New package “Epidemic. ta” for forecasting Covid-19 infection cases apply Example For forecasting infection cases in the USA

That’s Algorithm Developed By

Makarovskikh Tatyana Anatolyevna “Макаровских Татьяна Анатольевна”

Abotaleb mostafa “Аботалеб Мостафа”

Department of Electrical Engineering and Computer Science

South ural state university, Chelyabinsk, Russian federation

# Imports
library(fpp2)
## Warning: package 'fpp2' was built under R version 4.0.3
## Registered S3 method overwritten by 'quantmod':
##   method            from
##   as.zoo.data.frame zoo
## -- Attaching packages --------------------------------------------------------------------------- fpp2 2.4 --
## v ggplot2   3.3.2     v fma       2.4  
## v forecast  8.13      v expsmooth 2.3
## Warning: package 'ggplot2' was built under R version 4.0.3
## Warning: package 'forecast' was built under R version 4.0.3
## 
library(forecast)
library(ggplot2)
library("readxl")
## Warning: package 'readxl' was built under R version 4.0.3
library(moments)
## Warning: package 'moments' was built under R version 4.0.3
library(forecast)
require(forecast)  
require(tseries)
## Loading required package: tseries
## Warning: package 'tseries' was built under R version 4.0.3
require(markovchain)
## Loading required package: markovchain
## Warning: package 'markovchain' was built under R version 4.0.3
## Package:  markovchain
## Version:  0.8.5-3
## Date:     2020-12-03
## BugReport: https://github.com/spedygiorgio/markovchain/issues
require(data.table)
## Loading required package: data.table
#usa population =332002416
# Russia population =145966453
#population in japan = 126279505
#population in china =1442182072
#population in cheleabinsk =1130319
#population in moscow =12537954
#population in  MO =7690863
#Новгородская обл =1250615
# when you use data from russian websites use ==> unlist for define time series
Full_original_data<-read_excel("F:/Phd/ALL Russia Analysis/Data Russia till 29_11_2020 Covid four country.xlsx",sheet = "usa")
y_lab<- "COVID 19 Infection cases in USA"   # input name of data
Actual_date_interval <- c("2020/01/22","2020/11/28")
Forecast_date_interval <- c("2020/11/29","2020/12/5")
validation_data_days <-7
frequency<-"days"
Population <-332002416   # Population size in City for applaying SIR model
# Data Preparation & calculate some of statistics measures
original_data<-Full_original_data$Заражений

summary(original_data)
##     Min.  1st Qu.   Median     Mean  3rd Qu.     Max. 
##        1   461344  2438342  3741221  6445505 13244417
sd(original_data)  # calculate standard deviation
## [1] 3582014
skewness(original_data)  # calculate Cofficient of skewness
## [1] 0.7385609
kurtosis(original_data)   # calculate Cofficient of kurtosis
## [1] 2.494422
rows <- NROW(original_data)
training_data<-original_data[1:(rows-validation_data_days)]
testing_data<-original_data[(rows-validation_data_days+1):rows]
AD<-fulldate<-seq(as.Date(Actual_date_interval[1]),as.Date(Actual_date_interval[2]), frequency)  #input range for actual date
FD<-seq(as.Date(Forecast_date_interval[1]),as.Date(Forecast_date_interval[2]), frequency)  #input range forecasting date
N_forecasting_days<-nrow(data.frame(FD)) 
validation_dates<-tail(AD,validation_data_days)
validation_data_by_name<-weekdays(validation_dates)
forecasting_data_by_name<-weekdays(FD)
##bats model
# Data Modeling
data_series<-ts(training_data)
autoplot(data_series ,xlab=paste ("Time in  ", frequency, sep=" "), ylab = y_lab, main=paste ("Actual Data :", y_lab, sep=" "))

