New package “Epidemic. ta” for forecasting Covid-19 infection cases apply Example For forecasting infection cases in the Japan

That’s Algorithm Developed By

Makarovskikh Tatyana Anatolyevna “Макаровских Татьяна Анатольевна”

Abotaleb mostafa “Аботалеб Мостафа”

Department of Electrical Engineering and Computer Science

South ural state university, Chelyabinsk, Russian federation

# Imports
library(fpp2)
## Warning: package 'fpp2' was built under R version 4.0.3
## Registered S3 method overwritten by 'quantmod':
##   method            from
##   as.zoo.data.frame zoo
## -- Attaching packages --------------------------------------------------------------------------- fpp2 2.4 --
## v ggplot2   3.3.2     v fma       2.4  
## v forecast  8.13      v expsmooth 2.3
## Warning: package 'ggplot2' was built under R version 4.0.3
## Warning: package 'forecast' was built under R version 4.0.3
## 
library(forecast)
library(ggplot2)
library("readxl")
## Warning: package 'readxl' was built under R version 4.0.3
library(moments)
## Warning: package 'moments' was built under R version 4.0.3
library(forecast)
require(forecast)  
require(tseries)
## Loading required package: tseries
## Warning: package 'tseries' was built under R version 4.0.3
require(markovchain)
## Loading required package: markovchain
## Warning: package 'markovchain' was built under R version 4.0.3
## Package:  markovchain
## Version:  0.8.5-3
## Date:     2020-12-03
## BugReport: https://github.com/spedygiorgio/markovchain/issues
require(data.table)
## Loading required package: data.table
#usa population =332002416
# Russia population =145966453
#population in japan = 126279505
#population in china =1442182072
#population in cheleabinsk =1130319
#population in moscow =12537954
#population in  MO =7690863
#Новгородская обл =1250615
# when you use data from russian websites use ==> unlist for define time series
Full_original_data<-read_excel("F:/Phd/ALL Russia Analysis/Data Russia till 29_11_2020 Covid four country.xlsx",sheet = "japan")
y_lab<- "COVID 19 Infection cases in japan"   # input name of data
Actual_date_interval <- c("2020/01/22","2020/11/28")
Forecast_date_interval <- c("2020/11/29","2020/12/5")
validation_data_days <-7
frequency<-"days"
Population <-126279505   # Population size in City for applaying SIR model
# Data Preparation & calculate some of statistics measures
original_data<-Full_original_data$infection

summary(original_data)
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##       2    5466   18109   39418   74720  145457
sd(original_data)  # calculate standard deviation
## [1] 40030.8
skewness(original_data)  # calculate Cofficient of skewness
## [1] 0.8215421
kurtosis(original_data)   # calculate Cofficient of kurtosis
## [1] 2.38523
rows <- NROW(original_data)
training_data<-original_data[1:(rows-validation_data_days)]
testing_data<-original_data[(rows-validation_data_days+1):rows]
AD<-fulldate<-seq(as.Date(Actual_date_interval[1]),as.Date(Actual_date_interval[2]), frequency)  #input range for actual date
FD<-seq(as.Date(Forecast_date_interval[1]),as.Date(Forecast_date_interval[2]), frequency)  #input range forecasting date
N_forecasting_days<-nrow(data.frame(FD)) 
validation_dates<-tail(AD,validation_data_days)
validation_data_by_name<-weekdays(validation_dates)
forecasting_data_by_name<-weekdays(FD)
##bats model
# Data Modeling
data_series<-ts(training_data)
autoplot(data_series ,xlab=paste ("Time in  ", frequency, sep=" "), ylab = y_lab, main=paste ("Actual Data :", y_lab, sep=" "))

model_bats<-bats(data_series)
accuracy(model_bats)  # accuracy on training data
##                    ME     RMSE      MAE         MPE     MAPE      MASE
## Training set 6.257124 153.0738 93.56592 -0.09642161 1.962456 0.2173474
##                   ACF1
## Training set 0.1131572
# Print Model Parameters
model_bats
## BATS(0.476, {0,0}, 1, -)
## 
## Call: bats(y = data_series)
## 
## Parameters
##   Lambda: 0.475859
##   Alpha: 1.205209
##   Beta: 0.4948307
##   Damping Parameter: 1
## 
## Seed States:
##           [,1]
## [1,] 0.5375066
## [2,] 0.5511111
## attr(,"lambda")
## [1] 0.4758594
## 
## Sigma: 0.6622323
## AIC: 4425.615
plot(model_bats,xlab = paste ("Time in  ", frequency ,y_lab , sep=" "),  col.main="black", col.lab="blue", col.sub="black", cex.main=1, cex.lab=1, cex.sub=1,font.main=4, font.lab=4)

# Testing Data Evaluation
forecasting_bats <- predict(model_bats, h=N_forecasting_days+validation_data_days)
validation_forecast<-head(forecasting_bats$mean,validation_data_days)
MAPE_Per_Day<-round(  abs(((testing_data-validation_forecast)/testing_data)*100)  ,3)
paste ("MAPE % For ",validation_data_days,frequency,"by using bats Model for  ==> ",y_lab, sep=" ")
## [1] "MAPE % For  7 days by using bats Model for  ==>  COVID 19 Infection cases in japan"
MAPE_Mean_All<-paste(round(mean(MAPE_Per_Day),3),"% MAPE ",validation_data_days,frequency,y_lab,sep=" ")
MAPE_bats<-paste(round(MAPE_Per_Day,3),"%")
MAPE_bats_Model<-paste(MAPE_Per_Day ,"%")
paste (" MAPE that's Error of Forecasting for ",validation_data_days," days in bats Model for  ==> ",y_lab, sep=" ")
## [1] " MAPE that's Error of Forecasting for  7  days in bats Model for  ==>  COVID 19 Infection cases in japan"
paste(MAPE_Mean_All,"%")
## [1] "1.591 % MAPE  7 days COVID 19 Infection cases in japan %"
paste ("MAPE that's Error of Forecasting day by day for ",validation_data_days," days in bats Model for  ==> ",y_lab, sep=" ")
## [1] "MAPE that's Error of Forecasting day by day for  7  days in bats Model for  ==>  COVID 19 Infection cases in japan"
data.frame(date_bats=validation_dates,validation_data_by_name,actual_data=testing_data,forecasting_bats=validation_forecast,MAPE_bats_Model)
##    date_bats validation_data_by_name actual_data forecasting_bats
## 1 2020-11-22             воскресенье      133034         133337.3
## 2 2020-11-23             понедельник      134554         135764.6
## 3 2020-11-24                 вторник      135786         138214.9
## 4 2020-11-25                   среда      137735         140688.1
## 5 2020-11-26                 четверг      140225         143184.3
## 6 2020-11-27                 пятница      142778         145703.6
## 7 2020-11-28                 суббота      145457         148245.9
##   MAPE_bats_Model
## 1         0.228 %
## 2           0.9 %
## 3         1.789 %
## 4         2.144 %
## 5          2.11 %
## 6         2.049 %
## 7         1.917 %
data.frame(FD,forecating_date=forecasting_data_by_name,forecasting_by_bats=tail(forecasting_bats$mean,N_forecasting_days))
##           FD forecating_date forecasting_by_bats
## 1 2020-11-29     воскресенье            150811.2
## 2 2020-11-30     понедельник            153399.7
## 3 2020-12-01         вторник            156011.2
## 4 2020-12-02           среда            158645.8
## 5 2020-12-03         четверг            161303.6
## 6 2020-12-04         пятница            163984.5
## 7 2020-12-05         суббота            166688.6
plot(forecasting_bats)
x1_test <- ts(testing_data, start =(rows-validation_data_days+1) )
lines(x1_test, col='red',lwd=2)

graph1<-autoplot(forecasting_bats,xlab = paste ("Time in  ", frequency ,y_lab , sep=" "),  col.main="black", col.lab="blue", col.sub="black", cex.main=1, cex.lab=1, cex.sub=1,font.main=4, font.lab=4, ylab=y_lab)
graph1

