10594.71
## 3 2020-11-24                 вторник       10806         10767.97
## 4 2020-11-25                   среда       11009         10941.24
## 5 2020-11-26                 четверг       11209         11114.50
## 6 2020-11-27                 пятница       11414         11287.77
## 7 2020-11-28                 суббота       11615         11461.04
##   MAPE_bats_Model
## 1         0.044 %
## 2         0.154 %
## 3         0.352 %
## 4         0.616 %
## 5         0.843 %
## 6         1.106 %
## 7         1.326 %
data.frame(FD,forecating_date=forecasting_data_by_name,forecasting_by_bats=tail(forecasting_bats$mean,N_forecasting_days))
##           FD forecating_date forecasting_by_bats
## 1 2020-11-29     воскресенье            11634.30
## 2 2020-11-30     понедельник            11807.57
## 3 2020-12-01         вторник            11980.83
## 4 2020-12-02           среда            12154.10
## 5 2020-12-03         четверг            12327.37
## 6 2020-12-04         пятница            12500.63
## 7 2020-12-05         суббота            12673.90
plot(forecasting_bats)
x1_test <- ts(testing_data, start =(rows-validation_data_days+1) )
lines(x1_test, col='red',lwd=2)

graph1<-autoplot(forecasting_bats,xlab = paste ("Time in  ", frequency ,y_lab , sep=" "),  col.main="black", col.lab="blue", col.sub="black", cex.main=1, cex.lab=1, cex.sub=1,font.main=4, font.lab=4, ylab=y_lab)
graph1

## Error of forecasting
Error_bats<-abs(testing_data-validation_forecast)  # Absolute error of forecast (AEOF)
REOF_A_bats<-abs(((testing_data-validation_forecast)/testing_data)*100)  #Relative error of forecast (divided by actual)(REOF_A)
REOF_F_bats<-abs(((testing_data-validation_forecast)/validation_forecast)*100)  #Relative error of forecast (divided by forecast)(REOF_F)
correlation_bats<-cor(testing_data,validation_forecast, method = c("pearson"))     # correlation coefficient between predicted and actual values 
RMSE_bats<-sqrt(sum((Error_bats^2))/validation_data_days)   #  Root mean square forecast error
MAD_bats<-abs((sum(testing_data-validation_forecast))/validation_data_days)   # average forecast accuracy
AEOF_bats<-c(Error_bats)
REOF_Abats<-c(paste(round(REOF_A_bats,3),"%"))
REOF_Fbats<-c(paste(round(REOF_F_bats,3),"%"))
data.frame(correlation_bats,RMSE_bats,MAPE_Mean_All,MAD_bats) # analysis of Error  by using Bats Model shows result of correlation ,MSE ,MPER
##   correlation_bats RMSE_bats
## 1        0.9998927  88.55398
##                                                      MAPE_Mean_All MAD_bats
## 1 0.634 % MAPE  7 days COVID 19 Infection cases in Novgorod region  71.6192
data.frame(validation_dates,Validation_day_name=validation_data_by_name,AEOF_bats,REOF_Abats,REOF_Fbats)   # Analysis of error shows result AEOF,REOF_A,REOF_F
##   validation_dates Validation_day_name  AEOF_bats REOF_Abats REOF_Fbats
## 1       2020-11-22         воскресенье   4.559925    0.044 %    0.044 %
## 2       2020-11-23         понедельник  16.293970    0.154 %    0.154 %
## 3       2020-11-24             вторник  38.028015    0.352 %    0.353 %
## 4       2020-11-25               среда  67.762060    0.616 %    0.619 %
## 5       2020-11-26             четверг  94.496105    0.843 %     0.85 %
## 6       2020-11-27             пятница 126.230149    1.106 %    1.118 %
## 7       2020-11-28             суббота 153.964194    1.326 %    1.343 %
## TBATS Model

# Data Modeling
data_series<-ts(training_data)
model_TBATS<-forecast:::fitSpecificTBATS(data_series,use.box.cox=FALSE, use.beta=TRUE,  seasonal.periods=c(6),use.damping=FALSE,k.vector=c(2))
accuracy(model_TBATS)  # accuracy on training data
##                     ME     RMSE      MAE MPE MAPE      MASE        ACF1
## Training set 0.9950672 6.908351 4.346578 NaN  Inf 0.1081555 -0.02204961
# Print Model Parameters
model_TBATS
## TBATS(1, {0,0}, 1, {<6,2>})
## 
## Call: NULL
## 
## Parameters
##   Alpha: 1.03151
##   Beta: 0.6820559
##   Damping Parameter: 1
##   Gamma-1 Values: 0.001987578
##   Gamma-2 Values: -0.001843466
## 
## Seed States:
##            [,1]
## [1,] -5.9376948
## [2,] -0.8164883
## [3,] -0.2841971
## [4,]  0.6269531
## [5,]  0.6714529
## [6,] -0.0902620
## 
## Sigma: 6.908351
## AIC: 2429.124
plot(model_TBATS,xlab = paste ("Time in  ", frequency ,y_lab , sep=" "),  col.main="black", col.lab="blue", col.sub="black", cex.main=1, cex.lab=1, cex.sub=1,font.main=4, font.lab=4, ylab=y_lab)