model_bats<-bats(data_series)
accuracy(model_bats)  # accuracy on training data
##                    ME     RMSE      MAE       MPE     MAPE      MASE
## Training set 311.1806 6609.909 4202.235 -7.184373 11.59995 0.1055417
##                     ACF1
## Training set -0.01871398
# Print Model Parameters
model_bats
## BATS(0.497, {0,0}, 1, -)
## 
## Call: bats(y = data_series)
## 
## Parameters
##   Lambda: 0.497035
##   Alpha: 1.141635
##   Beta: 0.7277369
##   Damping Parameter: 1
## 
## Seed States:
##           [,1]
## [1,] -8.482775
## [2,]  4.013806
## attr(,"lambda")
## [1] 0.4970347
## 
## Sigma: 3.544621
## AIC: 6425.073
plot(model_bats,xlab = paste ("Time in  ", frequency ,y_lab , sep=" "),  col.main="black", col.lab="blue", col.sub="black", cex.main=1, cex.lab=1, cex.sub=1,font.main=4, font.lab=4)

# Testing Data Evaluation
forecasting_bats <- predict(model_bats, h=N_forecasting_days+validation_data_days)
validation_forecast<-head(forecasting_bats$mean,validation_data_days)
MAPE_Per_Day<-round(  abs(((testing_data-validation_forecast)/testing_data)*100)  ,3)
paste ("MAPE % For ",validation_data_days,frequency,"by using bats Model for  ==> ",y_lab, sep=" ")
## [1] "MAPE % For  7 days by using bats Model for  ==>  COVID 19 Infection cases in USA"
MAPE_Mean_All<-paste(round(mean(MAPE_Per_Day),3),"% MAPE ",validation_data_days,frequency,y_lab,sep=" ")
MAPE_bats<-paste(round(MAPE_Per_Day,3),"%")
MAPE_bats_Model<-paste(MAPE_Per_Day ,"%")
paste (" MAPE that's Error of Forecasting for ",validation_data_days," days in bats Model for  ==> ",y_lab, sep=" ")
## [1] " MAPE that's Error of Forecasting for  7  days in bats Model for  ==>  COVID 19 Infection cases in USA"
paste(MAPE_Mean_All,"%")
## [1] "0.715 % MAPE  7 days COVID 19 Infection cases in USA %"
paste ("MAPE that's Error of Forecasting day by day for ",validation_data_days," days in bats Model for  ==> ",y_lab, sep=" ")
## [1] "MAPE that's Error of Forecasting day by day for  7  days in bats Model for  ==>  COVID 19 Infection cases in USA"
data.frame(date_bats=validation_dates,validation_data_by_name,actual_data=testing_data,forecasting_bats=validation_forecast,MAPE_bats_Model)
##    date_bats validation_data_by_name actual_data forecasting_bats
## 1 2020-11-22             воскресенье    12246766         12283993
## 2 2020-11-23             понедельник    12418228         12467541
## 3 2020-11-24                 вторник    12591163         12652457
## 4 2020-11-25                   среда    12772653         12838743
## 5 2020-11-26                 четверг    12883264         13026398
## 6 2020-11-27                 пятница    13088821         13215423
## 7 2020-11-28                 суббота    13244417         13405818
##   MAPE_bats_Model
## 1         0.304 %
## 2         0.397 %
## 3         0.487 %
## 4         0.517 %
## 5         1.111 %
## 6         0.967 %
## 7         1.219 %
data.frame(FD,forecating_date=forecasting_data_by_name,forecasting_by_bats=tail(forecasting_bats$mean,N_forecasting_days))
##           FD forecating_date forecasting_by_bats
## 1 2020-11-29     воскресенье            13597582
## 2 2020-11-30     понедельник            13790717
## 3 2020-12-01         вторник            13985221
## 4 2020-12-02           среда            14181096
## 5 2020-12-03         четверг            14378341
## 6 2020-12-04         пятница            14576957
## 7 2020-12-05         суббота            14776943
plot(forecasting_bats)
x1_test <- ts(testing_data, start =(rows-validation_data_days+1) )
lines(x1_test, col='red',lwd=2)

graph1<-autoplot(forecasting_bats,xlab = paste ("Time in  ", frequency ,y_lab , sep=" "),  col.main="black", col.lab="blue", col.sub="black", cex.main=1, cex.lab=1, cex.sub=1,font.main=4, font.lab=4, ylab=y_lab)
graph1