## Error of forecasting
Error_bats<-abs(testing_data-validation_forecast)  # Absolute error of forecast (AEOF)
REOF_A_bats<-abs(((testing_data-validation_forecast)/testing_data)*100)  #Relative error of forecast (divided by actual)(REOF_A)
REOF_F_bats<-abs(((testing_data-validation_forecast)/validation_forecast)*100)  #Relative error of forecast (divided by forecast)(REOF_F)
correlation_bats<-cor(testing_data,validation_forecast, method = c("pearson"))     # correlation coefficient between predicted and actual values 
RMSE_bats<-sqrt(sum((Error_bats^2))/validation_data_days)   #  Root mean square forecast error
MAD_bats<-abs((sum(testing_data-validation_forecast))/validation_data_days)   # average forecast accuracy
AEOF_bats<-c(Error_bats)
REOF_Abats<-c(paste(round(REOF_A_bats,3),"%"))
REOF_Fbats<-c(paste(round(REOF_F_bats,3),"%"))
data.frame(correlation_bats,RMSE_bats,MAPE_Mean_All,MAD_bats) # analysis of Error  by using Bats Model shows result of correlation ,MSE ,MPER
##   correlation_bats RMSE_bats
## 1         0.991704   2428.18
##                                            MAPE_Mean_All MAD_bats
## 1 1.591 % MAPE  7 days COVID 19 Infection cases in japan 2224.247
data.frame(validation_dates,Validation_day_name=validation_data_by_name,AEOF_bats,REOF_Abats,REOF_Fbats)   # Analysis of error shows result AEOF,REOF_A,REOF_F
##   validation_dates Validation_day_name AEOF_bats REOF_Abats REOF_Fbats
## 1       2020-11-22         воскресенье  303.3351    0.228 %    0.227 %
## 2       2020-11-23         понедельник 1210.6228      0.9 %    0.892 %
## 3       2020-11-24             вторник 2428.8720    1.789 %    1.757 %
## 4       2020-11-25               среда 2953.1026    2.144 %    2.099 %
## 5       2020-11-26             четверг 2959.3342     2.11 %    2.067 %
## 6       2020-11-27             пятница 2925.5864    2.049 %    2.008 %
## 7       2020-11-28             суббота 2788.8786    1.917 %    1.881 %
## TBATS Model

# Data Modeling
data_series<-ts(training_data)
model_TBATS<-forecast:::fitSpecificTBATS(data_series,use.box.cox=FALSE, use.beta=TRUE,  seasonal.periods=c(6),use.damping=FALSE,k.vector=c(2))
accuracy(model_TBATS)  # accuracy on training data
##                    ME     RMSE      MAE      MPE     MAPE      MASE       ACF1
## Training set 14.20245 152.2489 103.7137 1.381866 52.02524 0.2409201 0.01467517
# Print Model Parameters
model_TBATS
## TBATS(1, {0,0}, 1, {<6,2>})
## 
## Call: NULL
## 
## Parameters
##   Alpha: 1.25016
##   Beta: 0.5521927
##   Damping Parameter: 1
##   Gamma-1 Values: -5.974693e-05
##   Gamma-2 Values: -0.0008001738
## 
## Seed States:
##            [,1]
## [1,]  17.012499
## [2,]  -9.522773
## [3,] -41.481418
## [4,]  -2.078669
## [5,]   9.316310
## [6,]  18.685001
## 
## Sigma: 152.2489
## AIC: 4830.26
plot(model_TBATS,xlab = paste ("Time in  ", frequency ,y_lab , sep=" "),  col.main="black", col.lab="blue", col.sub="black", cex.main=1, cex.lab=1, cex.sub=1,font.main=4, font.lab=4, ylab=y_lab)

# Testing Data Evaluation
forecasting_tbats <- predict(model_TBATS, h=N_forecasting_days+validation_data_days)
validation_forecast<-head(forecasting_tbats$mean,validation_data_days)
MAPE_Per_Day<-round(  abs(((testing_data-validation_forecast)/testing_data)*100)  ,3)
paste ("MAPE % For ",validation_data_days,frequency,"by using TBATS Model for  ==> ",y_lab, sep=" ")
## [1] "MAPE % For  7 days by using TBATS Model for  ==>  COVID 19 Infection cases in japan"
MAPE_Mean_All<-paste(round(mean(MAPE_Per_Day),3),"% MAPE ",validation_data_days,frequency,y_lab,sep=" ")
MAPE_TBATS<-paste(round(MAPE_Per_Day,3),"%")
MAPE_TBATS_Model<-paste(MAPE_Per_Day ,"%")
paste (" MAPE that's Error of Forecasting for ",validation_data_days," days in TBATS Model for  ==> ",y_lab, sep=" ")
## [1] " MAPE that's Error of Forecasting for  7  days in TBATS Model for  ==>  COVID 19 Infection cases in japan"
paste(MAPE_Mean_All,"%")
## [1] "1.39 % MAPE  7 days COVID 19 Infection cases in japan %"
paste ("MAPE that's Error of Forecasting day by day for ",validation_data_days," days in TBATS Model for  ==> ",y_lab, sep=" ")
## [1] "MAPE that's Error of Forecasting day by day for  7  days in TBATS Model for  ==>  COVID 19 Infection cases in japan"
data.frame(date_TBATS=validation_dates,validation_data_by_name,actual_data=testing_data,forecasting_TBATS=validation_forecast,MAPE_TBATS_Model)
##   date_TBATS validation_data_by_name actual_data forecasting_TBATS
## 1 2020-11-22             воскресенье      133034          133268.6
## 2 2020-11-23             понедельник      134554          135645.4
## 3 2020-11-24                 вторник      135786          138075.0
## 4 2020-11-25                   среда      137735          140471.8
## 5 2020-11-26                 четверг      140225          142878.2
## 6 2020-11-27                 пятница      142778          145252.0
## 7 2020-11-28                 суббота      145457          147563.2
##   MAPE_TBATS_Model
## 1          0.176 %
## 2          0.811 %
## 3          1.686 %
## 4          1.987 %
## 5          1.892 %
## 6          1.733 %
## 7          1.448 %
data.frame(FD,forecating_date=forecasting_data_by_name,forecasting_by_TBATS=tail(forecasting_tbats$mean,N_forecasting_days))
##           FD forecating_date forecasting_by_TBATS
## 1 2020-11-29     воскресенье             149940.0
## 2 2020-11-30     понедельник             152369.6
## 3 2020-12-01         вторник             154766.4
## 4 2020-12-02           среда             157172.8
## 5 2020-12-03         четверг             159546.6
## 6 2020-12-04         пятница             161857.9
## 7 2020-12-05         суббота             164234.6
plot(forecasting_tbats)
x1_test <- ts(testing_data, start =(rows-validation_data_days+1) )
lines(x1_test, col='red',lwd=2)

graph2<-autoplot(forecasting_tbats,xlab = paste ("Time in  ", frequency ,y_lab , sep=" "),  col.main="black", col.lab="blue", col.sub="black", cex.main=1, cex.lab=1, cex.sub=1,font.main=4, font.lab=4, ylab=y_lab)
graph2