# Testing Data Evaluation
forecasting_tbats <- predict(model_TBATS, h=N_forecasting_days+validation_data_days)
validation_forecast<-head(forecasting_tbats$mean,validation_data_days)
MAPE_Per_Day<-round(  abs(((testing_data-validation_forecast)/testing_data)*100)  ,3)
paste ("MAPE % For ",validation_data_days,frequency,"by using TBATS Model for  ==> ",y_lab, sep=" ")
## [1] "MAPE % For  7 days by using TBATS Model for  ==>  COVID 19 Infection cases in Novgorod region"
MAPE_Mean_All<-paste(round(mean(MAPE_Per_Day),3),"% MAPE ",validation_data_days,frequency,y_lab,sep=" ")
MAPE_TBATS<-paste(round(MAPE_Per_Day,3),"%")
MAPE_TBATS_Model<-paste(MAPE_Per_Day ,"%")
paste (" MAPE that's Error of Forecasting for ",validation_data_days," days in TBATS Model for  ==> ",y_lab, sep=" ")
## [1] " MAPE that's Error of Forecasting for  7  days in TBATS Model for  ==>  COVID 19 Infection cases in Novgorod region"
paste(MAPE_Mean_All,"%")
## [1] "0.654 % MAPE  7 days COVID 19 Infection cases in Novgorod region %"
paste ("MAPE that's Error of Forecasting day by day for ",validation_data_days," days in TBATS Model for  ==> ",y_lab, sep=" ")
## [1] "MAPE that's Error of Forecasting day by day for  7  days in TBATS Model for  ==>  COVID 19 Infection cases in Novgorod region"
data.frame(date_TBATS=validation_dates,validation_data_by_name,actual_data=testing_data,forecasting_TBATS=validation_forecast,MAPE_TBATS_Model)
##   date_TBATS validation_data_by_name actual_data forecasting_TBATS
## 1 2020-11-22             воскресенье       10426          10419.91
## 2 2020-11-23             понедельник       10611          10592.39
## 3 2020-11-24                 вторник       10806          10765.98
## 4 2020-11-25                   среда       11009          10939.05
## 5 2020-11-26                 четверг       11209          11112.54
## 6 2020-11-27                 пятница       11414          11285.76
## 7 2020-11-28                 суббота       11615          11457.48
##   MAPE_TBATS_Model
## 1          0.058 %
## 2          0.175 %
## 3           0.37 %
## 4          0.635 %
## 5          0.861 %
## 6          1.123 %
## 7          1.356 %
data.frame(FD,forecating_date=forecasting_data_by_name,forecasting_by_TBATS=tail(forecasting_tbats$mean,N_forecasting_days))
##           FD forecating_date forecasting_by_TBATS
## 1 2020-11-29     воскресенье             11629.97
## 2 2020-11-30     понедельник             11803.55
## 3 2020-12-01         вторник             11976.62
## 4 2020-12-02           среда             12150.11
## 5 2020-12-03         четверг             12323.34
## 6 2020-12-04         пятница             12495.05
## 7 2020-12-05         суббота             12667.54
plot(forecasting_tbats)
x1_test <- ts(testing_data, start =(rows-validation_data_days+1) )
lines(x1_test, col='red',lwd=2)

graph2<-autoplot(forecasting_tbats,xlab = paste ("Time in  ", frequency ,y_lab , sep=" "),  col.main="black", col.lab="blue", col.sub="black", cex.main=1, cex.lab=1, cex.sub=1,font.main=4, font.lab=4, ylab=y_lab)
graph2

## Error of forecasting TBATS Model

Error_tbats<-abs(testing_data-validation_forecast)  # Absolute error of forecast (AEOF)
REOF_A_tbats1<-abs(((testing_data-validation_forecast)/testing_data)*100)  #Relative error of forecast (divided by actual)(REOF_A)
REOF_F_tbats<-abs(((testing_data-validation_forecast)/validation_forecast)*100)  #Relative error of forecast (divided by forecast)(REOF_F)
correlation_tbats<-cor(testing_data,validation_forecast, method = c("pearson"))     # correlation coefficient between predicted and actual values 
RMSE_tbats<-sqrt(sum((Error_tbats^2))/validation_data_days)   #  Root mean square forecast error
MAD_tbats<-abs((sum(testing_data-validation_forecast))/validation_data_days)   # average forecast accuracy
AEOF_tbats<-c(Error_tbats)
REOF_A_tbats<-c(paste(round(REOF_A_tbats1,3),"%"))
REOF_F_tbats<-c(paste(round(REOF_F_tbats,3),"%"))
data.frame(correlation_tbats,RMSE_tbats,MAPE_Mean_All,MAD_tbats) # analysis of Error  by using Holt's linear model shows result of correlation ,MSE ,MPER
##   correlation_tbats RMSE_tbats
## 1         0.9998911   90.58594
##                                                      MAPE_Mean_All MAD_tbats
## 1 0.654 % MAPE  7 days COVID 19 Infection cases in Novgorod region  73.84192
data.frame(validation_dates,Validation_day_name=validation_data_by_name,AEOF_tbats,REOF_A_tbats,REOF_F_tbats)   # Analysis of error shows result AEOF,REOF_A,REOF_F
##   validation_dates Validation_day_name AEOF_tbats REOF_A_tbats REOF_F_tbats
## 1       2020-11-22         воскресенье   6.093782      0.058 %      0.058 %
## 2       2020-11-23         понедельник  18.606060      0.175 %      0.176 %
## 3       2020-11-24             вторник  40.024249       0.37 %      0.372 %
## 4       2020-11-25               среда  69.951164      0.635 %      0.639 %
## 5       2020-11-26             четверг  96.460100      0.861 %      0.868 %
## 6       2020-11-27             пятница 128.235371      1.123 %      1.136 %
## 7       2020-11-28             суббота 157.522713      1.356 %      1.375 %
## Holt's linear trend