## Error of forecasting
Error_bats<-abs(testing_data-validation_forecast)  # Absolute error of forecast (AEOF)
REOF_A_bats<-abs(((testing_data-validation_forecast)/testing_data)*100)  #Relative error of forecast (divided by actual)(REOF_A)
REOF_F_bats<-abs(((testing_data-validation_forecast)/validation_forecast)*100)  #Relative error of forecast (divided by forecast)(REOF_F)
correlation_bats<-cor(testing_data,validation_forecast, method = c("pearson"))     # correlation coefficient between predicted and actual values 
RMSE_bats<-sqrt(sum((Error_bats^2))/validation_data_days)   #  Root mean square forecast error
MAD_bats<-abs((sum(testing_data-validation_forecast))/validation_data_days)   # average forecast accuracy
AEOF_bats<-c(Error_bats)
REOF_Abats<-c(paste(round(REOF_A_bats,3),"%"))
REOF_Fbats<-c(paste(round(REOF_F_bats,3),"%"))
data.frame(correlation_bats,RMSE_bats,MAPE_Mean_All,MAD_bats) # analysis of Error  by using Bats Model shows result of correlation ,MSE ,MPER
##   correlation_bats RMSE_bats
## 1         0.998822  103169.8
##                                          MAPE_Mean_All MAD_bats
## 1 0.715 % MAPE  7 days COVID 19 Infection cases in USA 92151.53
data.frame(validation_dates,Validation_day_name=validation_data_by_name,AEOF_bats,REOF_Abats,REOF_Fbats)   # Analysis of error shows result AEOF,REOF_A,REOF_F
##   validation_dates Validation_day_name AEOF_bats REOF_Abats REOF_Fbats
## 1       2020-11-22         воскресенье  37227.38    0.304 %    0.303 %
## 2       2020-11-23         понедельник  49312.56    0.397 %    0.396 %
## 3       2020-11-24             вторник  61294.00    0.487 %    0.484 %
## 4       2020-11-25               среда  66089.81    0.517 %    0.515 %
## 5       2020-11-26             четверг 143134.13    1.111 %    1.099 %
## 6       2020-11-27             пятница 126602.07    0.967 %    0.958 %
## 7       2020-11-28             суббота 161400.74    1.219 %    1.204 %
## TBATS Model

# Data Modeling
data_series<-ts(training_data)
model_TBATS<-forecast:::fitSpecificTBATS(data_series,use.box.cox=FALSE, use.beta=TRUE,  seasonal.periods=c(6),use.damping=FALSE,k.vector=c(2))
accuracy(model_TBATS)  # accuracy on training data
##                    ME     RMSE      MAE       MPE     MAPE      MASE
## Training set 914.4552 6658.616 4322.161 -56.85973 3007.343 0.1085537
##                     ACF1
## Training set 0.009782572
# Print Model Parameters
model_TBATS
## TBATS(1, {0,0}, 1, {<6,2>})
## 
## Call: NULL
## 
## Parameters
##   Alpha: 1.198583
##   Beta: 0.6440573
##   Damping Parameter: 1
##   Gamma-1 Values: 3.416932e-06
##   Gamma-2 Values: -0.0009812341
## 
## Seed States:
##            [,1]
## [1,] -3370.3399
## [2,]   185.7172
## [3,]  -596.6101
## [4,]   259.2758
## [5,]   110.8531
## [6,]   129.5181
## 
## Sigma: 6658.616
## AIC: 7134.932
plot(model_TBATS,xlab = paste ("Time in  ", frequency ,y_lab , sep=" "),  col.main="black", col.lab="blue", col.sub="black", cex.main=1, cex.lab=1, cex.sub=1,font.main=4, font.lab=4, ylab=y_lab)