## Error of forecasting TBATS Model

Error_tbats<-abs(testing_data-validation_forecast)  # Absolute error of forecast (AEOF)
REOF_A_tbats1<-abs(((testing_data-validation_forecast)/testing_data)*100)  #Relative error of forecast (divided by actual)(REOF_A)
REOF_F_tbats<-abs(((testing_data-validation_forecast)/validation_forecast)*100)  #Relative error of forecast (divided by forecast)(REOF_F)
correlation_tbats<-cor(testing_data,validation_forecast, method = c("pearson"))     # correlation coefficient between predicted and actual values 
RMSE_tbats<-sqrt(sum((Error_tbats^2))/validation_data_days)   #  Root mean square forecast error
MAD_tbats<-abs((sum(testing_data-validation_forecast))/validation_data_days)   # average forecast accuracy
AEOF_tbats<-c(Error_tbats)
REOF_A_tbats<-c(paste(round(REOF_A_tbats1,3),"%"))
REOF_F_tbats<-c(paste(round(REOF_F_tbats,3),"%"))
data.frame(correlation_tbats,RMSE_tbats,MAPE_Mean_All,MAD_tbats) # analysis of Error  by using Holt's linear model shows result of correlation ,MSE ,MPER
##   correlation_tbats RMSE_tbats
## 1         0.9899965   2123.741
##                                           MAPE_Mean_All MAD_tbats
## 1 1.39 % MAPE  7 days COVID 19 Infection cases in japan  1940.743
data.frame(validation_dates,Validation_day_name=validation_data_by_name,AEOF_tbats,REOF_A_tbats,REOF_F_tbats)   # Analysis of error shows result AEOF,REOF_A,REOF_F
##   validation_dates Validation_day_name AEOF_tbats REOF_A_tbats REOF_F_tbats
## 1       2020-11-22         воскресенье   234.6215      0.176 %      0.176 %
## 2       2020-11-23         понедельник  1091.3842      0.811 %      0.805 %
## 3       2020-11-24             вторник  2288.9757      1.686 %      1.658 %
## 4       2020-11-25               среда  2736.7894      1.987 %      1.948 %
## 5       2020-11-26             четверг  2653.2261      1.892 %      1.857 %
## 6       2020-11-27             пятница  2473.9598      1.733 %      1.703 %
## 7       2020-11-28             суббота  2106.2416      1.448 %      1.427 %
## Holt's linear trend


# Data Modeling
data_series<-ts(training_data)
model_holt<-holt(data_series,h=N_forecasting_days+validation_data_days,lambda = "auto")
accuracy(model_holt)  # accuracy on training data
##                    ME   RMSE      MAE        MPE     MAPE      MASE      ACF1
## Training set 4.063926 159.52 97.49796 -0.1217473 1.890622 0.2264813 0.1820318
# Print Model Parameters
summary(model_holt$model)
## Holt's method 
## 
## Call:
##  holt(y = data_series, h = N_forecasting_days + validation_data_days,  
## 
##  Call:
##      lambda = "auto") 
## 
##   Box-Cox transformation: lambda= 0.3879 
## 
##   Smoothing parameters:
##     alpha = 0.9999 
##     beta  = 0.6434 
## 
##   Initial states:
##     l = 0.6835 
##     b = 0.4857 
## 
##   sigma:  0.32
## 
##      AIC     AICc      BIC 
## 1055.616 1055.817 1074.218 
## 
## Training set error measures:
##                    ME   RMSE      MAE        MPE     MAPE      MASE      ACF1
## Training set 4.063926 159.52 97.49796 -0.1217473 1.890622 0.2264813 0.1820318
# Testing Data Evaluation
forecasting_holt <- predict(model_holt, h=N_forecasting_days+validation_data_days,lambda = "auto")
validation_forecast<-head(forecasting_holt$mean,validation_data_days)
MAPE_Per_Day<-round(  abs(((testing_data-validation_forecast)/testing_data)*100)  ,3)
paste ("MAPE % For ",validation_data_days,frequency,"by using holt Model for  ==> ",y_lab, sep=" ")
## [1] "MAPE % For  7 days by using holt Model for  ==>  COVID 19 Infection cases in japan"
MAPE_Mean_All<-paste(round(mean(MAPE_Per_Day),3),"% MAPE ",validation_data_days,frequency,y_lab,sep=" ")
MAPE_holt<-paste(round(MAPE_Per_Day,3),"%")
MAPE_holt_Model<-paste(MAPE_Per_Day ,"%")
paste (" MAPE that's Error of Forecasting for ",validation_data_days," days in holt Model for  ==> ",y_lab, sep=" ")
## [1] " MAPE that's Error of Forecasting for  7  days in holt Model for  ==>  COVID 19 Infection cases in japan"
paste(MAPE_Mean_All,"%")
## [1] "2.003 % MAPE  7 days COVID 19 Infection cases in japan %"
paste ("MAPE that's Error of Forecasting day by day for ",validation_data_days," days in holt Model for  ==> ",y_lab, sep=" ")
## [1] "MAPE that's Error of Forecasting day by day for  7  days in holt Model for  ==>  COVID 19 Infection cases in japan"
data.frame(date_holt=validation_dates,validation_data_by_name,actual_data=testing_data,forecasting_holt=validation_forecast,MAPE_holt_Model)
##    date_holt validation_data_by_name actual_data forecasting_holt
## 1 2020-11-22             воскресенье      133034         133421.1
## 2 2020-11-23             понедельник      134554         136001.3
## 3 2020-11-24                 вторник      135786         138611.9
## 4 2020-11-25                   среда      137735         141253.0
## 5 2020-11-26                 четверг      140225         143924.6
## 6 2020-11-27                 пятница      142778         146626.9
## 7 2020-11-28                 суббота      145457         149360.0
##   MAPE_holt_Model
## 1         0.291 %
## 2         1.076 %
## 3         2.081 %
## 4         2.554 %
## 5         2.638 %
## 6         2.696 %
## 7         2.683 %
data.frame(FD,forecating_date=forecasting_data_by_name,forecasting_by_holt=tail(forecasting_holt$mean,N_forecasting_days))
##           FD forecating_date forecasting_by_holt
## 1 2020-11-29     воскресенье            152124.1
## 2 2020-11-30     понедельник            154919.3
## 3 2020-12-01         вторник            157745.7
## 4 2020-12-02           среда            160603.5
## 5 2020-12-03         четверг            163492.7
## 6 2020-12-04         пятница            166413.5
## 7 2020-12-05         суббота            169366.0
plot(forecasting_holt)
x1_test <- ts(testing_data, start =(rows-validation_data_days+1) )
lines(x1_test, col='red',lwd=2)

graph3<-autoplot(forecasting_holt,xlab = paste ("Time in  ", frequency ,y_lab , sep=" "),  col.main="black", col.lab="blue", col.sub="black", cex.main=1, cex.lab=1, cex.sub=1,font.main=4, font.lab=4, ylab=y_lab)
graph3

