New package “Epidemic. ta” for forecasting Covid-19 infection cases apply Example For forecasting infection cases in the China

That’s Algorithm Developed By

Makarovskikh Tatyana Anatolyevna “Макаровских Татьяна Анатольевна”

Abotaleb mostafa “Аботалеб Мостафа”

Department of Electrical Engineering and Computer Science

South ural state university, Chelyabinsk, Russian federation

# Imports
library(fpp2)
## Warning: package 'fpp2' was built under R version 4.0.3
## Registered S3 method overwritten by 'quantmod':
##   method            from
##   as.zoo.data.frame zoo
## -- Attaching packages --------------------------------------------------------------------------- fpp2 2.4 --
## v ggplot2   3.3.2     v fma       2.4  
## v forecast  8.13      v expsmooth 2.3
## Warning: package 'ggplot2' was built under R version 4.0.3
## Warning: package 'forecast' was built under R version 4.0.3
## 
library(forecast)
library(ggplot2)
library("readxl")
## Warning: package 'readxl' was built under R version 4.0.3
library(moments)
## Warning: package 'moments' was built under R version 4.0.3
library(forecast)
require(forecast)  
require(tseries)
## Loading required package: tseries
## Warning: package 'tseries' was built under R version 4.0.3
require(markovchain)
## Loading required package: markovchain
## Warning: package 'markovchain' was built under R version 4.0.3
## Package:  markovchain
## Version:  0.8.5-3
## Date:     2020-12-03
## BugReport: https://github.com/spedygiorgio/markovchain/issues
require(data.table)
## Loading required package: data.table
#usa population =332002416
# Russia population =145966453
#population in japan = 126279505
#population in china =1442182072
#population in cheleabinsk =1130319
#population in moscow =12537954
#population in  MO =7690863
#Новгородская обл =1250615
# when you use data from russian websites use ==> unlist for define time series
Full_original_data<-read_excel("F:/Phd/ALL Russia Analysis/Data Russia till 29_11_2020 Covid four country.xlsx",sheet = "China")
y_lab<- "COVID 19 Infection cases in China"   # input name of data
Actual_date_interval <- c("2020/01/22","2020/11/28")
Forecast_date_interval <- c("2020/11/29","2020/12/5")
validation_data_days <-7
frequency<-"days"
Population <-1442182072   # Population size in City for applaying SIR model
# Data Preparation & calculate some of statistics measures
original_data<-Full_original_data$infection

summary(original_data)
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##     549   83244   85160   81617   90649   93329
sd(original_data)  # calculate standard deviation
## [1] 18491.18
skewness(original_data)  # calculate Cofficient of skewness
## [1] -3.26615
kurtosis(original_data)   # calculate Cofficient of kurtosis
## [1] 13.04048
rows <- NROW(original_data)
training_data<-original_data[1:(rows-validation_data_days)]
testing_data<-original_data[(rows-validation_data_days+1):rows]
AD<-fulldate<-seq(as.Date(Actual_date_interval[1]),as.Date(Actual_date_interval[2]), frequency)  #input range for actual date
FD<-seq(as.Date(Forecast_date_interval[1]),as.Date(Forecast_date_interval[2]), frequency)  #input range forecasting date
N_forecasting_days<-nrow(data.frame(FD)) 
validation_dates<-tail(AD,validation_data_days)
validation_data_by_name<-weekdays(validation_dates)
forecasting_data_by_name<-weekdays(FD)
##bats model
# Data Modeling
data_series<-ts(training_data)
autoplot(data_series ,xlab=paste ("Time in  ", frequency, sep=" "), ylab = y_lab, main=paste ("Actual Data :", y_lab, sep=" "))

model_bats<-bats(data_series)
accuracy(model_bats)  # accuracy on training data
##                       ME     RMSE      MAE       MPE     MAPE      MASE
## Training set -0.07248013 889.3494 183.8106 0.6722956 1.161568 0.6067079
##                     ACF1
## Training set -0.02534514
# Print Model Parameters
model_bats
## BATS(1, {0,0}, 1, -)
## 
## Call: bats(y = data_series)
## 
## Parameters
##   Lambda: 1
##   Alpha: 1.123249
##   Beta: 0.2700065
##   Damping Parameter: 1
## 
## Seed States:
##          [,1]
## [1,]  7.32516
## [2,] 44.27698
## attr(,"lambda")
## [1] 0.9999999
## 
## Sigma: 889.348
## AIC: 5896.894
plot(model_bats,xlab = paste ("Time in  ", frequency ,y_lab , sep=" "),  col.main="black", col.lab="blue", col.sub="black", cex.main=1, cex.lab=1, cex.sub=1,font.main=4, font.lab=4)

# Testing Data Evaluation
forecasting_bats <- predict(model_bats, h=N_forecasting_days+validation_data_days)
validation_forecast<-head(forecasting_bats$mean,validation_data_days)
MAPE_Per_Day<-round(  abs(((testing_data-validation_forecast)/testing_data)*100)  ,3)
paste ("MAPE % For ",validation_data_days,frequency,"by using bats Model for  ==> ",y_lab, sep=" ")
## [1] "MAPE % For  7 days by using bats Model for  ==>  COVID 19 Infection cases in China"
MAPE_Mean_All<-paste(round(mean(MAPE_Per_Day),3),"% MAPE ",validation_data_days,frequency,y_lab,sep=" ")
MAPE_bats<-paste(round(MAPE_Per_Day,3),"%")
MAPE_bats_Model<-paste(MAPE_Per_Day ,"%")
paste (" MAPE that's Error of Forecasting for ",validation_data_days," days in bats Model for  ==> ",y_lab, sep=" ")
## [1] " MAPE that's Error of Forecasting for  7  days in bats Model for  ==>  COVID 19 Infection cases in China"
paste(MAPE_Mean_All,"%")
## [1] "0.236 % MAPE  7 days COVID 19 Infection cases in China %"
paste ("MAPE that's Error of Forecasting day by day for ",validation_data_days," days in bats Model for  ==> ",y_lab, sep=" ")
## [1] "MAPE that's Error of Forecasting day by day for  7  days in bats Model for  ==>  COVID 19 Infection cases in China"
data.frame(date_bats=validation_dates,validation_data_by_name,actual_data=testing_data,forecasting_bats=validation_forecast,MAPE_bats_Model)
##    date_bats validation_data_by_name actual_data forecasting_bats
## 1 2020-11-22             воскресенье       92733         92689.62
## 2 2020-11-23             понедельник       92829         92727.93
## 3 2020-11-24                 вторник       92914         92766.24
## 4 2020-11-25                   среда       93025         92804.55
## 5 2020-11-26                 четверг       93113         92842.86
## 6 2020-11-27                 пятница       93225         92881.17
## 7 2020-11-28                 суббота       93329         92919.48
##   MAPE_bats_Model
## 1         0.047 %
## 2         0.109 %
## 3         0.159 %
## 4         0.237 %
## 5          0.29 %
## 6         0.369 %
## 7         0.439 %
data.frame(FD,forecating_date=forecasting_data_by_name,forecasting_by_bats=tail(forecasting_bats$mean,N_forecasting_days))
##           FD forecating_date forecasting_by_bats
## 1 2020-11-29     воскресенье            92957.79
## 2 2020-11-30     понедельник            92996.10
## 3 2020-12-01         вторник            93034.41
## 4 2020-12-02           среда            93072.72
## 5 2020-12-03         четверг            93111.03
## 6 2020-12-04         пятница            93149.33
## 7 2020-12-05         суббота            93187.64
plot(forecasting_bats)
x1_test <- ts(testing_data, start =(rows-validation_data_days+1) )
lines(x1_test, col='red',lwd=2)

graph1<-autoplot(forecasting_bats,xlab = paste ("Time in  ", frequency ,y_lab , sep=" "),  col.main="black", col.lab="blue", col.sub="black", cex.main=1, cex.lab=1, cex.sub=1,font.main=4, font.lab=4, ylab=y_lab)
graph1