# Data Modeling
data_series<-ts(training_data)
model_holt<-holt(data_series,h=N_forecasting_days+validation_data_days,lambda = "auto")
accuracy(model_holt)  # accuracy on training data
##                    ME    RMSE      MAE MPE MAPE      MASE      ACF1
## Training set 1.039139 7.44118 4.808206 NaN  Inf 0.1196421 0.3609997
# Print Model Parameters
summary(model_holt$model)
## Holt's method 
## 
## Call:
##  holt(y = data_series, h = N_forecasting_days + validation_data_days,  
## 
##  Call:
##      lambda = "auto") 
## 
##   Box-Cox transformation: lambda= 0.64 
## 
##   Smoothing parameters:
##     alpha = 0.9999 
##     beta  = 0.3561 
## 
##   Initial states:
##     l = -2.1233 
##     b = -0.1342 
## 
##   sigma:  0.8185
## 
##      AIC     AICc      BIC 
## 1323.019 1323.259 1340.745 
## 
## Training set error measures:
##                    ME    RMSE      MAE MPE MAPE      MASE      ACF1
## Training set 1.039139 7.44118 4.808206 NaN  Inf 0.1196421 0.3609997
# Testing Data Evaluation
forecasting_holt <- predict(model_holt, h=N_forecasting_days+validation_data_days,lambda = "auto")
validation_forecast<-head(forecasting_holt$mean,validation_data_days)
MAPE_Per_Day<-round(  abs(((testing_data-validation_forecast)/testing_data)*100)  ,3)
paste ("MAPE % For ",validation_data_days,frequency,"by using holt Model for  ==> ",y_lab, sep=" ")
## [1] "MAPE % For  7 days by using holt Model for  ==>  COVID 19 Infection cases in Novgorod region"
MAPE_Mean_All<-paste(round(mean(MAPE_Per_Day),3),"% MAPE ",validation_data_days,frequency,y_lab,sep=" ")
MAPE_holt<-paste(round(MAPE_Per_Day,3),"%")
MAPE_holt_Model<-paste(MAPE_Per_Day ,"%")
paste (" MAPE that's Error of Forecasting for ",validation_data_days," days in holt Model for  ==> ",y_lab, sep=" ")
## [1] " MAPE that's Error of Forecasting for  7  days in holt Model for  ==>  COVID 19 Infection cases in Novgorod region"
paste(MAPE_Mean_All,"%")
## [1] "0.595 % MAPE  7 days COVID 19 Infection cases in Novgorod region %"
paste ("MAPE that's Error of Forecasting day by day for ",validation_data_days," days in holt Model for  ==> ",y_lab, sep=" ")
## [1] "MAPE that's Error of Forecasting day by day for  7  days in holt Model for  ==>  COVID 19 Infection cases in Novgorod region"
data.frame(date_holt=validation_dates,validation_data_by_name,actual_data=testing_data,forecasting_holt=validation_forecast,MAPE_holt_Model)
##    date_holt validation_data_by_name actual_data forecasting_holt
## 1 2020-11-22             воскресенье       10426         10420.39
## 2 2020-11-23             понедельник       10611         10593.82
## 3 2020-11-24                 вторник       10806         10768.28
## 4 2020-11-25                   среда       11009         10943.76
## 5 2020-11-26                 четверг       11209         11120.26
## 6 2020-11-27                 пятница       11414         11297.77
## 7 2020-11-28                 суббота       11615         11476.29
##   MAPE_holt_Model
## 1         0.054 %
## 2         0.162 %
## 3         0.349 %
## 4         0.593 %
## 5         0.792 %
## 6         1.018 %
## 7         1.194 %
data.frame(FD,forecating_date=forecasting_data_by_name,forecasting_by_holt=tail(forecasting_holt$mean,N_forecasting_days))
##           FD forecating_date forecasting_by_holt
## 1 2020-11-29     воскресенье            11655.82
## 2 2020-11-30     понедельник            11836.35
## 3 2020-12-01         вторник            12017.87
## 4 2020-12-02           среда            12200.39
## 5 2020-12-03         четверг            12383.90
## 6 2020-12-04         пятница            12568.39
## 7 2020-12-05         суббота            12753.86
plot(forecasting_holt)
x1_test <- ts(testing_data, start =(rows-validation_data_days+1) )
lines(x1_test, col='red',lwd=2)

graph3<-autoplot(forecasting_holt,xlab = paste ("Time in  ", frequency ,y_lab , sep=" "),  col.main="black", col.lab="blue", col.sub="black", cex.main=1, cex.lab=1, cex.sub=1,font.main=4, font.lab=4, ylab=y_lab)
graph3

## Error of forecasting by using Holt's linear model
Error_Holt<-abs(testing_data-validation_forecast)  # Absolute error of forecast (AEOF)
REOF_A_Holt1<-abs(((testing_data-validation_forecast)/testing_data)*100)  #Relative error of forecast (divided by actual)(REOF_A)
REOF_F_Holt<-abs(((testing_data-validation_forecast)/validation_forecast)*100)  #Relative error of forecast (divided by forecast)(REOF_F)
correlation_Holt<-cor(testing_data,validation_forecast, method = c("pearson"))     # correlation coefficient between predicted and actual values 
RMSE_Holt<-sqrt(sum((Error_Holt^2))/validation_data_days)   #  Root mean square forecast error
MAD_Holt<-abs((sum(testing_data-validation_forecast))/validation_data_days)   # average forecast accuracy
AEOF_Holt<-c(Error_Holt)
REOF_A_Holt<-c(paste(round(REOF_A_Holt1,3),"%"))
REOF_F_Holt<-c(paste(round(REOF_F_Holt,3),"%"))
REOF_A_Holt11<-mean(abs(((testing_data-validation_forecast)/testing_data)*100))
data.frame(correlation_Holt,RMSE_Holt,MAPE_Mean_All,MAD_Holt) # analysis of Error  by using Holt's linear model shows result of correlation ,MSE ,MPER
##   correlation_Holt RMSE_Holt
## 1        0.9999446  81.61922
##                                                      MAPE_Mean_All MAD_Holt
## 1 0.595 % MAPE  7 days COVID 19 Infection cases in Novgorod region 67.06217
data.frame(validation_dates,Validation_day_name=validation_data_by_name,AEOF_Holt,REOF_A_Holt,REOF_F_Holt)   # Analysis of error shows result AEOF,REOF_A,REOF_F
##   validation_dates Validation_day_name  AEOF_Holt REOF_A_Holt REOF_F_Holt
## 1       2020-11-22         воскресенье   5.605897     0.054 %     0.054 %
## 2       2020-11-23         понедельник  17.178211     0.162 %     0.162 %
## 3       2020-11-24             вторник  37.722313     0.349 %      0.35 %
## 4       2020-11-25               среда  65.242894     0.593 %     0.596 %
## 5       2020-11-26             четверг  88.744576     0.792 %     0.798 %
## 6       2020-11-27             пятница 116.231912     1.018 %     1.029 %
## 7       2020-11-28             суббота 138.709390     1.194 %     1.209 %
#Auto arima model
##################

require(tseries) # need to install tseries tj test Stationarity in time series 
paste ("tests For Check Stationarity in series  ==> ",y_lab, sep=" ")
## [1] "tests For Check Stationarity in series  ==>  COVID 19 Infection cases in Novgorod region"
kpss.test(data_series) # applay kpss test
## Warning in kpss.test(data_series): p-value smaller than printed p-value
## 
##  KPSS Test for Level Stationarity
## 
## data:  data_series
## KPSS Level = 4.1547, Truncation lag parameter = 5, p-value = 0.01
pp.test(data_series)   # applay pp test
## Warning in pp.test(data_series): p-value greater than printed p-value
## 
##  Phillips-Perron Unit Root Test
## 
## data:  data_series
## Dickey-Fuller Z(alpha) = 6.2312, Truncation lag parameter = 5, p-value
## = 0.99
## alternative hypothesis: stationary
adf.test(data_series)  # applay adf test
## Warning in adf.test(data_series): p-value greater than printed p-value
## 
##  Augmented Dickey-Fuller Test
## 
## data:  data_series
## Dickey-Fuller = 0.58183, Lag order = 6, p-value = 0.99
## alternative hypothesis: stationary
ndiffs(data_series)    # Doing first diffrencing on data
## [1] 2
#Taking the first difference
diff1_x1<-diff(data_series)
autoplot(diff1_x1, xlab = paste ("Time in  ", frequency ,y_lab , sep=" "),  col.main="black", col.lab="blue", col.sub="black", cex.main=1, cex.lab=1, cex.sub=1,font.main=4, font.lab=4, ylab=y_lab,main = "1nd differenced series")
## Warning: Ignoring unknown parameters: col.main, col.lab, col.sub, cex.main,
## cex.lab, cex.sub, font.main, font.lab