# Testing Data Evaluation
forecasting_tbats <- predict(model_TBATS, h=N_forecasting_days+validation_data_days)
validation_forecast<-head(forecasting_tbats$mean,validation_data_days)
MAPE_Per_Day<-round(  abs(((testing_data-validation_forecast)/testing_data)*100)  ,3)
paste ("MAPE % For ",validation_data_days,frequency,"by using TBATS Model for  ==> ",y_lab, sep=" ")
## [1] "MAPE % For  7 days by using TBATS Model for  ==>  COVID 19 Infection cases in USA"
MAPE_Mean_All<-paste(round(mean(MAPE_Per_Day),3),"% MAPE ",validation_data_days,frequency,y_lab,sep=" ")
MAPE_TBATS<-paste(round(MAPE_Per_Day,3),"%")
MAPE_TBATS_Model<-paste(MAPE_Per_Day ,"%")
paste (" MAPE that's Error of Forecasting for ",validation_data_days," days in TBATS Model for  ==> ",y_lab, sep=" ")
## [1] " MAPE that's Error of Forecasting for  7  days in TBATS Model for  ==>  COVID 19 Infection cases in USA"
paste(MAPE_Mean_All,"%")
## [1] "0.556 % MAPE  7 days COVID 19 Infection cases in USA %"
paste ("MAPE that's Error of Forecasting day by day for ",validation_data_days," days in TBATS Model for  ==> ",y_lab, sep=" ")
## [1] "MAPE that's Error of Forecasting day by day for  7  days in TBATS Model for  ==>  COVID 19 Infection cases in USA"
data.frame(date_TBATS=validation_dates,validation_data_by_name,actual_data=testing_data,forecasting_TBATS=validation_forecast,MAPE_TBATS_Model)
##   date_TBATS validation_data_by_name actual_data forecasting_TBATS
## 1 2020-11-22             воскресенье    12246766          12280961
## 2 2020-11-23             понедельник    12418228          12460894
## 3 2020-11-24                 вторник    12591163          12640811
## 4 2020-11-25                   среда    12772653          12821175
## 5 2020-11-26                 четверг    12883264          13001636
## 6 2020-11-27                 пятница    13088821          13180795
## 7 2020-11-28                 суббота    13244417          13359875
##   MAPE_TBATS_Model
## 1          0.279 %
## 2          0.344 %
## 3          0.394 %
## 4           0.38 %
## 5          0.919 %
## 6          0.703 %
## 7          0.872 %
data.frame(FD,forecating_date=forecasting_data_by_name,forecasting_by_TBATS=tail(forecasting_tbats$mean,N_forecasting_days))
##           FD forecating_date forecasting_by_TBATS
## 1 2020-11-29     воскресенье             13539808
## 2 2020-11-30     понедельник             13719725
## 3 2020-12-01         вторник             13900089
## 4 2020-12-02           среда             14080550
## 5 2020-12-03         четверг             14259709
## 6 2020-12-04         пятница             14438789
## 7 2020-12-05         суббота             14618722
plot(forecasting_tbats)
x1_test <- ts(testing_data, start =(rows-validation_data_days+1) )
lines(x1_test, col='red',lwd=2)

graph2<-autoplot(forecasting_tbats,xlab = paste ("Time in  ", frequency ,y_lab , sep=" "),  col.main="black", col.lab="blue", col.sub="black", cex.main=1, cex.lab=1, cex.sub=1,font.main=4, font.lab=4, ylab=y_lab)
graph2