## Error of forecasting
Error_bats<-abs(testing_data-validation_forecast)  # Absolute error of forecast (AEOF)
REOF_A_bats<-abs(((testing_data-validation_forecast)/testing_data)*100)  #Relative error of forecast (divided by actual)(REOF_A)
REOF_F_bats<-abs(((testing_data-validation_forecast)/validation_forecast)*100)  #Relative error of forecast (divided by forecast)(REOF_F)
correlation_bats<-cor(testing_data,validation_forecast, method = c("pearson"))     # correlation coefficient between predicted and actual values 
RMSE_bats<-sqrt(sum((Error_bats^2))/validation_data_days)   #  Root mean square forecast error
MAD_bats<-abs((sum(testing_data-validation_forecast))/validation_data_days)   # average forecast accuracy
AEOF_bats<-c(Error_bats)
REOF_Abats<-c(paste(round(REOF_A_bats,3),"%"))
REOF_Fbats<-c(paste(round(REOF_F_bats,3),"%"))
data.frame(correlation_bats,RMSE_bats,MAPE_Mean_All,MAD_bats) # analysis of Error  by using Bats Model shows result of correlation ,MSE ,MPER
##   correlation_bats RMSE_bats
## 1        0.9993874  251.1196
##                                            MAPE_Mean_All MAD_bats
## 1 0.236 % MAPE  7 days COVID 19 Infection cases in China 219.4485
data.frame(validation_dates,Validation_day_name=validation_data_by_name,AEOF_bats,REOF_Abats,REOF_Fbats)   # Analysis of error shows result AEOF,REOF_A,REOF_F
##   validation_dates Validation_day_name AEOF_bats REOF_Abats REOF_Fbats
## 1       2020-11-22         воскресенье   43.3761    0.047 %    0.047 %
## 2       2020-11-23         понедельник  101.0669    0.109 %    0.109 %
## 3       2020-11-24             вторник  147.7577    0.159 %    0.159 %
## 4       2020-11-25               среда  220.4485    0.237 %    0.238 %
## 5       2020-11-26             четверг  270.1393     0.29 %    0.291 %
## 6       2020-11-27             пятница  343.8301    0.369 %     0.37 %
## 7       2020-11-28             суббота  409.5208    0.439 %    0.441 %
## TBATS Model

# Data Modeling
data_series<-ts(training_data)
model_TBATS<-forecast:::fitSpecificTBATS(data_series,use.box.cox=FALSE, use.beta=TRUE,  seasonal.periods=c(6),use.damping=FALSE,k.vector=c(2))
accuracy(model_TBATS)  # accuracy on training data
##                    ME     RMSE      MAE      MPE     MAPE     MASE         ACF1
## Training set 8.264055 1008.811 266.2988 3.992163 6.787387 0.878979 -0.007658573
# Print Model Parameters
model_TBATS
## TBATS(1, {0,0}, 1, {<6,2>})
## 
## Call: NULL
## 
## Parameters
##   Alpha: 1.081409
##   Beta: 0.225458
##   Damping Parameter: 1
##   Gamma-1 Values: -0.001777534
##   Gamma-2 Values: 0.001856258
## 
## Seed States:
##              [,1]
## [1,] -7346.869868
## [2,]  -528.916366
## [3,]   104.390921
## [4,]   -17.323721
## [5,]     2.245731
## [6,]    17.411924
## 
## Sigma: 1008.811
## AIC: 5983.777
plot(model_TBATS,xlab = paste ("Time in  ", frequency ,y_lab , sep=" "),  col.main="black", col.lab="blue", col.sub="black", cex.main=1, cex.lab=1, cex.sub=1,font.main=4, font.lab=4, ylab=y_lab)

# Testing Data Evaluation
forecasting_tbats <- predict(model_TBATS, h=N_forecasting_days+validation_data_days)
validation_forecast<-head(forecasting_tbats$mean,validation_data_days)
MAPE_Per_Day<-round(  abs(((testing_data-validation_forecast)/testing_data)*100)  ,3)
paste ("MAPE % For ",validation_data_days,frequency,"by using TBATS Model for  ==> ",y_lab, sep=" ")
## [1] "MAPE % For  7 days by using TBATS Model for  ==>  COVID 19 Infection cases in China"
MAPE_Mean_All<-paste(round(mean(MAPE_Per_Day),3),"% MAPE ",validation_data_days,frequency,y_lab,sep=" ")
MAPE_TBATS<-paste(round(MAPE_Per_Day,3),"%")
MAPE_TBATS_Model<-paste(MAPE_Per_Day ,"%")
paste (" MAPE that's Error of Forecasting for ",validation_data_days," days in TBATS Model for  ==> ",y_lab, sep=" ")
## [1] " MAPE that's Error of Forecasting for  7  days in TBATS Model for  ==>  COVID 19 Infection cases in China"
paste(MAPE_Mean_All,"%")
## [1] "0.21 % MAPE  7 days COVID 19 Infection cases in China %"
paste ("MAPE that's Error of Forecasting day by day for ",validation_data_days," days in TBATS Model for  ==> ",y_lab, sep=" ")
## [1] "MAPE that's Error of Forecasting day by day for  7  days in TBATS Model for  ==>  COVID 19 Infection cases in China"
data.frame(date_TBATS=validation_dates,validation_data_by_name,actual_data=testing_data,forecasting_TBATS=validation_forecast,MAPE_TBATS_Model)
##   date_TBATS validation_data_by_name actual_data forecasting_TBATS
## 1 2020-11-22             воскресенье       92733          92753.00
## 2 2020-11-23             понедельник       92829          92861.34
## 3 2020-11-24                 вторник       92914          92885.93
## 4 2020-11-25                   среда       93025          92776.67
## 5 2020-11-26                 четверг       93113          92758.92
## 6 2020-11-27                 пятница       93225          92877.92
## 7 2020-11-28                 суббота       93329          92989.15
##   MAPE_TBATS_Model
## 1          0.022 %
## 2          0.035 %
## 3           0.03 %
## 4          0.267 %
## 5           0.38 %
## 6          0.372 %
## 7          0.364 %
data.frame(FD,forecating_date=forecasting_data_by_name,forecasting_by_TBATS=tail(forecasting_tbats$mean,N_forecasting_days))
##           FD forecating_date forecasting_by_TBATS
## 1 2020-11-29     воскресенье             93097.49
## 2 2020-11-30     понедельник             93122.08
## 3 2020-12-01         вторник             93012.82
## 4 2020-12-02           среда             92995.08
## 5 2020-12-03         четверг             93114.08
## 6 2020-12-04         пятница             93225.31
## 7 2020-12-05         суббота             93333.64
plot(forecasting_tbats)
x1_test <- ts(testing_data, start =(rows-validation_data_days+1) )
lines(x1_test, col='red',lwd=2)

graph2<-autoplot(forecasting_tbats,xlab = paste ("Time in  ", frequency ,y_lab , sep=" "),  col.main="black", col.lab="blue", col.sub="black", cex.main=1, cex.lab=1, cex.sub=1,font.main=4, font.lab=4, ylab=y_lab)
graph2