## Error of forecasting by using Holt's linear model
Error_Holt<-abs(testing_data-validation_forecast)  # Absolute error of forecast (AEOF)
REOF_A_Holt1<-abs(((testing_data-validation_forecast)/testing_data)*100)  #Relative error of forecast (divided by actual)(REOF_A)
REOF_F_Holt<-abs(((testing_data-validation_forecast)/validation_forecast)*100)  #Relative error of forecast (divided by forecast)(REOF_F)
correlation_Holt<-cor(testing_data,validation_forecast, method = c("pearson"))     # correlation coefficient between predicted and actual values 
RMSE_Holt<-sqrt(sum((Error_Holt^2))/validation_data_days)   #  Root mean square forecast error
MAD_Holt<-abs((sum(testing_data-validation_forecast))/validation_data_days)   # average forecast accuracy
AEOF_Holt<-c(Error_Holt)
REOF_A_Holt<-c(paste(round(REOF_A_Holt1,3),"%"))
REOF_F_Holt<-c(paste(round(REOF_F_Holt,3),"%"))
REOF_A_Holt11<-mean(abs(((testing_data-validation_forecast)/testing_data)*100))
data.frame(correlation_Holt,RMSE_Holt,MAPE_Mean_All,MAD_Holt) # analysis of Error  by using Holt's linear model shows result of correlation ,MSE ,MPER
##   correlation_Holt RMSE_Holt
## 1        0.9919451  3078.523
##                                            MAPE_Mean_All MAD_Holt
## 1 2.003 % MAPE  7 days COVID 19 Infection cases in japan 2804.259
data.frame(validation_dates,Validation_day_name=validation_data_by_name,AEOF_Holt,REOF_A_Holt,REOF_F_Holt)   # Analysis of error shows result AEOF,REOF_A,REOF_F
##   validation_dates Validation_day_name AEOF_Holt REOF_A_Holt REOF_F_Holt
## 1       2020-11-22         воскресенье  387.0687     0.291 %      0.29 %
## 2       2020-11-23         понедельник 1447.3428     1.076 %     1.064 %
## 3       2020-11-24             вторник 2825.9327     2.081 %     2.039 %
## 4       2020-11-25               среда 3517.9679     2.554 %     2.491 %
## 5       2020-11-26             четверг 3699.5774     2.638 %      2.57 %
## 6       2020-11-27             пятница 3848.8900     2.696 %     2.625 %
## 7       2020-11-28             суббота 3903.0339     2.683 %     2.613 %
#Auto arima model
##################

require(tseries) # need to install tseries tj test Stationarity in time series 
paste ("tests For Check Stationarity in series  ==> ",y_lab, sep=" ")
## [1] "tests For Check Stationarity in series  ==>  COVID 19 Infection cases in japan"
kpss.test(data_series) # applay kpss test
## Warning in kpss.test(data_series): p-value smaller than printed p-value
## 
##  KPSS Test for Level Stationarity
## 
## data:  data_series
## KPSS Level = 4.7144, Truncation lag parameter = 5, p-value = 0.01
pp.test(data_series)   # applay pp test
## Warning in pp.test(data_series): p-value greater than printed p-value
## 
##  Phillips-Perron Unit Root Test
## 
## data:  data_series
## Dickey-Fuller Z(alpha) = 1.1288, Truncation lag parameter = 5, p-value
## = 0.99
## alternative hypothesis: stationary
adf.test(data_series)  # applay adf test
## Warning in adf.test(data_series): p-value greater than printed p-value
## 
##  Augmented Dickey-Fuller Test
## 
## data:  data_series
## Dickey-Fuller = 0.38599, Lag order = 6, p-value = 0.99
## alternative hypothesis: stationary
ndiffs(data_series)    # Doing first diffrencing on data
## [1] 2
#Taking the first difference
diff1_x1<-diff(data_series)
autoplot(diff1_x1, xlab = paste ("Time in  ", frequency ,y_lab , sep=" "),  col.main="black", col.lab="blue", col.sub="black", cex.main=1, cex.lab=1, cex.sub=1,font.main=4, font.lab=4, ylab=y_lab,main = "1nd differenced series")
## Warning: Ignoring unknown parameters: col.main, col.lab, col.sub, cex.main,
## cex.lab, cex.sub, font.main, font.lab

##Testing the stationary of the first differenced series
paste ("tests For Check Stationarity in series after taking first differences in  ==> ",y_lab, sep=" ")
## [1] "tests For Check Stationarity in series after taking first differences in  ==>  COVID 19 Infection cases in japan"
kpss.test(diff1_x1)   # applay kpss test after taking first differences
## Warning in kpss.test(diff1_x1): p-value smaller than printed p-value
## 
##  KPSS Test for Level Stationarity
## 
## data:  diff1_x1
## KPSS Level = 2.7537, Truncation lag parameter = 5, p-value = 0.01
pp.test(diff1_x1)     # applay pp test after taking first differences
## 
##  Phillips-Perron Unit Root Test
## 
## data:  diff1_x1
## Dickey-Fuller Z(alpha) = -8.6767, Truncation lag parameter = 5, p-value
## = 0.6239
## alternative hypothesis: stationary
adf.test(diff1_x1)    # applay adf test after taking first differences
## Warning in adf.test(diff1_x1): p-value greater than printed p-value
## 
##  Augmented Dickey-Fuller Test
## 
## data:  diff1_x1
## Dickey-Fuller = 1.4832, Lag order = 6, p-value = 0.99
## alternative hypothesis: stationary
#Taking the second difference
diff2_x1=diff(diff1_x1)
autoplot(diff2_x1, xlab = paste ("Time in  ", frequency ,y_lab , sep=" "),  col.main="black", col.lab="blue", col.sub="black", cex.main=1, cex.lab=1, cex.sub=1,font.main=4, font.lab=4, ylab=y_lab ,main = "2nd differenced series")
## Warning: Ignoring unknown parameters: col.main, col.lab, col.sub, cex.main,
## cex.lab, cex.sub, font.main, font.lab