##Testing the stationary of the first differenced series
paste ("tests For Check Stationarity in series after taking first differences in  ==> ",y_lab, sep=" ")
## [1] "tests For Check Stationarity in series after taking first differences in  ==>  COVID 19 Infection cases in Novgorod region"
kpss.test(diff1_x1)   # applay kpss test after taking first differences
## Warning in kpss.test(diff1_x1): p-value smaller than printed p-value
## 
##  KPSS Test for Level Stationarity
## 
## data:  diff1_x1
## KPSS Level = 2.0323, Truncation lag parameter = 5, p-value = 0.01
pp.test(diff1_x1)     # applay pp test after taking first differences
## Warning in pp.test(diff1_x1): p-value greater than printed p-value
## 
##  Phillips-Perron Unit Root Test
## 
## data:  diff1_x1
## Dickey-Fuller Z(alpha) = 1.3618, Truncation lag parameter = 5, p-value
## = 0.99
## alternative hypothesis: stationary
adf.test(diff1_x1)    # applay adf test after taking first differences
## Warning in adf.test(diff1_x1): p-value greater than printed p-value
## 
##  Augmented Dickey-Fuller Test
## 
## data:  diff1_x1
## Dickey-Fuller = 1.6627, Lag order = 6, p-value = 0.99
## alternative hypothesis: stationary
#Taking the second difference
diff2_x1=diff(diff1_x1)
autoplot(diff2_x1, xlab = paste ("Time in  ", frequency ,y_lab , sep=" "),  col.main="black", col.lab="blue", col.sub="black", cex.main=1, cex.lab=1, cex.sub=1,font.main=4, font.lab=4, ylab=y_lab ,main = "2nd differenced series")
## Warning: Ignoring unknown parameters: col.main, col.lab, col.sub, cex.main,
## cex.lab, cex.sub, font.main, font.lab

##Testing the stationary of the first differenced series
paste ("tests For Check Stationarity in series after taking Second differences in",y_lab, sep=" ")
## [1] "tests For Check Stationarity in series after taking Second differences in COVID 19 Infection cases in Novgorod region"
kpss.test(diff2_x1)   # applay kpss test after taking Second differences
## 
##  KPSS Test for Level Stationarity
## 
## data:  diff2_x1
## KPSS Level = 0.548, Truncation lag parameter = 5, p-value = 0.03086
pp.test(diff2_x1)     # applay pp test after taking Second differences
## Warning in pp.test(diff2_x1): p-value smaller than printed p-value
## 
##  Phillips-Perron Unit Root Test
## 
## data:  diff2_x1
## Dickey-Fuller Z(alpha) = -287.79, Truncation lag parameter = 5, p-value
## = 0.01
## alternative hypothesis: stationary
adf.test(diff2_x1)    # applay adf test after taking Second differences
## Warning in adf.test(diff2_x1): p-value smaller than printed p-value
## 
##  Augmented Dickey-Fuller Test
## 
## data:  diff2_x1
## Dickey-Fuller = -5.6143, Lag order = 6, p-value = 0.01
## alternative hypothesis: stationary
####Fitting an ARIMA Model
#1. Using auto arima function
model1 <- auto.arima(data_series,stepwise=FALSE, approximation=FALSE, trace=T, test = c("kpss", "adf", "pp"))  #applaying auto arima
## 
##  ARIMA(0,2,0)                    : 1721.932
##  ARIMA(0,2,1)                    : 1704.106
##  ARIMA(0,2,2)                    : 1705.871
##  ARIMA(0,2,3)                    : 1706.143
##  ARIMA(0,2,4)                    : 1708.168
##  ARIMA(0,2,5)                    : 1700.004
##  ARIMA(1,2,0)                    : 1707.839
##  ARIMA(1,2,1)                    : 1705.977
##  ARIMA(1,2,2)                    : 1700.033
##  ARIMA(1,2,3)                    : 1701.191
##  ARIMA(1,2,4)                    : 1703.289
##  ARIMA(2,2,0)                    : 1704.5
##  ARIMA(2,2,1)                    : 1706.503
##  ARIMA(2,2,2)                    : 1708.617
##  ARIMA(2,2,3)                    : Inf
##  ARIMA(3,2,0)                    : 1706.512
##  ARIMA(3,2,1)                    : Inf
##  ARIMA(3,2,2)                    : 1703.149
##  ARIMA(4,2,0)                    : 1708.593
##  ARIMA(4,2,1)                    : Inf
##  ARIMA(5,2,0)                    : 1709.505
## 
## 
## 
##  Best model: ARIMA(0,2,5)
model1 # show the result of autoarima 
## Series: data_series 
## ARIMA(0,2,5) 
## 
## Coefficients:
##           ma1      ma2     ma3      ma4     ma5
##       -0.3360  -0.2513  0.1144  -0.0293  0.2966
## s.e.   0.0689   0.0782  0.0699   0.0831  0.0734
## 
## sigma^2 estimated as 45.73:  log likelihood=-843.83
## AIC=1699.66   AICc=1700   BIC=1720.89
#Make changes in the source of auto arima to run the best model
arima.string <- function (object, padding = FALSE) 
{
  order <- object$arma[c(1, 6, 2, 3, 7, 4, 5)]
  m <- order[7]
  result <- paste("ARIMA(", order[1], ",", order[2], ",", 
                  order[3], ")", sep = "")
  if (m > 1 && sum(order[4:6]) > 0) {
    result <- paste(result, "(", order[4], ",", order[5], 
                    ",", order[6], ")[", m, "]", sep = "")
  }
  if (padding && m > 1 && sum(order[4:6]) == 0) {
    result <- paste(result, "         ", sep = "")
    if (m <= 9) {
      result <- paste(result, " ", sep = "")
    }
    else if (m <= 99) {
      result <- paste(result, "  ", sep = "")
    }
    else {
      result <- paste(result, "   ", sep = "")
    }
  }
  if (!is.null(object$xreg)) {
    if (NCOL(object$xreg) == 1 && is.element("drift", names(object$coef))) {
      result <- paste(result, "with drift        ")
    }
    else {
      result <- paste("Regression with", result, "errors")
    }
  }
  else {
    if (is.element("constant", names(object$coef)) || is.element("intercept", 
                                                                 names(object$coef))) {
      result <- paste(result, "with non-zero mean")
    }
    else if (order[2] == 0 && order[5] == 0) {
      result <- paste(result, "with zero mean    ")
    }
    else {
      result <- paste(result, "                  ")
    }
  }
  if (!padding) {
    result <- gsub("[ ]*$", "", result)
  }
  return(result)
}