## Error of forecasting TBATS Model

Error_tbats<-abs(testing_data-validation_forecast)  # Absolute error of forecast (AEOF)
REOF_A_tbats1<-abs(((testing_data-validation_forecast)/testing_data)*100)  #Relative error of forecast (divided by actual)(REOF_A)
REOF_F_tbats<-abs(((testing_data-validation_forecast)/validation_forecast)*100)  #Relative error of forecast (divided by forecast)(REOF_F)
correlation_tbats<-cor(testing_data,validation_forecast, method = c("pearson"))     # correlation coefficient between predicted and actual values 
RMSE_tbats<-sqrt(sum((Error_tbats^2))/validation_data_days)   #  Root mean square forecast error
MAD_tbats<-abs((sum(testing_data-validation_forecast))/validation_data_days)   # average forecast accuracy
AEOF_tbats<-c(Error_tbats)
REOF_A_tbats<-c(paste(round(REOF_A_tbats1,3),"%"))
REOF_F_tbats<-c(paste(round(REOF_F_tbats,3),"%"))
data.frame(correlation_tbats,RMSE_tbats,MAPE_Mean_All,MAD_tbats) # analysis of Error  by using Holt's linear model shows result of correlation ,MSE ,MPER
##   correlation_tbats RMSE_tbats
## 1         0.5598285   246.4691
##                                           MAPE_Mean_All MAD_tbats
## 1 0.21 % MAPE  7 days COVID 19 Infection cases in China  180.7234
data.frame(validation_dates,Validation_day_name=validation_data_by_name,AEOF_tbats,REOF_A_tbats,REOF_F_tbats)   # Analysis of error shows result AEOF,REOF_A,REOF_F
##   validation_dates Validation_day_name AEOF_tbats REOF_A_tbats REOF_F_tbats
## 1       2020-11-22         воскресенье   20.00182      0.022 %      0.022 %
## 2       2020-11-23         понедельник   32.33588      0.035 %      0.035 %
## 3       2020-11-24             вторник   28.07203       0.03 %       0.03 %
## 4       2020-11-25               среда  248.33091      0.267 %      0.268 %
## 5       2020-11-26             четверг  354.07678       0.38 %      0.382 %
## 6       2020-11-27             пятница  347.07585      0.372 %      0.374 %
## 7       2020-11-28             суббота  339.84594      0.364 %      0.365 %
## Holt's linear trend


# Data Modeling
data_series<-ts(training_data)
model_holt<-holt(data_series,h=N_forecasting_days+validation_data_days,lambda = "auto")
accuracy(model_holt)  # accuracy on training data
##                     ME     RMSE      MAE        MPE      MAPE      MASE    ACF1
## Training set -88.69075 944.9715 221.3907 -0.1161827 0.7896821 0.7307496 0.16232
# Print Model Parameters
summary(model_holt$model)
## Holt's method 
## 
## Call:
##  holt(y = data_series, h = N_forecasting_days + validation_data_days,  
## 
##  Call:
##      lambda = "auto") 
## 
##   Box-Cox transformation: lambda= 0.4106 
## 
##   Smoothing parameters:
##     alpha = 0.9727 
##     beta  = 0.2383 
## 
##   Initial states:
##     l = 22.9523 
##     b = 6.8933 
## 
##   sigma:  1.7769
## 
##      AIC     AICc      BIC 
## 2101.341 2101.541 2119.942 
## 
## Training set error measures:
##                     ME     RMSE      MAE        MPE      MAPE      MASE    ACF1
## Training set -88.69075 944.9715 221.3907 -0.1161827 0.7896821 0.7307496 0.16232
# Testing Data Evaluation
forecasting_holt <- predict(model_holt, h=N_forecasting_days+validation_data_days,lambda = "auto")
validation_forecast<-head(forecasting_holt$mean,validation_data_days)
MAPE_Per_Day<-round(  abs(((testing_data-validation_forecast)/testing_data)*100)  ,3)
paste ("MAPE % For ",validation_data_days,frequency,"by using holt Model for  ==> ",y_lab, sep=" ")
## [1] "MAPE % For  7 days by using holt Model for  ==>  COVID 19 Infection cases in China"
MAPE_Mean_All<-paste(round(mean(MAPE_Per_Day),3),"% MAPE ",validation_data_days,frequency,y_lab,sep=" ")
MAPE_holt<-paste(round(MAPE_Per_Day,3),"%")
MAPE_holt_Model<-paste(MAPE_Per_Day ,"%")
paste (" MAPE that's Error of Forecasting for ",validation_data_days," days in holt Model for  ==> ",y_lab, sep=" ")
## [1] " MAPE that's Error of Forecasting for  7  days in holt Model for  ==>  COVID 19 Infection cases in China"
paste(MAPE_Mean_All,"%")
## [1] "0.243 % MAPE  7 days COVID 19 Infection cases in China %"
paste ("MAPE that's Error of Forecasting day by day for ",validation_data_days," days in holt Model for  ==> ",y_lab, sep=" ")
## [1] "MAPE that's Error of Forecasting day by day for  7  days in holt Model for  ==>  COVID 19 Infection cases in China"
data.frame(date_holt=validation_dates,validation_data_by_name,actual_data=testing_data,forecasting_holt=validation_forecast,MAPE_holt_Model)
##    date_holt validation_data_by_name actual_data forecasting_holt
## 1 2020-11-22             воскресенье       92733         92684.76
## 2 2020-11-23             понедельник       92829         92722.36
## 3 2020-11-24                 вторник       92914         92759.96
## 4 2020-11-25                   среда       93025         92797.57
## 5 2020-11-26                 четверг       93113         92835.19
## 6 2020-11-27                 пятница       93225         92872.82
## 7 2020-11-28                 суббота       93329         92910.46
##   MAPE_holt_Model
## 1         0.052 %
## 2         0.115 %
## 3         0.166 %
## 4         0.244 %
## 5         0.298 %
## 6         0.378 %
## 7         0.448 %
data.frame(FD,forecating_date=forecasting_data_by_name,forecasting_by_holt=tail(forecasting_holt$mean,N_forecasting_days))
##           FD forecating_date forecasting_by_holt
## 1 2020-11-29     воскресенье            92948.11
## 2 2020-11-30     понедельник            92985.77
## 3 2020-12-01         вторник            93023.44
## 4 2020-12-02           среда            93061.11
## 5 2020-12-03         четверг            93098.80
## 6 2020-12-04         пятница            93136.49
## 7 2020-12-05         суббота            93174.19
plot(forecasting_holt)
x1_test <- ts(testing_data, start =(rows-validation_data_days+1) )
lines(x1_test, col='red',lwd=2)

graph3<-autoplot(forecasting_holt,xlab = paste ("Time in  ", frequency ,y_lab , sep=" "),  col.main="black", col.lab="blue", col.sub="black", cex.main=1, cex.lab=1, cex.sub=1,font.main=4, font.lab=4, ylab=y_lab)
graph3