##Testing the stationary of the first differenced series
paste ("tests For Check Stationarity in series after taking Second differences in",y_lab, sep=" ")
## [1] "tests For Check Stationarity in series after taking Second differences in COVID 19 Infection cases in japan"
kpss.test(diff2_x1)   # applay kpss test after taking Second differences
## 
##  KPSS Test for Level Stationarity
## 
## data:  diff2_x1
## KPSS Level = 0.35466, Truncation lag parameter = 5, p-value = 0.0967
pp.test(diff2_x1)     # applay pp test after taking Second differences
## Warning in pp.test(diff2_x1): p-value smaller than printed p-value
## 
##  Phillips-Perron Unit Root Test
## 
## data:  diff2_x1
## Dickey-Fuller Z(alpha) = -242.98, Truncation lag parameter = 5, p-value
## = 0.01
## alternative hypothesis: stationary
adf.test(diff2_x1)    # applay adf test after taking Second differences
## Warning in adf.test(diff2_x1): p-value smaller than printed p-value
## 
##  Augmented Dickey-Fuller Test
## 
## data:  diff2_x1
## Dickey-Fuller = -5.8101, Lag order = 6, p-value = 0.01
## alternative hypothesis: stationary
####Fitting an ARIMA Model
#1. Using auto arima function
model1 <- auto.arima(data_series,stepwise=FALSE, approximation=FALSE, trace=T, test = c("kpss", "adf", "pp"))  #applaying auto arima
## 
##  ARIMA(0,2,0)                    : 3931.73
##  ARIMA(0,2,1)                    : 3930.157
##  ARIMA(0,2,2)                    : 3913.677
##  ARIMA(0,2,3)                    : 3912.983
##  ARIMA(0,2,4)                    : 3915.042
##  ARIMA(0,2,5)                    : 3891.724
##  ARIMA(1,2,0)                    : 3931.486
##  ARIMA(1,2,1)                    : 3917.119
##  ARIMA(1,2,2)                    : 3913.703
##  ARIMA(1,2,3)                    : 3915.05
##  ARIMA(1,2,4)                    : 3908.353
##  ARIMA(2,2,0)                    : 3924.854
##  ARIMA(2,2,1)                    : 3911.222
##  ARIMA(2,2,2)                    : 3866.172
##  ARIMA(2,2,3)                    : Inf
##  ARIMA(3,2,0)                    : 3920.241
##  ARIMA(3,2,1)                    : 3908.787
##  ARIMA(3,2,2)                    : 3875.8
##  ARIMA(4,2,0)                    : 3907.718
##  ARIMA(4,2,1)                    : 3899.487
##  ARIMA(5,2,0)                    : 3885.529
## 
## 
## 
##  Best model: ARIMA(2,2,2)
model1 # show the result of autoarima 
## Series: data_series 
## ARIMA(2,2,2) 
## 
## Coefficients:
##          ar1      ar2      ma1     ma2
##       1.2144  -0.8476  -1.4263  0.8209
## s.e.  0.0421   0.0571   0.0528  0.0442
## 
## sigma^2 estimated as 19861:  log likelihood=-1927.99
## AIC=3865.97   AICc=3866.17   BIC=3884.54
#Make changes in the source of auto arima to run the best model
arima.string <- function (object, padding = FALSE) 
{
  order <- object$arma[c(1, 6, 2, 3, 7, 4, 5)]
  m <- order[7]
  result <- paste("ARIMA(", order[1], ",", order[2], ",", 
                  order[3], ")", sep = "")
  if (m > 1 && sum(order[4:6]) > 0) {
    result <- paste(result, "(", order[4], ",", order[5], 
                    ",", order[6], ")[", m, "]", sep = "")
  }
  if (padding && m > 1 && sum(order[4:6]) == 0) {
    result <- paste(result, "         ", sep = "")
    if (m <= 9) {
      result <- paste(result, " ", sep = "")
    }
    else if (m <= 99) {
      result <- paste(result, "  ", sep = "")
    }
    else {
      result <- paste(result, "   ", sep = "")
    }
  }
  if (!is.null(object$xreg)) {
    if (NCOL(object$xreg) == 1 && is.element("drift", names(object$coef))) {
      result <- paste(result, "with drift        ")
    }
    else {
      result <- paste("Regression with", result, "errors")
    }
  }
  else {
    if (is.element("constant", names(object$coef)) || is.element("intercept", 
                                                                 names(object$coef))) {
      result <- paste(result, "with non-zero mean")
    }
    else if (order[2] == 0 && order[5] == 0) {
      result <- paste(result, "with zero mean    ")
    }
    else {
      result <- paste(result, "                  ")
    }
  }
  if (!padding) {
    result <- gsub("[ ]*$", "", result)
  }
  return(result)
}






source("stringthearima.R")  
bestmodel <- arima.string(model1, padding = TRUE)
bestmodel <- substring(bestmodel,7,11)
bestmodel <- gsub(" ", "", bestmodel)
bestmodel <- gsub(")", "", bestmodel)
bestmodel <- strsplit(bestmodel, ",")[[1]]
bestmodel <- c(strtoi(bestmodel[1]),strtoi(bestmodel[2]),strtoi(bestmodel[3]))
bestmodel
## [1] 2 2 2
strtoi(bestmodel[3])
## [1] 2
#2. Using ACF and PACF Function
#par(mfrow=c(1,2))  # Code for making two plot in one graph 
acf(diff2_x1,xlab = paste ("Time in  ", frequency ,y_lab , sep=" "),  col.main="black", col.lab="blue", col.sub="black", cex.main=1, cex.lab=1, cex.sub=1,font.main=4, font.lab=4, ylab=y_lab, main=paste("ACF-2nd differenced series ",y_lab, sep=" ",lag.max=20))    # plot ACF "auto correlation function after taking second diffrences

pacf(diff2_x1,xlab = paste ("Time in  ", frequency ,y_lab , sep=" "),  col.main="black", col.lab="blue", col.sub="black", cex.main=1, cex.lab=1, cex.sub=1,font.main=4, font.lab=4, ylab=y_lab,main=paste("PACF-2nd differenced series ",y_lab, sep=" ",lag.max=20))   # plot PACF " Partial auto correlation function after taking second diffrences

library(forecast)   # install library forecast             
x1_model1= arima(data_series, order=c(bestmodel)) # Run Best model of auto arima  for forecasting
x1_model1  # Show result of best model of auto arima 
## 
## Call:
## arima(x = data_series, order = c(bestmodel))
## 
## Coefficients:
##          ar1      ar2      ma1     ma2
##       1.2144  -0.8476  -1.4263  0.8209
## s.e.  0.0421   0.0571   0.0528  0.0442
## 
## sigma^2 estimated as 19599:  log likelihood = -1927.99,  aic = 3865.97
paste ("accuracy of autoarima Model For  ==> ",y_lab, sep=" ")
## [1] "accuracy of autoarima Model For  ==>  COVID 19 Infection cases in japan"
accuracy(x1_model1)  # aacuracy of best model from auto arima
##                    ME     RMSE      MAE       MPE     MAPE      MASE       ACF1
## Training set 13.34289 139.5351 85.20884 0.3907726 1.676204 0.1979345 -0.1159147
x1_model1$x          # show result of best model from auto arima 
## NULL
checkresiduals(x1_model1,xlab = paste ("Time in  ", frequency ,y_lab , sep=" "),  col.main="black", col.lab="blue", col.sub="black", cex.main=1, cex.lab=1, cex.sub=1,font.main=4, font.lab=4, ylab=y_lab)  # checkresiduals from best model from using auto arima 