source("stringthearima.R")  
bestmodel <- arima.string(model1, padding = TRUE)
bestmodel <- substring(bestmodel,7,11)
bestmodel <- gsub(" ", "", bestmodel)
bestmodel <- gsub(")", "", bestmodel)
bestmodel <- strsplit(bestmodel, ",")[[1]]
bestmodel <- c(strtoi(bestmodel[1]),strtoi(bestmodel[2]),strtoi(bestmodel[3]))
bestmodel
## [1] 0 2 5
strtoi(bestmodel[3])
## [1] 5
#2. Using ACF and PACF Function
#par(mfrow=c(1,2))  # Code for making two plot in one graph 
acf(diff2_x1,xlab = paste ("Time in  ", frequency ,y_lab , sep=" "),  col.main="black", col.lab="blue", col.sub="black", cex.main=1, cex.lab=1, cex.sub=1,font.main=4, font.lab=4, ylab=y_lab, main=paste("ACF-2nd differenced series ",y_lab, sep=" ",lag.max=20))    # plot ACF "auto correlation function after taking second diffrences

pacf(diff2_x1,xlab = paste ("Time in  ", frequency ,y_lab , sep=" "),  col.main="black", col.lab="blue", col.sub="black", cex.main=1, cex.lab=1, cex.sub=1,font.main=4, font.lab=4, ylab=y_lab,main=paste("PACF-2nd differenced series ",y_lab, sep=" ",lag.max=20))   # plot PACF " Partial auto correlation function after taking second diffrences

library(forecast)   # install library forecast             
x1_model1= arima(data_series, order=c(bestmodel)) # Run Best model of auto arima  for forecasting
x1_model1  # Show result of best model of auto arima 
## 
## Call:
## arima(x = data_series, order = c(bestmodel))
## 
## Coefficients:
##           ma1      ma2     ma3      ma4     ma5
##       -0.3360  -0.2513  0.1144  -0.0293  0.2966
## s.e.   0.0689   0.0782  0.0699   0.0831  0.0734
## 
## sigma^2 estimated as 44.83:  log likelihood = -843.83,  aic = 1699.66
paste ("accuracy of autoarima Model For  ==> ",y_lab, sep=" ")
## [1] "accuracy of autoarima Model For  ==>  COVID 19 Infection cases in Novgorod region"
accuracy(x1_model1)  # aacuracy of best model from auto arima
##                     ME     RMSE      MAE       MPE     MAPE    MASE       ACF1
## Training set 0.8705439 6.668963 4.317022 0.2838636 3.326397 0.10742 0.01339842
x1_model1$x          # show result of best model from auto arima 
## NULL
checkresiduals(x1_model1,xlab = paste ("Time in  ", frequency ,y_lab , sep=" "),  col.main="black", col.lab="blue", col.sub="black", cex.main=1, cex.lab=1, cex.sub=1,font.main=4, font.lab=4, ylab=y_lab)  # checkresiduals from best model from using auto arima 

## 
##  Ljung-Box test
## 
## data:  Residuals from ARIMA(0,2,5)
## Q* = 26.185, df = 5, p-value = 8.217e-05
## 
## Model df: 5.   Total lags used: 10
paste("Box-Ljung test , Ljung-Box test For Modelling for   ==> ",y_lab, sep=" ")
## [1] "Box-Ljung test , Ljung-Box test For Modelling for   ==>  COVID 19 Infection cases in Novgorod region"
Box.test(x1_model1$residuals^2, lag=20, type="Ljung-Box")   # Do test for resdulas by using Box-Ljung test , Ljung-Box test For Modelling
## 
##  Box-Ljung test
## 
## data:  x1_model1$residuals^2
## X-squared = 451.95, df = 20, p-value < 2.2e-16
library(tseries)
jarque.bera.test(x1_model1$residuals)  # Do test jarque.bera.test 
## 
##  Jarque Bera Test
## 
## data:  x1_model1$residuals
## X-squared = 154.97, df = 2, p-value < 2.2e-16
#Actual Vs Fitted
plot(data_series, col='red',lwd=2, main="Actual vs Fitted Plot", xlab='Time in (days)', ylab=y_lab) # plot actual and Fitted model 
lines(fitted(x1_model1), col='blue')