## Error of forecasting by using Holt's linear model
Error_Holt<-abs(testing_data-validation_forecast)  # Absolute error of forecast (AEOF)
REOF_A_Holt1<-abs(((testing_data-validation_forecast)/testing_data)*100)  #Relative error of forecast (divided by actual)(REOF_A)
REOF_F_Holt<-abs(((testing_data-validation_forecast)/validation_forecast)*100)  #Relative error of forecast (divided by forecast)(REOF_F)
correlation_Holt<-cor(testing_data,validation_forecast, method = c("pearson"))     # correlation coefficient between predicted and actual values 
RMSE_Holt<-sqrt(sum((Error_Holt^2))/validation_data_days)   #  Root mean square forecast error
MAD_Holt<-abs((sum(testing_data-validation_forecast))/validation_data_days)   # average forecast accuracy
AEOF_Holt<-c(Error_Holt)
REOF_A_Holt<-c(paste(round(REOF_A_Holt1,3),"%"))
REOF_F_Holt<-c(paste(round(REOF_F_Holt,3),"%"))
REOF_A_Holt11<-mean(abs(((testing_data-validation_forecast)/testing_data)*100))
data.frame(correlation_Holt,RMSE_Holt,MAPE_Mean_All,MAD_Holt) # analysis of Error  by using Holt's linear model shows result of correlation ,MSE ,MPER
##   correlation_Holt RMSE_Holt
## 1        0.9993929  257.8833
##                                            MAPE_Mean_All MAD_Holt
## 1 0.243 % MAPE  7 days COVID 19 Infection cases in China  226.409
data.frame(validation_dates,Validation_day_name=validation_data_by_name,AEOF_Holt,REOF_A_Holt,REOF_F_Holt)   # Analysis of error shows result AEOF,REOF_A,REOF_F
##   validation_dates Validation_day_name AEOF_Holt REOF_A_Holt REOF_F_Holt
## 1       2020-11-22         воскресенье  48.23692     0.052 %     0.052 %
## 2       2020-11-23         понедельник 106.64259     0.115 %     0.115 %
## 3       2020-11-24             вторник 154.03928     0.166 %     0.166 %
## 4       2020-11-25               среда 227.42698     0.244 %     0.245 %
## 5       2020-11-26             четверг 277.80570     0.298 %     0.299 %
## 6       2020-11-27             пятница 352.17542     0.378 %     0.379 %
## 7       2020-11-28             суббота 418.53615     0.448 %      0.45 %
#Auto arima model
##################

require(tseries) # need to install tseries tj test Stationarity in time series 
paste ("tests For Check Stationarity in series  ==> ",y_lab, sep=" ")
## [1] "tests For Check Stationarity in series  ==>  COVID 19 Infection cases in China"
kpss.test(data_series) # applay kpss test
## Warning in kpss.test(data_series): p-value smaller than printed p-value
## 
##  KPSS Test for Level Stationarity
## 
## data:  data_series
## KPSS Level = 2.165, Truncation lag parameter = 5, p-value = 0.01
pp.test(data_series)   # applay pp test
## 
##  Phillips-Perron Unit Root Test
## 
## data:  data_series
## Dickey-Fuller Z(alpha) = -10.556, Truncation lag parameter = 5, p-value
## = 0.5185
## alternative hypothesis: stationary
adf.test(data_series)  # applay adf test
## Warning in adf.test(data_series): p-value smaller than printed p-value
## 
##  Augmented Dickey-Fuller Test
## 
## data:  data_series
## Dickey-Fuller = -6.4174, Lag order = 6, p-value = 0.01
## alternative hypothesis: stationary
ndiffs(data_series)    # Doing first diffrencing on data
## [1] 2
#Taking the first difference
diff1_x1<-diff(data_series)
autoplot(diff1_x1, xlab = paste ("Time in  ", frequency ,y_lab , sep=" "),  col.main="black", col.lab="blue", col.sub="black", cex.main=1, cex.lab=1, cex.sub=1,font.main=4, font.lab=4, ylab=y_lab,main = "1nd differenced series")
## Warning: Ignoring unknown parameters: col.main, col.lab, col.sub, cex.main,
## cex.lab, cex.sub, font.main, font.lab

##Testing the stationary of the first differenced series
paste ("tests For Check Stationarity in series after taking first differences in  ==> ",y_lab, sep=" ")
## [1] "tests For Check Stationarity in series after taking first differences in  ==>  COVID 19 Infection cases in China"
kpss.test(diff1_x1)   # applay kpss test after taking first differences
## Warning in kpss.test(diff1_x1): p-value smaller than printed p-value
## 
##  KPSS Test for Level Stationarity
## 
## data:  diff1_x1
## KPSS Level = 1.1956, Truncation lag parameter = 5, p-value = 0.01
pp.test(diff1_x1)     # applay pp test after taking first differences
## Warning in pp.test(diff1_x1): p-value smaller than printed p-value
## 
##  Phillips-Perron Unit Root Test
## 
## data:  diff1_x1
## Dickey-Fuller Z(alpha) = -171.26, Truncation lag parameter = 5, p-value
## = 0.01
## alternative hypothesis: stationary
adf.test(diff1_x1)    # applay adf test after taking first differences
## 
##  Augmented Dickey-Fuller Test
## 
## data:  diff1_x1
## Dickey-Fuller = -3.39, Lag order = 6, p-value = 0.05636
## alternative hypothesis: stationary
#Taking the second difference
diff2_x1=diff(diff1_x1)
autoplot(diff2_x1, xlab = paste ("Time in  ", frequency ,y_lab , sep=" "),  col.main="black", col.lab="blue", col.sub="black", cex.main=1, cex.lab=1, cex.sub=1,font.main=4, font.lab=4, ylab=y_lab ,main = "2nd differenced series")
## Warning: Ignoring unknown parameters: col.main, col.lab, col.sub, cex.main,
## cex.lab, cex.sub, font.main, font.lab