## 
##  Ljung-Box test
## 
## data:  Residuals from ARIMA(2,2,2)
## Q* = 53.692, df = 6, p-value = 8.511e-10
## 
## Model df: 4.   Total lags used: 10
paste("Box-Ljung test , Ljung-Box test For Modelling for   ==> ",y_lab, sep=" ")
## [1] "Box-Ljung test , Ljung-Box test For Modelling for   ==>  COVID 19 Infection cases in japan"
Box.test(x1_model1$residuals^2, lag=20, type="Ljung-Box")   # Do test for resdulas by using Box-Ljung test , Ljung-Box test For Modelling
## 
##  Box-Ljung test
## 
## data:  x1_model1$residuals^2
## X-squared = 366.35, df = 20, p-value < 2.2e-16
library(tseries)
jarque.bera.test(x1_model1$residuals)  # Do test jarque.bera.test 
## 
##  Jarque Bera Test
## 
## data:  x1_model1$residuals
## X-squared = 254.98, df = 2, p-value < 2.2e-16
#Actual Vs Fitted
plot(data_series, col='red',lwd=2, main="Actual vs Fitted Plot", xlab='Time in (days)', ylab=y_lab) # plot actual and Fitted model 
lines(fitted(x1_model1), col='blue')

#Test data

x1_test <- ts(testing_data, start =(rows-validation_data_days+1) ) # make testing data in time series and start from rows-6
forecasting_auto_arima <- forecast(x1_model1, h=N_forecasting_days+validation_data_days)
validation_forecast<-head(forecasting_auto_arima$mean,validation_data_days)
MAPE_Per_Day<-round(abs(((testing_data-validation_forecast)/testing_data)*100)  ,3)
paste ("MAPE % For ",validation_data_days,frequency,"by using bats Model for  ==> ",y_lab, sep=" ")
## [1] "MAPE % For  7 days by using bats Model for  ==>  COVID 19 Infection cases in japan"
MAPE_Mean_All<-paste(round(mean(MAPE_Per_Day),3),"% MAPE ",validation_data_days,frequency,y_lab,sep=" ")
MAPE_auto_arima<-paste(round(MAPE_Per_Day,3),"%")
MAPE_auto.arima_Model<-paste(MAPE_Per_Day ,"%")
paste (" MAPE that's Error of Forecasting for ",validation_data_days," days in bats Model for  ==> ",y_lab, sep=" ")
## [1] " MAPE that's Error of Forecasting for  7  days in bats Model for  ==>  COVID 19 Infection cases in japan"
paste(MAPE_Mean_All,"%")
## [1] "1.42 % MAPE  7 days COVID 19 Infection cases in japan %"
paste ("MAPE that's Error of Forecasting day by day for ",validation_data_days," days in bats Model for  ==> ",y_lab, sep=" ")
## [1] "MAPE that's Error of Forecasting day by day for  7  days in bats Model for  ==>  COVID 19 Infection cases in japan"
data.frame(date_auto.arima=validation_dates,validation_data_by_name,actual_data=testing_data,forecasting_auto.arima=validation_forecast,MAPE_auto.arima_Model)
##   date_auto.arima validation_data_by_name actual_data forecasting_auto.arima
## 1      2020-11-22             воскресенье      133034               133146.2
## 2      2020-11-23             понедельник      134554               135323.2
## 3      2020-11-24                 вторник      135786               137644.2
## 4      2020-11-25                   среда      137735               140223.4
## 5      2020-11-26                 четверг      140225               142994.2
## 6      2020-11-27                 пятница      142778               145778.6
## 7      2020-11-28                 суббота      145457               148417.4
##   MAPE_auto.arima_Model
## 1               0.084 %
## 2               0.572 %
## 3               1.368 %
## 4               1.807 %
## 5               1.975 %
## 6               2.102 %
## 7               2.035 %
data.frame(FD,forecating_date=forecasting_data_by_name,forecasting_by_auto.arima=tail(forecasting_auto_arima$mean,N_forecasting_days))
##           FD forecating_date forecasting_by_auto.arima
## 1 2020-11-29     воскресенье                  150867.6
## 2 2020-11-30     понедельник                  153212.3
## 3 2020-12-01         вторник                  155588.8
## 4 2020-12-02           среда                  158093.2
## 5 2020-12-03         четверг                  160726.0
## 6 2020-12-04         пятница                  163406.4
## 7 2020-12-05         суббота                  166035.7
plot(forecasting_auto_arima)
x1_test <- ts(testing_data, start =(rows-validation_data_days+1) )
lines(x1_test, col='red',lwd=2)

graph4<-autoplot(forecasting_auto_arima,xlab = paste ("Time in  ", frequency ,y_lab , sep=" "),  col.main="black", col.lab="blue", col.sub="black", cex.main=1, cex.lab=1, cex.sub=1,font.main=4, font.lab=4, ylab=y_lab)
graph4

## Error of forecasting
Error_auto.arima<-abs(testing_data-validation_forecast)  # Absolute error of forecast (AEOF)
REOF_A_auto.arima<-abs(((testing_data-validation_forecast)/testing_data)*100)  #Relative error of forecast (divided by actual)(REOF_A)
REOF_F_auto.arima<-abs(((testing_data-validation_forecast)/validation_forecast)*100)  #Relative error of forecast (divided by forecast)(REOF_F)
correlation_auto.arima<-cor(testing_data,validation_forecast, method = c("pearson"))     # correlation coefficient between predicted and actual values 
RMSE_auto.arima<-sqrt(sum((Error_auto.arima^2))/validation_data_days)   #  Root mean square forecast error
MAD_auto.arima<-abs((sum(testing_data-validation_forecast))/validation_data_days)   # average forecast accuracy
AEOF_auto.arima<-c(Error_auto.arima)
REOF_auto.arima1<-c(paste(round(REOF_A_auto.arima,3),"%"))
REOF_auto.arima2<-c(paste(round(REOF_F_auto.arima,3),"%"))
data.frame(correlation_auto.arima,RMSE_auto.arima,MAPE_Mean_All,MAD_auto.arima) # analysis of Error  by using Holt's linear model shows result of correlation ,MSE ,MPER
##   correlation_auto.arima RMSE_auto.arima
## 1              0.9953669        2257.854
##                                           MAPE_Mean_All MAD_auto.arima
## 1 1.42 % MAPE  7 days COVID 19 Infection cases in japan        1994.03
data.frame(validation_dates,Validation_day_name=validation_data_by_name,AEOF_auto.arima,REOF_A_auto.arima=REOF_auto.arima1,REOF_F_auto.arima=REOF_auto.arima2)   # Analysis of error shows result AEOF,REOF_A,REOF_F
##   validation_dates Validation_day_name AEOF_auto.arima REOF_A_auto.arima
## 1       2020-11-22         воскресенье        112.2287           0.084 %
## 2       2020-11-23         понедельник        769.1802           0.572 %
## 3       2020-11-24             вторник       1858.1867           1.368 %
## 4       2020-11-25               среда       2488.4318           1.807 %
## 5       2020-11-26             четверг       2769.1840           1.975 %
## 6       2020-11-27             пятница       3000.6254           2.102 %
## 7       2020-11-28             суббота       2960.3734           2.035 %
##   REOF_F_auto.arima
## 1           0.084 %
## 2           0.568 %
## 3            1.35 %
## 4           1.775 %
## 5           1.937 %
## 6           2.058 %
## 7           1.995 %
# SIR Model 
#install.packages("dplyr")
library(deSolve)
first<-rows-13
secondr<-rows-7
vector_SIR<-original_data[first:secondr]
Infected <- c(vector_SIR)
Day <- 1:(length(Infected))
N <- Population # population of the us
SIR <- function(time, state, parameters) {
  par <- as.list(c(state, parameters))
  with(par, {
    dS <- -beta/N * I * S
    dI <- beta/N * I * S - gamma * I
    dR <- gamma * I
    list(c(dS, dI, dR))
  })
}