## Error of forecasting TBATS Model

Error_tbats<-abs(testing_data-validation_forecast)  # Absolute error of forecast (AEOF)
REOF_A_tbats1<-abs(((testing_data-validation_forecast)/testing_data)*100)  #Relative error of forecast (divided by actual)(REOF_A)
REOF_F_tbats<-abs(((testing_data-validation_forecast)/validation_forecast)*100)  #Relative error of forecast (divided by forecast)(REOF_F)
correlation_tbats<-cor(testing_data,validation_forecast, method = c("pearson"))     # correlation coefficient between predicted and actual values 
RMSE_tbats<-sqrt(sum((Error_tbats^2))/validation_data_days)   #  Root mean square forecast error
MAD_tbats<-abs((sum(testing_data-validation_forecast))/validation_data_days)   # average forecast accuracy
AEOF_tbats<-c(Error_tbats)
REOF_A_tbats<-c(paste(round(REOF_A_tbats1,3),"%"))
REOF_F_tbats<-c(paste(round(REOF_F_tbats,3),"%"))
data.frame(correlation_tbats,RMSE_tbats,MAPE_Mean_All,MAD_tbats) # analysis of Error  by using Holt's linear model shows result of correlation ,MSE ,MPER
##   correlation_tbats RMSE_tbats
## 1         0.9988655   78930.92
##                                          MAPE_Mean_All MAD_tbats
## 1 0.556 % MAPE  7 days COVID 19 Infection cases in USA  71547.75
data.frame(validation_dates,Validation_day_name=validation_data_by_name,AEOF_tbats,REOF_A_tbats,REOF_F_tbats)   # Analysis of error shows result AEOF,REOF_A,REOF_F
##   validation_dates Validation_day_name AEOF_tbats REOF_A_tbats REOF_F_tbats
## 1       2020-11-22         воскресенье   34194.51      0.279 %      0.278 %
## 2       2020-11-23         понедельник   42666.22      0.344 %      0.342 %
## 3       2020-11-24             вторник   49647.50      0.394 %      0.393 %
## 4       2020-11-25               среда   48522.03       0.38 %      0.378 %
## 5       2020-11-26             четверг  118372.36      0.919 %       0.91 %
## 6       2020-11-27             пятница   91974.13      0.703 %      0.698 %
## 7       2020-11-28             суббота  115457.53      0.872 %      0.864 %
## Holt's linear trend