##Testing the stationary of the first differenced series
paste ("tests For Check Stationarity in series after taking Second differences in",y_lab, sep=" ")
## [1] "tests For Check Stationarity in series after taking Second differences in COVID 19 Infection cases in China"
kpss.test(diff2_x1)   # applay kpss test after taking Second differences
## Warning in kpss.test(diff2_x1): p-value greater than printed p-value
## 
##  KPSS Test for Level Stationarity
## 
## data:  diff2_x1
## KPSS Level = 0.016755, Truncation lag parameter = 5, p-value = 0.1
pp.test(diff2_x1)     # applay pp test after taking Second differences
## Warning in pp.test(diff2_x1): p-value smaller than printed p-value
## 
##  Phillips-Perron Unit Root Test
## 
## data:  diff2_x1
## Dickey-Fuller Z(alpha) = -331.42, Truncation lag parameter = 5, p-value
## = 0.01
## alternative hypothesis: stationary
adf.test(diff2_x1)    # applay adf test after taking Second differences
## Warning in adf.test(diff2_x1): p-value smaller than printed p-value
## 
##  Augmented Dickey-Fuller Test
## 
## data:  diff2_x1
## Dickey-Fuller = -9.848, Lag order = 6, p-value = 0.01
## alternative hypothesis: stationary
####Fitting an ARIMA Model
#1. Using auto arima function
model1 <- auto.arima(data_series,stepwise=FALSE, approximation=FALSE, trace=T, test = c("kpss", "adf", "pp"))  #applaying auto arima
## 
##  ARIMA(0,2,0)                    : 5086.059
##  ARIMA(0,2,1)                    : 4984.327
##  ARIMA(0,2,2)                    : 4981.711
##  ARIMA(0,2,3)                    : 4982.516
##  ARIMA(0,2,4)                    : 4984.535
##  ARIMA(0,2,5)                    : 4986.603
##  ARIMA(1,2,0)                    : 5042.866
##  ARIMA(1,2,1)                    : 4982.607
##  ARIMA(1,2,2)                    : 4982.808
##  ARIMA(1,2,3)                    : Inf
##  ARIMA(1,2,4)                    : Inf
##  ARIMA(2,2,0)                    : 5009.106
##  ARIMA(2,2,1)                    : 4982.432
##  ARIMA(2,2,2)                    : 4984.49
##  ARIMA(2,2,3)                    : Inf
##  ARIMA(3,2,0)                    : 4995.963
##  ARIMA(3,2,1)                    : 4984.486
##  ARIMA(3,2,2)                    : Inf
##  ARIMA(4,2,0)                    : 4991.274
##  ARIMA(4,2,1)                    : 4986.1
##  ARIMA(5,2,0)                    : 4992.003
## 
## 
## 
##  Best model: ARIMA(0,2,2)
model1 # show the result of autoarima 
## Series: data_series 
## ARIMA(0,2,2) 
## 
## Coefficients:
##           ma1      ma2
##       -0.6281  -0.1344
## s.e.   0.0598   0.0620
## 
## sigma^2 estimated as 796021:  log likelihood=-2487.82
## AIC=4981.63   AICc=4981.71   BIC=4992.77
#Make changes in the source of auto arima to run the best model
arima.string <- function (object, padding = FALSE) 
{
  order <- object$arma[c(1, 6, 2, 3, 7, 4, 5)]
  m <- order[7]
  result <- paste("ARIMA(", order[1], ",", order[2], ",", 
                  order[3], ")", sep = "")
  if (m > 1 && sum(order[4:6]) > 0) {
    result <- paste(result, "(", order[4], ",", order[5], 
                    ",", order[6], ")[", m, "]", sep = "")
  }
  if (padding && m > 1 && sum(order[4:6]) == 0) {
    result <- paste(result, "         ", sep = "")
    if (m <= 9) {
      result <- paste(result, " ", sep = "")
    }
    else if (m <= 99) {
      result <- paste(result, "  ", sep = "")
    }
    else {
      result <- paste(result, "   ", sep = "")
    }
  }
  if (!is.null(object$xreg)) {
    if (NCOL(object$xreg) == 1 && is.element("drift", names(object$coef))) {
      result <- paste(result, "with drift        ")
    }
    else {
      result <- paste("Regression with", result, "errors")
    }
  }
  else {
    if (is.element("constant", names(object$coef)) || is.element("intercept", 
                                                                 names(object$coef))) {
      result <- paste(result, "with non-zero mean")
    }
    else if (order[2] == 0 && order[5] == 0) {
      result <- paste(result, "with zero mean    ")
    }
    else {
      result <- paste(result, "                  ")
    }
  }
  if (!padding) {
    result <- gsub("[ ]*$", "", result)
  }
  return(result)
}






source("stringthearima.R")  
bestmodel <- arima.string(model1, padding = TRUE)
bestmodel <- substring(bestmodel,7,11)
bestmodel <- gsub(" ", "", bestmodel)
bestmodel <- gsub(")", "", bestmodel)
bestmodel <- strsplit(bestmodel, ",")[[1]]
bestmodel <- c(strtoi(bestmodel[1]),strtoi(bestmodel[2]),strtoi(bestmodel[3]))
bestmodel
## [1] 0 2 2
strtoi(bestmodel[3])
## [1] 2
#2. Using ACF and PACF Function
#par(mfrow=c(1,2))  # Code for making two plot in one graph 
acf(diff2_x1,xlab = paste ("Time in  ", frequency ,y_lab , sep=" "),  col.main="black", col.lab="blue", col.sub="black", cex.main=1, cex.lab=1, cex.sub=1,font.main=4, font.lab=4, ylab=y_lab, main=paste("ACF-2nd differenced series ",y_lab, sep=" ",lag.max=20))    # plot ACF "auto correlation function after taking second diffrences

pacf(diff2_x1,xlab = paste ("Time in  ", frequency ,y_lab , sep=" "),  col.main="black", col.lab="blue", col.sub="black", cex.main=1, cex.lab=1, cex.sub=1,font.main=4, font.lab=4, ylab=y_lab,main=paste("PACF-2nd differenced series ",y_lab, sep=" ",lag.max=20))   # plot PACF " Partial auto correlation function after taking second diffrences

library(forecast)   # install library forecast             
x1_model1= arima(data_series, order=c(bestmodel)) # Run Best model of auto arima  for forecasting
x1_model1  # Show result of best model of auto arima 
## 
## Call:
## arima(x = data_series, order = c(bestmodel))
## 
## Coefficients:
##           ma1      ma2
##       -0.6281  -0.1344
## s.e.   0.0598   0.0620
## 
## sigma^2 estimated as 790767:  log likelihood = -2487.82,  aic = 4981.63
paste ("accuracy of autoarima Model For  ==> ",y_lab, sep=" ")
## [1] "accuracy of autoarima Model For  ==>  COVID 19 Infection cases in China"
accuracy(x1_model1)  # aacuracy of best model from auto arima
##                     ME     RMSE      MAE       MPE     MAPE      MASE
## Training set -4.435145 886.3304 186.5041 0.4206983 0.774974 0.6155986
##                      ACF1
## Training set -0.008331372
x1_model1$x          # show result of best model from auto arima 
## NULL
checkresiduals(x1_model1,xlab = paste ("Time in  ", frequency ,y_lab , sep=" "),  col.main="black", col.lab="blue", col.sub="black", cex.main=1, cex.lab=1, cex.sub=1,font.main=4, font.lab=4, ylab=y_lab)  # checkresiduals from best model from using auto arima 