init <- c(S = N-Infected[1], I = Infected[1], R = 0)
RSS <- function(parameters) {
  names(parameters) <- c("beta", "gamma")
  out <- ode(y = init, times = Day, func = SIR, parms = parameters)
  fit <- out[ , 3]
  sum((Infected - fit)^2)
}

# optimize with some sensible conditions
Opt <- optim(c(0.5, 0.5), RSS, method = "L-BFGS-B", 
             lower = c(0, 0), upper = c(10, 10))
Opt$message
## [1] "ERROR: ABNORMAL_TERMINATION_IN_LNSRCH"
Opt_par <- setNames(Opt$par, c("beta", "gamma"))
Opt_par
##       beta      gamma 
## 0.01536525 0.00000000
# beta     gamma 
# 0.6512503 0.4920399 

out <- ode(y = init, times = Day, func = SIR, parms = Opt_par)

plot(out)
plot(out, obs=data.frame(time=Day, I=Infected))

result_SIR<-data.frame(out)
validation_forecast<-result_SIR$I
## Error of forecasting
Error_SIR<-abs(testing_data-validation_forecast)  # Absolute error of forecast (AEOF)
REOF_A_SIR<-abs(((testing_data-validation_forecast)/testing_data)*100)  #Relative error of forecast (divided by actual)(REOF_A)
REOF_F_SIR<-abs(((testing_data-validation_forecast)/validation_forecast)*100)  #Relative error of forecast (divided by forecast)(REOF_F)
correlation_SIR<-cor(testing_data,validation_forecast, method = c("pearson"))     # correlation coefficient between predicted and actual values 
RMSE_SIR<-sqrt(sum((Error_SIR^2))/validation_data_days)   #  Root mean square forecast error
MAD_SIR<-abs((sum(testing_data-validation_forecast))/validation_data_days)   # average forecast accuracy
AEOF_SIR<-c(Error_SIR)
REOF_A_SIR<-c(paste(round(REOF_A_SIR,3),"%"))
REOF_A_SIR1<-mean(abs(((testing_data-validation_forecast)/testing_data)*100))

REOF_F_SIR<-c(paste(round(REOF_F_SIR,3),"%"))
MAPE_Mean_All<-paste(round(mean(abs(((testing_data-validation_forecast)/testing_data)*100)),3),"% MAPE ",validation_data_days,frequency,y_lab,sep=" ")
data.frame(correlation_SIR,RMSE_SIR,MAPE_Mean_All,MAD_SIR) # analysis of Error  by using SIR's linear model shows result of correlation ,MSE ,MPER
##   correlation_SIR RMSE_SIR
## 1       0.9923446 14263.99
##                                             MAPE_Mean_All  MAD_SIR
## 1 10.289 % MAPE  7 days COVID 19 Infection cases in japan 14250.37
data.frame(validation_dates,Validation_day_name=validation_data_by_name,AEOF_SIR,REOF_A_SIR,REOF_F_SIR,validation_forecast,testing_data)   # Analysis of error shows result AEOF,REOF_A,REOF_F
##   validation_dates Validation_day_name AEOF_SIR REOF_A_SIR REOF_F_SIR
## 1       2020-11-22         воскресенье 14423.00   10.842 %    12.16 %
## 2       2020-11-23         понедельник 14108.15   10.485 %   11.713 %
## 3       2020-11-24             вторник 13476.95    9.925 %   11.019 %
## 4       2020-11-25               среда 13533.96    9.826 %   10.897 %
## 5       2020-11-26             четверг 14102.78   10.057 %   11.182 %
## 6       2020-11-27             пятница 14704.90   10.299 %   11.482 %
## 7       2020-11-28             суббота 15402.87   10.589 %   11.843 %
##   validation_forecast testing_data
## 1            118611.0       133034
## 2            120445.8       134554
## 3            122309.0       135786
## 4            124201.0       137735
## 5            126122.2       140225
## 6            128073.1       142778
## 7            130054.1       145457
## forecasting by SIR model

Infected <- c(tail(original_data,validation_data_days))
Day <- 1:(length(Infected))
N <- Population # population of the us

SIR <- function(time, state, parameters) {
  par <- as.list(c(state, parameters))
  with(par, {
    dS <- -beta/N * I * S
    dI <- beta/N * I * S - gamma * I
    dR <- gamma * I
    list(c(dS, dI, dR))
  })
}

init <- c(S = N-Infected[1], I = Infected[1], R = 0)
RSS <- function(parameters) {
  names(parameters) <- c("beta", "gamma")
  out <- ode(y = init, times = Day, func = SIR, parms = parameters)
  fit <- out[ , 3]
  sum((Infected - fit)^2)
}

# optimize with some sensible conditions
Opt <- optim(c(0.5, 0.5), RSS, method = "L-BFGS-B", 
             lower = c(0, 0), upper = c(10, 10))
Opt$message
## [1] "CONVERGENCE: REL_REDUCTION_OF_F <= FACTR*EPSMCH"
Opt_par <- setNames(Opt$par, c("beta", "gamma"))
Opt_par
##       beta      gamma 
## 0.01386158 0.00000000
# beta     gamma 
# 0.6512503 0.4920399 

out <- ode(y = init, times = Day, func = SIR, parms = Opt_par)

plot(out)
plot(out, obs=data.frame(time=Day, I=Infected))

result_SIR <-data.frame(out)
data.frame(FD,forecating_date=forecasting_data_by_name,forecasting_by_SIR=result_SIR$I)
##           FD forecating_date forecasting_by_SIR
## 1 2020-11-29     воскресенье           133034.0
## 2 2020-11-30     понедельник           134888.9
## 3 2020-12-01         вторник           136769.7
## 4 2020-12-02           среда           138676.7
## 5 2020-12-03         четверг           140610.2
## 6 2020-12-04         пятница           142570.6
## 7 2020-12-05         суббота           144558.4
# Choose Best model by least error

paste("System Summarizes  Error ==> ( MAPE ) of Forecasting  by using bats model and BATS Model, Holt's Linear Models , and autoarima for  ==> ", y_lab , sep=" ")
## [1] "System Summarizes  Error ==> ( MAPE ) of Forecasting  by using bats model and BATS Model, Holt's Linear Models , and autoarima for  ==>  COVID 19 Infection cases in japan"
M1<-mean(REOF_A_bats)