# Data Modeling
data_series<-ts(training_data)
model_holt<-holt(data_series,h=N_forecasting_days+validation_data_days,lambda = "auto")
accuracy(model_holt)  # accuracy on training data
##                    ME     RMSE     MAE       MPE     MAPE      MASE        ACF1
## Training set 299.9498 6764.353 4295.35 0.1075389 3.471672 0.1078803 -0.01140103
# Print Model Parameters
summary(model_holt$model)
## Holt's method 
## 
## Call:
##  holt(y = data_series, h = N_forecasting_days + validation_data_days,  
## 
##  Call:
##      lambda = "auto") 
## 
##   Box-Cox transformation: lambda= 0.5645 
## 
##   Smoothing parameters:
##     alpha = 0.9999 
##     beta  = 0.905 
## 
##   Initial states:
##     l = -1.352 
##     b = -0.0423 
## 
##   sigma:  8.9136
## 
##      AIC     AICc      BIC 
## 3085.091 3085.291 3103.692 
## 
## Training set error measures:
##                    ME     RMSE     MAE       MPE     MAPE      MASE        ACF1
## Training set 299.9498 6764.353 4295.35 0.1075389 3.471672 0.1078803 -0.01140103
# Testing Data Evaluation
forecasting_holt <- predict(model_holt, h=N_forecasting_days+validation_data_days,lambda = "auto")
validation_forecast<-head(forecasting_holt$mean,validation_data_days)
MAPE_Per_Day<-round(  abs(((testing_data-validation_forecast)/testing_data)*100)  ,3)
paste ("MAPE % For ",validation_data_days,frequency,"by using holt Model for  ==> ",y_lab, sep=" ")
## [1] "MAPE % For  7 days by using holt Model for  ==>  COVID 19 Infection cases in USA"
MAPE_Mean_All<-paste(round(mean(MAPE_Per_Day),3),"% MAPE ",validation_data_days,frequency,y_lab,sep=" ")
MAPE_holt<-paste(round(MAPE_Per_Day,3),"%")
MAPE_holt_Model<-paste(MAPE_Per_Day ,"%")
paste (" MAPE that's Error of Forecasting for ",validation_data_days," days in holt Model for  ==> ",y_lab, sep=" ")
## [1] " MAPE that's Error of Forecasting for  7  days in holt Model for  ==>  COVID 19 Infection cases in USA"
paste(MAPE_Mean_All,"%")
## [1] "0.683 % MAPE  7 days COVID 19 Infection cases in USA %"
paste ("MAPE that's Error of Forecasting day by day for ",validation_data_days," days in holt Model for  ==> ",y_lab, sep=" ")
## [1] "MAPE that's Error of Forecasting day by day for  7  days in holt Model for  ==>  COVID 19 Infection cases in USA"
data.frame(date_holt=validation_dates,validation_data_by_name,actual_data=testing_data,forecasting_holt=validation_forecast,MAPE_holt_Model)
##    date_holt validation_data_by_name actual_data forecasting_holt
## 1 2020-11-22             воскресенье    12246766         12285028
## 2 2020-11-23             понедельник    12418228         12467191
## 3 2020-11-24                 вторник    12591163         12650521
## 4 2020-11-25                   среда    12772653         12835015
## 5 2020-11-26                 четверг    12883264         13020671
## 6 2020-11-27                 пятница    13088821         13207487
## 7 2020-11-28                 суббота    13244417         13395462
##   MAPE_holt_Model
## 1         0.312 %
## 2         0.394 %
## 3         0.471 %
## 4         0.488 %
## 5         1.067 %
## 6         0.907 %
## 7          1.14 %
data.frame(FD,forecating_date=forecasting_data_by_name,forecasting_by_holt=tail(forecasting_holt$mean,N_forecasting_days))
##           FD forecating_date forecasting_by_holt
## 1 2020-11-29     воскресенье            13584592
## 2 2020-11-30     понедельник            13774875
## 3 2020-12-01         вторник            13966311
## 4 2020-12-02           среда            14158896
## 5 2020-12-03         четверг            14352629
## 6 2020-12-04         пятница            14547507
## 7 2020-12-05         суббота            14743529
plot(forecasting_holt)
x1_test <- ts(testing_data, start =(rows-validation_data_days+1) )
lines(x1_test, col='red',lwd=2)

graph3<-autoplot(forecasting_holt,xlab = paste ("Time in  ", frequency ,y_lab , sep=" "),  col.main="black", col.lab="blue", col.sub="black", cex.main=1, cex.lab=1, cex.sub=1,font.main=4, font.lab=4, ylab=y_lab)
graph3