## 
##  Ljung-Box test
## 
## data:  Residuals from ARIMA(0,2,2)
## Q* = 9.0745, df = 8, p-value = 0.3361
## 
## Model df: 2.   Total lags used: 10
paste("Box-Ljung test , Ljung-Box test For Modelling for   ==> ",y_lab, sep=" ")
## [1] "Box-Ljung test , Ljung-Box test For Modelling for   ==>  COVID 19 Infection cases in China"
Box.test(x1_model1$residuals^2, lag=20, type="Ljung-Box")   # Do test for resdulas by using Box-Ljung test , Ljung-Box test For Modelling
## 
##  Box-Ljung test
## 
## data:  x1_model1$residuals^2
## X-squared = 3.1714, df = 20, p-value = 1
library(tseries)
jarque.bera.test(x1_model1$residuals)  # Do test jarque.bera.test 
## 
##  Jarque Bera Test
## 
## data:  x1_model1$residuals
## X-squared = 346108, df = 2, p-value < 2.2e-16
#Actual Vs Fitted
plot(data_series, col='red',lwd=2, main="Actual vs Fitted Plot", xlab='Time in (days)', ylab=y_lab) # plot actual and Fitted model 
lines(fitted(x1_model1), col='blue')

#Test data

x1_test <- ts(testing_data, start =(rows-validation_data_days+1) ) # make testing data in time series and start from rows-6
forecasting_auto_arima <- forecast(x1_model1, h=N_forecasting_days+validation_data_days)
validation_forecast<-head(forecasting_auto_arima$mean,validation_data_days)
MAPE_Per_Day<-round(abs(((testing_data-validation_forecast)/testing_data)*100)  ,3)
paste ("MAPE % For ",validation_data_days,frequency,"by using bats Model for  ==> ",y_lab, sep=" ")
## [1] "MAPE % For  7 days by using bats Model for  ==>  COVID 19 Infection cases in China"
MAPE_Mean_All<-paste(round(mean(MAPE_Per_Day),3),"% MAPE ",validation_data_days,frequency,y_lab,sep=" ")
MAPE_auto_arima<-paste(round(MAPE_Per_Day,3),"%")
MAPE_auto.arima_Model<-paste(MAPE_Per_Day ,"%")
paste (" MAPE that's Error of Forecasting for ",validation_data_days," days in bats Model for  ==> ",y_lab, sep=" ")
## [1] " MAPE that's Error of Forecasting for  7  days in bats Model for  ==>  COVID 19 Infection cases in China"
paste(MAPE_Mean_All,"%")
## [1] "0.24 % MAPE  7 days COVID 19 Infection cases in China %"
paste ("MAPE that's Error of Forecasting day by day for ",validation_data_days," days in bats Model for  ==> ",y_lab, sep=" ")
## [1] "MAPE that's Error of Forecasting day by day for  7  days in bats Model for  ==>  COVID 19 Infection cases in China"
data.frame(date_auto.arima=validation_dates,validation_data_by_name,actual_data=testing_data,forecasting_auto.arima=validation_forecast,MAPE_auto.arima_Model)
##   date_auto.arima validation_data_by_name actual_data forecasting_auto.arima
## 1      2020-11-22             воскресенье       92733               92688.88
## 2      2020-11-23             понедельник       92829               92726.13
## 3      2020-11-24                 вторник       92914               92763.38
## 4      2020-11-25                   среда       93025               92800.64
## 5      2020-11-26                 четверг       93113               92837.89
## 6      2020-11-27                 пятница       93225               92875.14
## 7      2020-11-28                 суббота       93329               92912.40
##   MAPE_auto.arima_Model
## 1               0.048 %
## 2               0.111 %
## 3               0.162 %
## 4               0.241 %
## 5               0.295 %
## 6               0.375 %
## 7               0.446 %
data.frame(FD,forecating_date=forecasting_data_by_name,forecasting_by_auto.arima=tail(forecasting_auto_arima$mean,N_forecasting_days))
##           FD forecating_date forecasting_by_auto.arima
## 1 2020-11-29     воскресенье                  92949.65
## 2 2020-11-30     понедельник                  92986.90
## 3 2020-12-01         вторник                  93024.16
## 4 2020-12-02           среда                  93061.41
## 5 2020-12-03         четверг                  93098.66
## 6 2020-12-04         пятница                  93135.92
## 7 2020-12-05         суббота                  93173.17
plot(forecasting_auto_arima)
x1_test <- ts(testing_data, start =(rows-validation_data_days+1) )
lines(x1_test, col='red',lwd=2)

graph4<-autoplot(forecasting_auto_arima,xlab = paste ("Time in  ", frequency ,y_lab , sep=" "),  col.main="black", col.lab="blue", col.sub="black", cex.main=1, cex.lab=1, cex.sub=1,font.main=4, font.lab=4, ylab=y_lab)
graph4

## Error of forecasting
Error_auto.arima<-abs(testing_data-validation_forecast)  # Absolute error of forecast (AEOF)
REOF_A_auto.arima<-abs(((testing_data-validation_forecast)/testing_data)*100)  #Relative error of forecast (divided by actual)(REOF_A)
REOF_F_auto.arima<-abs(((testing_data-validation_forecast)/validation_forecast)*100)  #Relative error of forecast (divided by forecast)(REOF_F)
correlation_auto.arima<-cor(testing_data,validation_forecast, method = c("pearson"))     # correlation coefficient between predicted and actual values 
RMSE_auto.arima<-sqrt(sum((Error_auto.arima^2))/validation_data_days)   #  Root mean square forecast error
MAD_auto.arima<-abs((sum(testing_data-validation_forecast))/validation_data_days)   # average forecast accuracy
AEOF_auto.arima<-c(Error_auto.arima)
REOF_auto.arima1<-c(paste(round(REOF_A_auto.arima,3),"%"))
REOF_auto.arima2<-c(paste(round(REOF_F_auto.arima,3),"%"))
data.frame(correlation_auto.arima,RMSE_auto.arima,MAPE_Mean_All,MAD_auto.arima) # analysis of Error  by using Holt's linear model shows result of correlation ,MSE ,MPER
##   correlation_auto.arima RMSE_auto.arima
## 1              0.9993874        255.5654
##                                           MAPE_Mean_All MAD_auto.arima
## 1 0.24 % MAPE  7 days COVID 19 Infection cases in China       223.3629
data.frame(validation_dates,Validation_day_name=validation_data_by_name,AEOF_auto.arima,REOF_A_auto.arima=REOF_auto.arima1,REOF_F_auto.arima=REOF_auto.arima2)   # Analysis of error shows result AEOF,REOF_A,REOF_F
##   validation_dates Validation_day_name AEOF_auto.arima REOF_A_auto.arima
## 1       2020-11-22         воскресенье        44.12297           0.048 %
## 2       2020-11-23         понедельник       102.86962           0.111 %
## 3       2020-11-24             вторник       150.61628           0.162 %
## 4       2020-11-25               среда       224.36293           0.241 %
## 5       2020-11-26             четверг       275.10958           0.295 %
## 6       2020-11-27             пятница       349.85623           0.375 %
## 7       2020-11-28             суббота       416.60288           0.446 %
##   REOF_F_auto.arima
## 1           0.048 %
## 2           0.111 %
## 3           0.162 %
## 4           0.242 %
## 5           0.296 %
## 6           0.377 %
## 7           0.448 %
# SIR Model 
#install.packages("dplyr")
library(deSolve)
first<-rows-13
secondr<-rows-7
vector_SIR<-original_data[first:secondr]
Infected <- c(vector_SIR)
Day <- 1:(length(Infected))
N <- Population # population of the us
SIR <- function(time, state, parameters) {
  par <- as.list(c(state, parameters))
  with(par, {
    dS <- -beta/N * I * S
    dI <- beta/N * I * S - gamma * I
    dR <- gamma * I
    list(c(dS, dI, dR))
  })
}