#Test data

x1_test <- ts(testing_data, start =(rows-validation_data_days+1) ) # make testing data in time series and start from rows-6
forecasting_auto_arima <- forecast(x1_model1, h=N_forecasting_days+validation_data_days)
validation_forecast<-head(forecasting_auto_arima$mean,validation_data_days)
MAPE_Per_Day<-round(abs(((testing_data-validation_forecast)/testing_data)*100)  ,3)
paste ("MAPE % For ",validation_data_days,frequency,"by using bats Model for  ==> ",y_lab, sep=" ")
## [1] "MAPE % For  7 days by using bats Model for  ==>  COVID 19 Infection cases in Novgorod region"
MAPE_Mean_All<-paste(round(mean(MAPE_Per_Day),3),"% MAPE ",validation_data_days,frequency,y_lab,sep=" ")
MAPE_auto_arima<-paste(round(MAPE_Per_Day,3),"%")
MAPE_auto.arima_Model<-paste(MAPE_Per_Day ,"%")
paste (" MAPE that's Error of Forecasting for ",validation_data_days," days in bats Model for  ==> ",y_lab, sep=" ")
## [1] " MAPE that's Error of Forecasting for  7  days in bats Model for  ==>  COVID 19 Infection cases in Novgorod region"
paste(MAPE_Mean_All,"%")
## [1] "0.5 % MAPE  7 days COVID 19 Infection cases in Novgorod region %"
paste ("MAPE that's Error of Forecasting day by day for ",validation_data_days," days in bats Model for  ==> ",y_lab, sep=" ")
## [1] "MAPE that's Error of Forecasting day by day for  7  days in bats Model for  ==>  COVID 19 Infection cases in Novgorod region"
data.frame(date_auto.arima=validation_dates,validation_data_by_name,actual_data=testing_data,forecasting_auto.arima=validation_forecast,MAPE_auto.arima_Model)
##   date_auto.arima validation_data_by_name actual_data forecasting_auto.arima
## 1      2020-11-22             воскресенье       10426               10424.12
## 2      2020-11-23             понедельник       10611               10602.11
## 3      2020-11-24                 вторник       10806               10779.44
## 4      2020-11-25                   среда       11009               10956.53
## 5      2020-11-26                 четверг       11209               11133.54
## 6      2020-11-27                 пятница       11414               11310.56
## 7      2020-11-28                 суббота       11615               11487.57
##   MAPE_auto.arima_Model
## 1               0.018 %
## 2               0.084 %
## 3               0.246 %
## 4               0.477 %
## 5               0.673 %
## 6               0.906 %
## 7               1.097 %
data.frame(FD,forecating_date=forecasting_data_by_name,forecasting_by_auto.arima=tail(forecasting_auto_arima$mean,N_forecasting_days))
##           FD forecating_date forecasting_by_auto.arima
## 1 2020-11-29     воскресенье                  11664.58
## 2 2020-11-30     понедельник                  11841.59
## 3 2020-12-01         вторник                  12018.60
## 4 2020-12-02           среда                  12195.62
## 5 2020-12-03         четверг                  12372.63
## 6 2020-12-04         пятница                  12549.64
## 7 2020-12-05         суббота                  12726.65
plot(forecasting_auto_arima)
x1_test <- ts(testing_data, start =(rows-validation_data_days+1) )
lines(x1_test, col='red',lwd=2)

graph4<-autoplot(forecasting_auto_arima,xlab = paste ("Time in  ", frequency ,y_lab , sep=" "),  col.main="black", col.lab="blue", col.sub="black", cex.main=1, cex.lab=1, cex.sub=1,font.main=4, font.lab=4, ylab=y_lab)
graph4

## Error of forecasting
Error_auto.arima<-abs(testing_data-validation_forecast)  # Absolute error of forecast (AEOF)
REOF_A_auto.arima<-abs(((testing_data-validation_forecast)/testing_data)*100)  #Relative error of forecast (divided by actual)(REOF_A)
REOF_F_auto.arima<-abs(((testing_data-validation_forecast)/validation_forecast)*100)  #Relative error of forecast (divided by forecast)(REOF_F)
correlation_auto.arima<-cor(testing_data,validation_forecast, method = c("pearson"))     # correlation coefficient between predicted and actual values 
RMSE_auto.arima<-sqrt(sum((Error_auto.arima^2))/validation_data_days)   #  Root mean square forecast error
MAD_auto.arima<-abs((sum(testing_data-validation_forecast))/validation_data_days)   # average forecast accuracy
AEOF_auto.arima<-c(Error_auto.arima)
REOF_auto.arima1<-c(paste(round(REOF_A_auto.arima,3),"%"))
REOF_auto.arima2<-c(paste(round(REOF_F_auto.arima,3),"%"))
data.frame(correlation_auto.arima,RMSE_auto.arima,MAPE_Mean_All,MAD_auto.arima) # analysis of Error  by using Holt's linear model shows result of correlation ,MSE ,MPER
##   correlation_auto.arima RMSE_auto.arima
## 1              0.9998797        71.88772
##                                                    MAPE_Mean_All MAD_auto.arima
## 1 0.5 % MAPE  7 days COVID 19 Infection cases in Novgorod region       56.59133
data.frame(validation_dates,Validation_day_name=validation_data_by_name,AEOF_auto.arima,REOF_A_auto.arima=REOF_auto.arima1,REOF_F_auto.arima=REOF_auto.arima2)   # Analysis of error shows result AEOF,REOF_A,REOF_F
##   validation_dates Validation_day_name AEOF_auto.arima REOF_A_auto.arima
## 1       2020-11-22         воскресенье        1.880976           0.018 %
## 2       2020-11-23         понедельник        8.892658           0.084 %
## 3       2020-11-24             вторник       26.561754           0.246 %
## 4       2020-11-25               среда       52.469027           0.477 %
## 5       2020-11-26             четверг       75.456995           0.673 %
## 6       2020-11-27             пятница      103.444962           0.906 %
## 7       2020-11-28             суббота      127.432930           1.097 %
##   REOF_F_auto.arima
## 1           0.018 %
## 2           0.084 %
## 3           0.246 %
## 4           0.479 %
## 5           0.678 %
## 6           0.915 %
## 7           1.109 %
# SIR Model 
#install.packages("dplyr")
library(deSolve)
first<-rows-13
secondr<-rows-7
vector_SIR<-original_data[first:secondr]
Infected <- c(vector_SIR)
Day <- 1:(length(Infected))
N <- Population # population of the us
SIR <- function(time, state, parameters) {
  par <- as.list(c(state, parameters))
  with(par, {
    dS <- -beta/N * I * S
    dI <- beta/N * I * S - gamma * I
    dR <- gamma * I
    list(c(dS, dI, dR))
  })
}

init <- c(S = N-Infected[1], I = Infected[1], R = 0)
RSS <- function(parameters) {
  names(parameters) <- c("beta", "gamma")
  out <- ode(y = init, times = Day, func = SIR, parms = parameters)
  fit <- out[ , 3]
  sum((Infected - fit)^2)
}