paste("System Summarizes  Error ==> ( MAPE ) of Forecasting  by using TBATS  Model For ==> ", y_lab , sep=" ")
## [1] "System Summarizes  Error ==> ( MAPE ) of Forecasting  by using TBATS  Model For ==>  COVID 19 Infection cases in japan"
M2<-mean(REOF_A_tbats1)

paste("System Summarizes  Error ==> ( MAPE ) of Forecasting  by using Holt's Linear << Exponential Smoothing >>  For ==> ", y_lab , sep=" ")
## [1] "System Summarizes  Error ==> ( MAPE ) of Forecasting  by using Holt's Linear << Exponential Smoothing >>  For ==>  COVID 19 Infection cases in japan"
M3<-REOF_A_Holt11

paste("System Summarizes  Error ==> ( MAPE ) of Forecasting  by using auto arima  Model For ==> ", y_lab , sep=" ")
## [1] "System Summarizes  Error ==> ( MAPE ) of Forecasting  by using auto arima  Model For ==>  COVID 19 Infection cases in japan"
M4<-mean(REOF_A_auto.arima)
paste("System Summarizes  Error ==> ( MAPE ) of Forecasting  by using SIR Model For ==> ", y_lab , sep=" ")
## [1] "System Summarizes  Error ==> ( MAPE ) of Forecasting  by using SIR Model For ==>  COVID 19 Infection cases in japan"
M5<-REOF_A_SIR1

paste("System Summarizes  Error ==> ( MAPE ) of Forecasting  by using autoarima  Model For ==> ", y_lab , sep=" ")
## [1] "System Summarizes  Error ==> ( MAPE ) of Forecasting  by using autoarima  Model For ==>  COVID 19 Infection cases in japan"
data.frame(validation_dates,forecating_date=forecasting_data_by_name,MAPE_bats_error=REOF_A_bats,MAPE_TBATS_error=REOF_A_tbats1,MAPE_Holt_error=REOF_A_Holt1,MAPE_autoarima_error = REOF_A_auto.arima)
##   validation_dates forecating_date MAPE_bats_error MAPE_TBATS_error
## 1       2020-11-22     воскресенье       0.2280132        0.1763620
## 2       2020-11-23     понедельник       0.8997301        0.8111124
## 3       2020-11-24         вторник       1.7887499        1.6857229
## 4       2020-11-25           среда       2.1440466        1.9869963
## 5       2020-11-26         четверг       2.1104184        1.8921206
## 6       2020-11-27         пятница       2.0490457        1.7327318
## 7       2020-11-28         суббота       1.9173217        1.4480167
##   MAPE_Holt_error MAPE_autoarima_error
## 1       0.2909547           0.08436094
## 2       1.0756594           0.57165167
## 3       2.0811664           1.36846709
## 4       2.5541568           1.80668077
## 5       2.6383151           1.97481476
## 6       2.6957164           2.10160206
## 7       2.6832905           2.03522238
recommend_Model<-c(M1,M2,M3,M4,M5)
best_recommended_model<-min(recommend_Model)
paste ("lodaing .....   ... . .Select Minimum MAPE from Models for select best Model ==> ", y_lab , sep=" ")
## [1] "lodaing .....   ... . .Select Minimum MAPE from Models for select best Model ==>  COVID 19 Infection cases in japan"
best_recommended_model
## [1] 1.390438
paste ("Best Model For Forecasting  ==> ",y_lab, sep=" ")
## [1] "Best Model For Forecasting  ==>  COVID 19 Infection cases in japan"
if(best_recommended_model >= M1) {paste("System Recommend Bats Model That's better  For forecasting==> ",y_lab, sep=" ")}
if(best_recommended_model >= M2) {paste("System Recommend  That's better TBATS  For forecasting ==> ",y_lab, sep=" ")}
## [1] "System Recommend  That's better TBATS  For forecasting ==>  COVID 19 Infection cases in japan"
if(best_recommended_model >= M3) {paste("System Recommend Holt's Linear Model < Exponential Smoothing Model >   That's better  For forecasting ==> ",y_lab, sep=" ")}
if(best_recommended_model >= M4) {paste("System Recommend auto arima Model  That's better  For forecasting ==> ",y_lab, sep=" ")}
if(best_recommended_model >= M5) {paste("System Recommend SIR Model  That's better  For forecasting ==> ",y_lab, sep=" ")}
message("System finished Forecasting  by using autoarima and Holt's ,TBATS, and SIR  Model ==>",y_lab, sep=" ")
## System finished Forecasting  by using autoarima and Holt's ,TBATS, and SIR  Model ==>COVID 19 Infection cases in japan
message(" Thank you for using our System For Modelling  ==> ",y_lab, sep=" ")
##  Thank you for using our System For Modelling  ==> COVID 19 Infection cases in japan
## Markov Chain For COVID 19 infection cases

require(markovchain)
require(data.table)
xx9<-original_data[rows]
xx8<-original_data[rows-1]
xx7<-original_data[rows-2]
xx6<-original_data[rows-3]
xx5<-original_data[rows-4]
xx4<-original_data[rows-5]
xx3<-original_data[rows-6]
xx2<-original_data[rows-7]
xx1<-original_data[rows-8]
infection_vector1<-c(xx1,xx2,xx3)
infection_vector2<-c(xx4,xx5,xx6)
infection_vector3<-c(xx7,xx8,xx9)
sum_vector1<-sum(infection_vector1)
sum_vector2<-sum(infection_vector2)
sum_vector3<-sum(infection_vector3)
proba_vector1<-c(infection_vector1/sum_vector1)
proba_vector2<-c(infection_vector2/sum_vector2)
proba_vector3<-c(infection_vector3/sum_vector3)
CovidStates = c("Low Infections", "Mid Infections", "Hight Infections")
byRow = TRUE


CovidMatrix = matrix(data = c(proba_vector1,
                              proba_vector2,
                              proba_vector3), byrow = byRow, nrow = 3,
                     
                     dimnames = list(CovidStates, CovidStates))


mcCovid = new("markovchain", states = CovidStates, byrow = byRow,
              transitionMatrix = CovidMatrix, name = "Cvid 19")

mcCovid = new("markovchain", states = c("Low Infections", "Mid Infections", "Hight Infections"),
              transitionMatrix = matrix(data = c(proba_vector1,
                                                 proba_vector2,
                                                 proba_vector3), byrow = byRow, nrow = 3),
              name = "Cvid 19")

name = ("Cvid 19")
initialState = c(0,1,0)
after2Days = initialState * (mcCovid * mcCovid)
after7Days = initialState * (mcCovid^7)
after30days =initialState * (mcCovid^30)
after7Days
##      Low Infections Mid Infections Hight Infections
## [1,]      0.3280355      0.3332229        0.3387416
plot(mcCovid,xlab = paste ("Time in  ", frequency ,y_lab , sep=" "),  col.main="black", col.lab="blue", col.sub="black", cex.main=1, cex.lab=1, cex.sub=1,font.main=4, font.lab=4, ylab=y_lab,main = "Markov Chain")