init <- c(S = N-Infected[1], I = Infected[1], R = 0)
RSS <- function(parameters) {
  names(parameters) <- c("beta", "gamma")
  out <- ode(y = init, times = Day, func = SIR, parms = parameters)
  fit <- out[ , 3]
  sum((Infected - fit)^2)
}

# optimize with some sensible conditions
Opt <- optim(c(0.5, 0.5), RSS, method = "L-BFGS-B", 
             lower = c(0, 0), upper = c(10, 10))
Opt$message
## [1] "ERROR: ABNORMAL_TERMINATION_IN_LNSRCH"
Opt_par <- setNames(Opt$par, c("beta", "gamma"))
Opt_par
##      beta     gamma 
## 0.5003480 0.4999817
# beta     gamma 
# 0.6512503 0.4920399 

out <- ode(y = init, times = Day, func = SIR, parms = Opt_par)

plot(out)
plot(out, obs=data.frame(time=Day, I=Infected))

result_SIR<-data.frame(out)
validation_forecast<-result_SIR$I
## Error of forecasting
Error_SIR<-abs(testing_data-validation_forecast)  # Absolute error of forecast (AEOF)
REOF_A_SIR<-abs(((testing_data-validation_forecast)/testing_data)*100)  #Relative error of forecast (divided by actual)(REOF_A)
REOF_F_SIR<-abs(((testing_data-validation_forecast)/validation_forecast)*100)  #Relative error of forecast (divided by forecast)(REOF_F)
correlation_SIR<-cor(testing_data,validation_forecast, method = c("pearson"))     # correlation coefficient between predicted and actual values 
RMSE_SIR<-sqrt(sum((Error_SIR^2))/validation_data_days)   #  Root mean square forecast error
MAD_SIR<-abs((sum(testing_data-validation_forecast))/validation_data_days)   # average forecast accuracy
AEOF_SIR<-c(Error_SIR)
REOF_A_SIR<-c(paste(round(REOF_A_SIR,3),"%"))
REOF_A_SIR1<-mean(abs(((testing_data-validation_forecast)/testing_data)*100))

REOF_F_SIR<-c(paste(round(REOF_F_SIR,3),"%"))
MAPE_Mean_All<-paste(round(mean(abs(((testing_data-validation_forecast)/testing_data)*100)),3),"% MAPE ",validation_data_days,frequency,y_lab,sep=" ")
data.frame(correlation_SIR,RMSE_SIR,MAPE_Mean_All,MAD_SIR) # analysis of Error  by using SIR's linear model shows result of correlation ,MSE ,MPER
##   correlation_SIR RMSE_SIR
## 1       0.9969257  510.187
##                                            MAPE_Mean_All  MAD_SIR
## 1 0.525 % MAPE  7 days COVID 19 Infection cases in China 488.8972
data.frame(validation_dates,Validation_day_name=validation_data_by_name,AEOF_SIR,REOF_A_SIR,REOF_F_SIR,validation_forecast,testing_data)   # Analysis of error shows result AEOF,REOF_A,REOF_F
##   validation_dates Validation_day_name AEOF_SIR REOF_A_SIR REOF_F_SIR
## 1       2020-11-22         воскресенье 281.0000    0.303 %    0.304 %
## 2       2020-11-23         понедельник 346.8375    0.374 %    0.375 %
## 3       2020-11-24             вторник 403.1503    0.434 %    0.436 %
## 4       2020-11-25               среда 486.9400    0.523 %    0.526 %
## 5       2020-11-26             четверг 549.2084     0.59 %    0.593 %
## 6       2020-11-27             пятница 636.9570    0.683 %    0.688 %
## 7       2020-11-28             суббота 718.1875     0.77 %    0.775 %
##   validation_forecast testing_data
## 1            92452.00        92733
## 2            92482.16        92829
## 3            92510.85        92914
## 4            92538.06        93025
## 5            92563.79        93113
## 6            92588.04        93225
## 7            92610.81        93329
## forecasting by SIR model

Infected <- c(tail(original_data,validation_data_days))
Day <- 1:(length(Infected))
N <- Population # population of the us

SIR <- function(time, state, parameters) {
  par <- as.list(c(state, parameters))
  with(par, {
    dS <- -beta/N * I * S
    dI <- beta/N * I * S - gamma * I
    dR <- gamma * I
    list(c(dS, dI, dR))
  })
}

init <- c(S = N-Infected[1], I = Infected[1], R = 0)
RSS <- function(parameters) {
  names(parameters) <- c("beta", "gamma")
  out <- ode(y = init, times = Day, func = SIR, parms = parameters)
  fit <- out[ , 3]
  sum((Infected - fit)^2)
}

# optimize with some sensible conditions
Opt <- optim(c(0.5, 0.5), RSS, method = "L-BFGS-B", 
             lower = c(0, 0), upper = c(10, 10))
Opt$message
## [1] "ERROR: ABNORMAL_TERMINATION_IN_LNSRCH"
Opt_par <- setNames(Opt$par, c("beta", "gamma"))
Opt_par
##      beta     gamma 
## 0.5010644 0.4999440
# beta     gamma 
# 0.6512503 0.4920399 

out <- ode(y = init, times = Day, func = SIR, parms = Opt_par)

plot(out)
plot(out, obs=data.frame(time=Day, I=Infected))

result_SIR <-data.frame(out)
data.frame(FD,forecating_date=forecasting_data_by_name,forecasting_by_SIR=result_SIR$I)
##           FD forecating_date forecasting_by_SIR
## 1 2020-11-29     воскресенье           92733.00
## 2 2020-11-30     понедельник           92833.22
## 3 2020-12-01         вторник           92932.05
## 4 2020-12-02           среда           93029.48
## 5 2020-12-03         четверг           93125.50
## 6 2020-12-04         пятница           93220.11
## 7 2020-12-05         суббота           93313.30
# Choose Best model by least error

paste("System Summarizes  Error ==> ( MAPE ) of Forecasting  by using bats model and BATS Model, Holt's Linear Models , and autoarima for  ==> ", y_lab , sep=" ")
## [1] "System Summarizes  Error ==> ( MAPE ) of Forecasting  by using bats model and BATS Model, Holt's Linear Models , and autoarima for  ==>  COVID 19 Infection cases in China"
M1<-mean(REOF_A_bats)