# optimize with some sensible conditions
Opt <- optim(c(0.5, 0.5), RSS, method = "L-BFGS-B", 
             lower = c(0, 0), upper = c(10, 10))
Opt$message
## [1] "CONVERGENCE: REL_REDUCTION_OF_F <= FACTR*EPSMCH"
Opt_par <- setNames(Opt$par, c("beta", "gamma"))
Opt_par
##      beta     gamma 
## 0.1840828 0.1646051
# beta     gamma 
# 0.6512503 0.4920399 

out <- ode(y = init, times = Day, func = SIR, parms = Opt_par)

plot(out)
plot(out, obs=data.frame(time=Day, I=Infected))

result_SIR<-data.frame(out)
validation_forecast<-result_SIR$I
## Error of forecasting
Error_SIR<-abs(testing_data-validation_forecast)  # Absolute error of forecast (AEOF)
REOF_A_SIR<-abs(((testing_data-validation_forecast)/testing_data)*100)  #Relative error of forecast (divided by actual)(REOF_A)
REOF_F_SIR<-abs(((testing_data-validation_forecast)/validation_forecast)*100)  #Relative error of forecast (divided by forecast)(REOF_F)
correlation_SIR<-cor(testing_data,validation_forecast, method = c("pearson"))     # correlation coefficient between predicted and actual values 
RMSE_SIR<-sqrt(sum((Error_SIR^2))/validation_data_days)   #  Root mean square forecast error
MAD_SIR<-abs((sum(testing_data-validation_forecast))/validation_data_days)   # average forecast accuracy
AEOF_SIR<-c(Error_SIR)
REOF_A_SIR<-c(paste(round(REOF_A_SIR,3),"%"))
REOF_A_SIR1<-mean(abs(((testing_data-validation_forecast)/testing_data)*100))

REOF_F_SIR<-c(paste(round(REOF_F_SIR,3),"%"))
MAPE_Mean_All<-paste(round(mean(abs(((testing_data-validation_forecast)/testing_data)*100)),3),"% MAPE ",validation_data_days,frequency,y_lab,sep=" ")
data.frame(correlation_SIR,RMSE_SIR,MAPE_Mean_All,MAD_SIR) # analysis of Error  by using SIR's linear model shows result of correlation ,MSE ,MPER
##   correlation_SIR RMSE_SIR
## 1       0.9999186 1277.935
##                                                       MAPE_Mean_All  MAD_SIR
## 1 11.586 % MAPE  7 days COVID 19 Infection cases in Novgorod region 1276.485
data.frame(validation_dates,Validation_day_name=validation_data_by_name,AEOF_SIR,REOF_A_SIR,REOF_F_SIR,validation_forecast,testing_data)   # Analysis of error shows result AEOF,REOF_A,REOF_F
##   validation_dates Validation_day_name AEOF_SIR REOF_A_SIR REOF_F_SIR
## 1       2020-11-22         воскресенье 1195.000   11.462 %   12.946 %
## 2       2020-11-23         понедельник 1212.393   11.426 %     12.9 %
## 3       2020-11-24             вторник 1239.158   11.467 %   12.953 %
## 4       2020-11-25               среда 1273.410   11.567 %    13.08 %
## 5       2020-11-26             четверг 1304.269   11.636 %   13.168 %
## 6       2020-11-27             пятница 1339.858   11.739 %     13.3 %
## 7       2020-11-28             суббота 1371.306   11.806 %   13.387 %
##   validation_forecast testing_data
## 1            9231.000        10426
## 2            9398.607        10611
## 3            9566.842        10806
## 4            9735.590        11009
## 5            9904.731        11209
## 6           10074.142        11414
## 7           10243.694        11615
## forecasting by SIR model

Infected <- c(tail(original_data,validation_data_days))
Day <- 1:(length(Infected))
N <- Population # population of the us

SIR <- function(time, state, parameters) {
  par <- as.list(c(state, parameters))
  with(par, {
    dS <- -beta/N * I * S
    dI <- beta/N * I * S - gamma * I
    dR <- gamma * I
    list(c(dS, dI, dR))
  })
}

init <- c(S = N-Infected[1], I = Infected[1], R = 0)
RSS <- function(parameters) {
  names(parameters) <- c("beta", "gamma")
  out <- ode(y = init, times = Day, func = SIR, parms = parameters)
  fit <- out[ , 3]
  sum((Infected - fit)^2)
}

# optimize with some sensible conditions
Opt <- optim(c(0.5, 0.5), RSS, method = "L-BFGS-B", 
             lower = c(0, 0), upper = c(10, 10))
Opt$message
## [1] "CONVERGENCE: REL_REDUCTION_OF_F <= FACTR*EPSMCH"
Opt_par <- setNames(Opt$par, c("beta", "gamma"))
Opt_par
##      beta     gamma 
## 0.1258029 0.1063747
# beta     gamma 
# 0.6512503 0.4920399 

out <- ode(y = init, times = Day, func = SIR, parms = Opt_par)

plot(out)
plot(out, obs=data.frame(time=Day, I=Infected))

result_SIR <-data.frame(out)
data.frame(FD,forecating_date=forecasting_data_by_name,forecasting_by_SIR=result_SIR$I)
##           FD forecating_date forecasting_by_SIR
## 1 2020-11-29     воскресенье           10426.00
## 2 2020-11-30     понедельник           10618.70
## 3 2020-12-01         вторник           10813.52
## 4 2020-12-02           среда           11010.42
## 5 2020-12-03         четверг           11209.36
## 6 2020-12-04         пятница           11410.31
## 7 2020-12-05         суббота           11613.19
# Choose Best model by least error

paste("System Summarizes  Error ==> ( MAPE ) of Forecasting  by using bats model and BATS Model, Holt's Linear Models , and autoarima for  ==> ", y_lab , sep=" ")
## [1] "System Summarizes  Error ==> ( MAPE ) of Forecasting  by using bats model and BATS Model, Holt's Linear Models , and autoarima for  ==>  COVID 19 Infection cases in Novgorod region"
M1<-mean(REOF_A_bats)

paste("System Summarizes  Error ==> ( MAPE ) of Forecasting  by using TBATS  Model For ==> ", y_lab , sep=" ")
## [1] "System Summarizes  Error ==> ( MAPE ) of Forecasting  by using TBATS  Model For ==>  COVID 19 Infection cases in Novgorod region"
M2<-mean(REOF_A_tbats1)

paste("System Summarizes  Error ==> ( MAPE ) of Forecasting  by using Holt's Linear << Exponential Smoothing >>  For ==> ", y_lab , sep=" ")
## [1] "System Summarizes  Error ==> ( MAPE ) of Forecasting  by using Holt's Linear << Exponential Smoothing >>  For ==>  COVID 19 Infection cases in Novgorod region"
M3<-REOF_A_Holt11