paste("System Summarizes  Error ==> ( MAPE ) of Forecasting  by using TBATS  Model For ==> ", y_lab , sep=" ")
## [1] "System Summarizes  Error ==> ( MAPE ) of Forecasting  by using TBATS  Model For ==>  COVID 19 Infection cases in China"
M2<-mean(REOF_A_tbats1)

paste("System Summarizes  Error ==> ( MAPE ) of Forecasting  by using Holt's Linear << Exponential Smoothing >>  For ==> ", y_lab , sep=" ")
## [1] "System Summarizes  Error ==> ( MAPE ) of Forecasting  by using Holt's Linear << Exponential Smoothing >>  For ==>  COVID 19 Infection cases in China"
M3<-REOF_A_Holt11

paste("System Summarizes  Error ==> ( MAPE ) of Forecasting  by using auto arima  Model For ==> ", y_lab , sep=" ")
## [1] "System Summarizes  Error ==> ( MAPE ) of Forecasting  by using auto arima  Model For ==>  COVID 19 Infection cases in China"
M4<-mean(REOF_A_auto.arima)
paste("System Summarizes  Error ==> ( MAPE ) of Forecasting  by using SIR Model For ==> ", y_lab , sep=" ")
## [1] "System Summarizes  Error ==> ( MAPE ) of Forecasting  by using SIR Model For ==>  COVID 19 Infection cases in China"
M5<-REOF_A_SIR1

paste("System Summarizes  Error ==> ( MAPE ) of Forecasting  by using autoarima  Model For ==> ", y_lab , sep=" ")
## [1] "System Summarizes  Error ==> ( MAPE ) of Forecasting  by using autoarima  Model For ==>  COVID 19 Infection cases in China"
data.frame(validation_dates,forecating_date=forecasting_data_by_name,MAPE_bats_error=REOF_A_bats,MAPE_TBATS_error=REOF_A_tbats1,MAPE_Holt_error=REOF_A_Holt1,MAPE_autoarima_error = REOF_A_auto.arima)
##   validation_dates forecating_date MAPE_bats_error MAPE_TBATS_error
## 1       2020-11-22     воскресенье      0.04677526       0.02156926
## 2       2020-11-23     понедельник      0.10887426       0.03483381
## 3       2020-11-24         вторник      0.15902628       0.03021292
## 4       2020-11-25           среда      0.23697766       0.26695072
## 5       2020-11-26         четверг      0.29011981       0.38026567
## 6       2020-11-27         пятница      0.36881743       0.37229911
## 7       2020-11-28         суббота      0.43879270       0.36413756
##   MAPE_Holt_error MAPE_autoarima_error
## 1      0.05201699           0.04758066
## 2      0.11488069           0.11081626
## 3      0.16578694           0.16210289
## 4      0.24447942           0.24118562
## 5      0.29835329           0.29545775
## 6      0.37776929           0.37528156
## 7      0.44845242           0.44638095
recommend_Model<-c(M1,M2,M3,M4,M5)
best_recommended_model<-min(recommend_Model)
paste ("lodaing .....   ... . .Select Minimum MAPE from Models for select best Model ==> ", y_lab , sep=" ")
## [1] "lodaing .....   ... . .Select Minimum MAPE from Models for select best Model ==>  COVID 19 Infection cases in China"
best_recommended_model
## [1] 0.2100384
paste ("Best Model For Forecasting  ==> ",y_lab, sep=" ")
## [1] "Best Model For Forecasting  ==>  COVID 19 Infection cases in China"
if(best_recommended_model >= M1) {paste("System Recommend Bats Model That's better  For forecasting==> ",y_lab, sep=" ")}
if(best_recommended_model >= M2) {paste("System Recommend  That's better TBATS  For forecasting ==> ",y_lab, sep=" ")}
## [1] "System Recommend  That's better TBATS  For forecasting ==>  COVID 19 Infection cases in China"
if(best_recommended_model >= M3) {paste("System Recommend Holt's Linear Model < Exponential Smoothing Model >   That's better  For forecasting ==> ",y_lab, sep=" ")}
if(best_recommended_model >= M4) {paste("System Recommend auto arima Model  That's better  For forecasting ==> ",y_lab, sep=" ")}
if(best_recommended_model >= M5) {paste("System Recommend SIR Model  That's better  For forecasting ==> ",y_lab, sep=" ")}
message("System finished Forecasting  by using autoarima and Holt's ,TBATS, and SIR  Model ==>",y_lab, sep=" ")
## System finished Forecasting  by using autoarima and Holt's ,TBATS, and SIR  Model ==>COVID 19 Infection cases in China
message(" Thank you for using our System For Modelling  ==> ",y_lab, sep=" ")
##  Thank you for using our System For Modelling  ==> COVID 19 Infection cases in China
## Markov Chain For COVID 19 infection cases

require(markovchain)
require(data.table)
xx9<-original_data[rows]
xx8<-original_data[rows-1]
xx7<-original_data[rows-2]
xx6<-original_data[rows-3]
xx5<-original_data[rows-4]
xx4<-original_data[rows-5]
xx3<-original_data[rows-6]
xx2<-original_data[rows-7]
xx1<-original_data[rows-8]
infection_vector1<-c(xx1,xx2,xx3)
infection_vector2<-c(xx4,xx5,xx6)
infection_vector3<-c(xx7,xx8,xx9)
sum_vector1<-sum(infection_vector1)
sum_vector2<-sum(infection_vector2)
sum_vector3<-sum(infection_vector3)
proba_vector1<-c(infection_vector1/sum_vector1)
proba_vector2<-c(infection_vector2/sum_vector2)
proba_vector3<-c(infection_vector3/sum_vector3)
CovidStates = c("Low Infections", "Mid Infections", "Hight Infections")
byRow = TRUE


CovidMatrix = matrix(data = c(proba_vector1,
                              proba_vector2,
                              proba_vector3), byrow = byRow, nrow = 3,
                     
                     dimnames = list(CovidStates, CovidStates))


mcCovid = new("markovchain", states = CovidStates, byrow = byRow,
              transitionMatrix = CovidMatrix, name = "Cvid 19")

mcCovid = new("markovchain", states = c("Low Infections", "Mid Infections", "Hight Infections"),
              transitionMatrix = matrix(data = c(proba_vector1,
                                                 proba_vector2,
                                                 proba_vector3), byrow = byRow, nrow = 3),
              name = "Cvid 19")

name = ("Cvid 19")
initialState = c(0,1,0)
after2Days = initialState * (mcCovid * mcCovid)
after7Days = initialState * (mcCovid^7)
after30days =initialState * (mcCovid^30)
after7Days
##      Low Infections Mid Infections Hight Infections
## [1,]       0.333009      0.3333162        0.3336748
plot(mcCovid,xlab = paste ("Time in  ", frequency ,y_lab , sep=" "),  col.main="black", col.lab="blue", col.sub="black", cex.main=1, cex.lab=1, cex.sub=1,font.main=4, font.lab=4, ylab=y_lab,main = "Markov Chain")