paste("System Summarizes  Error ==> ( MAPE ) of Forecasting  by using auto arima  Model For ==> ", y_lab , sep=" ")
## [1] "System Summarizes  Error ==> ( MAPE ) of Forecasting  by using auto arima  Model For ==>  COVID 19 Infection cases in Novgorod region"
M4<-mean(REOF_A_auto.arima)
paste("System Summarizes  Error ==> ( MAPE ) of Forecasting  by using SIR Model For ==> ", y_lab , sep=" ")
## [1] "System Summarizes  Error ==> ( MAPE ) of Forecasting  by using SIR Model For ==>  COVID 19 Infection cases in Novgorod region"
M5<-REOF_A_SIR1

paste("System Summarizes  Error ==> ( MAPE ) of Forecasting  by using autoarima  Model For ==> ", y_lab , sep=" ")
## [1] "System Summarizes  Error ==> ( MAPE ) of Forecasting  by using autoarima  Model For ==>  COVID 19 Infection cases in Novgorod region"
data.frame(validation_dates,forecating_date=forecasting_data_by_name,MAPE_bats_error=REOF_A_bats,MAPE_TBATS_error=REOF_A_tbats1,MAPE_Holt_error=REOF_A_Holt1,MAPE_autoarima_error = REOF_A_auto.arima)
##   validation_dates forecating_date MAPE_bats_error MAPE_TBATS_error
## 1       2020-11-22     воскресенье      0.04373609       0.05844794
## 2       2020-11-23     понедельник      0.15355735       0.17534691
## 3       2020-11-24         вторник      0.35191574       0.37038912
## 4       2020-11-25           среда      0.61551512       0.63539980
## 5       2020-11-26         четверг      0.84303778       0.86055937
## 6       2020-11-27         пятница      1.10592386       1.12349195
## 7       2020-11-28         суббота      1.32556345       1.35620071
##   MAPE_Holt_error MAPE_autoarima_error
## 1      0.05376844           0.01804120
## 2      0.16189060           0.08380604
## 3      0.34908674           0.24580561
## 4      0.59263234           0.47660121
## 5      0.79172607           0.67318222
## 6      1.01832760           0.90629895
## 7      1.19422635           1.09714102
recommend_Model<-c(M1,M2,M3,M4,M5)
best_recommended_model<-min(recommend_Model)
paste ("lodaing .....   ... . .Select Minimum MAPE from Models for select best Model ==> ", y_lab , sep=" ")
## [1] "lodaing .....   ... . .Select Minimum MAPE from Models for select best Model ==>  COVID 19 Infection cases in Novgorod region"
best_recommended_model
## [1] 0.5001252
paste ("Best Model For Forecasting  ==> ",y_lab, sep=" ")
## [1] "Best Model For Forecasting  ==>  COVID 19 Infection cases in Novgorod region"
if(best_recommended_model >= M1) {paste("System Recommend Bats Model That's better  For forecasting==> ",y_lab, sep=" ")}
if(best_recommended_model >= M2) {paste("System Recommend  That's better TBATS  For forecasting ==> ",y_lab, sep=" ")}
if(best_recommended_model >= M3) {paste("System Recommend Holt's Linear Model < Exponential Smoothing Model >   That's better  For forecasting ==> ",y_lab, sep=" ")}
if(best_recommended_model >= M4) {paste("System Recommend auto arima Model  That's better  For forecasting ==> ",y_lab, sep=" ")}
## [1] "System Recommend auto arima Model  That's better  For forecasting ==>  COVID 19 Infection cases in Novgorod region"
if(best_recommended_model >= M5) {paste("System Recommend SIR Model  That's better  For forecasting ==> ",y_lab, sep=" ")}
message("System finished Forecasting  by using autoarima and Holt's ,TBATS, and SIR  Model ==>",y_lab, sep=" ")
## System finished Forecasting  by using autoarima and Holt's ,TBATS, and SIR  Model ==>COVID 19 Infection cases in Novgorod region
message(" Thank you for using our System For Modelling  ==> ",y_lab, sep=" ")
##  Thank you for using our System For Modelling  ==> COVID 19 Infection cases in Novgorod region
## Markov Chain For COVID 19 infection cases

require(markovchain)
require(data.table)
xx9<-original_data[rows]
xx8<-original_data[rows-1]
xx7<-original_data[rows-2]
xx6<-original_data[rows-3]
xx5<-original_data[rows-4]
xx4<-original_data[rows-5]
xx3<-original_data[rows-6]
xx2<-original_data[rows-7]
xx1<-original_data[rows-8]
infection_vector1<-c(xx1,xx2,xx3)
infection_vector2<-c(xx4,xx5,xx6)
infection_vector3<-c(xx7,xx8,xx9)
sum_vector1<-sum(infection_vector1)
sum_vector2<-sum(infection_vector2)
sum_vector3<-sum(infection_vector3)
proba_vector1<-c(infection_vector1/sum_vector1)
proba_vector2<-c(infection_vector2/sum_vector2)
proba_vector3<-c(infection_vector3/sum_vector3)
CovidStates = c("Low Infections", "Mid Infections", "Hight Infections")
byRow = TRUE


CovidMatrix = matrix(data = c(proba_vector1,
                              proba_vector2,
                              proba_vector3), byrow = byRow, nrow = 3,
                     
                     dimnames = list(CovidStates, CovidStates))


mcCovid = new("markovchain", states = CovidStates, byrow = byRow,
              transitionMatrix = CovidMatrix, name = "Cvid 19")

mcCovid = new("markovchain", states = c("Low Infections", "Mid Infections", "Hight Infections"),
              transitionMatrix = matrix(data = c(proba_vector1,
                                                 proba_vector2,
                                                 proba_vector3), byrow = byRow, nrow = 3),
              name = "Cvid 19")

name = ("Cvid 19")
initialState = c(0,1,0)
after2Days = initialState * (mcCovid * mcCovid)
after7Days = initialState * (mcCovid^7)
after30days =initialState * (mcCovid^30)
after7Days
##      Low Infections Mid Infections Hight Infections
## [1,]      0.3274091      0.3333085        0.3392824
plot(mcCovid,xlab = paste ("Time in  ", frequency ,y_lab , sep=" "),  col.main="black", col.lab="blue", col.sub="black", cex.main=1, cex.lab=1, cex.sub=1,font.main=4, font.lab=4, ylab=y_lab,main = "Markov Chain")