## Error of forecasting by using Holt's linear model
Error_Holt<-abs(testing_data-validation_forecast)  # Absolute error of forecast (AEOF)
REOF_A_Holt1<-abs(((testing_data-validation_forecast)/testing_data)*100)  #Relative error of forecast (divided by actual)(REOF_A)
REOF_F_Holt<-abs(((testing_data-validation_forecast)/validation_forecast)*100)  #Relative error of forecast (divided by forecast)(REOF_F)
correlation_Holt<-cor(testing_data,validation_forecast, method = c("pearson"))     # correlation coefficient between predicted and actual values 
RMSE_Holt<-sqrt(sum((Error_Holt^2))/validation_data_days)   #  Root mean square forecast error
MAD_Holt<-abs((sum(testing_data-validation_forecast))/validation_data_days)   # average forecast accuracy
AEOF_Holt<-c(Error_Holt)
REOF_A_Holt<-c(paste(round(REOF_A_Holt1,3),"%"))
REOF_F_Holt<-c(paste(round(REOF_F_Holt,3),"%"))
REOF_A_Holt11<-mean(abs(((testing_data-validation_forecast)/testing_data)*100))
data.frame(correlation_Holt,RMSE_Holt,MAPE_Mean_All,MAD_Holt) # analysis of Error  by using Holt's linear model shows result of correlation ,MSE ,MPER
##   correlation_Holt RMSE_Holt
## 1        0.9988338  97870.52
##                                          MAPE_Mean_All MAD_Holt
## 1 0.683 % MAPE  7 days COVID 19 Infection cases in USA 88008.89
data.frame(validation_dates,Validation_day_name=validation_data_by_name,AEOF_Holt,REOF_A_Holt,REOF_F_Holt)   # Analysis of error shows result AEOF,REOF_A,REOF_F
##   validation_dates Validation_day_name AEOF_Holt REOF_A_Holt REOF_F_Holt
## 1       2020-11-22         воскресенье  38262.07     0.312 %     0.311 %
## 2       2020-11-23         понедельник  48963.09     0.394 %     0.393 %
## 3       2020-11-24             вторник  59357.70     0.471 %     0.469 %
## 4       2020-11-25               среда  62361.70     0.488 %     0.486 %
## 5       2020-11-26             четверг 137406.94     1.067 %     1.055 %
## 6       2020-11-27             пятница 118666.25     0.907 %     0.898 %
## 7       2020-11-28             суббота 151044.50      1.14 %     1.128 %
#Auto arima model
##################

require(tseries) # need to install tseries tj test Stationarity in time series 
paste ("tests For Check Stationarity in series  ==> ",y_lab, sep=" ")
## [1] "tests For Check Stationarity in series  ==>  COVID 19 Infection cases in USA"
kpss.test(data_series) # applay kpss test
## Warning in kpss.test(data_series): p-value smaller than printed p-value
## 
##  KPSS Test for Level Stationarity
## 
## data:  data_series
## KPSS Level = 4.9261, Truncation lag parameter = 5, p-value = 0.01
pp.test(data_series)   # applay pp test
## Warning in pp.test(data_series): p-value greater than printed p-value
## 
##  Phillips-Perron Unit Root Test
## 
## data:  data_series
## Dickey-Fuller Z(alpha) = 2.8043, Truncation lag parameter = 5, p-value
## = 0.99
## alternative hypothesis: stationary
adf.test(data_series)  # applay adf test
## Warning in adf.test(data_series): p-value greater than printed p-value
## 
##  Augmented Dickey-Fuller Test
## 
## data:  data_series
## Dickey-Fuller = 2.192, Lag order = 6, p-value = 0.99
## alternative hypothesis: stationary
ndiffs(data_series)    # Doing first diffrencing on data
## [1] 2
#Taking the first difference
diff1_x1<-diff(data_series)
autoplot(diff1_x1, xlab = paste ("Time in  ", frequency ,y_lab , sep=" "),  col.main="black", col.lab="blue", col.sub="black", cex.main=1, cex.lab=1, cex.sub=1,font.main=4, font.lab=4, ylab=y_lab,main = "1nd differenced series")
## Warning: Ignoring unknown parameters: col.main, col.lab, col.sub, cex.main,
## cex.lab, cex.sub, font.main, font.lab

##Testing the stationary of the first differenced series
paste ("tests For Check Stationarity in series after taking first differences in  ==> ",y_lab, sep=" ")
## [1] "tests For Check Stationarity in series after taking first differences in  ==>  COVID 19 Infection cases in USA"
kpss.test(diff1_x1)   # applay kpss test after taking first differences
## Warning in kpss.test(diff1_x1): p-value smaller than printed p-value
## 
##  KPSS Test for Level Stationarity
## 
## data:  diff1_x1
## KPSS Level = 3.2879, Truncation lag parameter = 5, p-value = 0.01
pp.test(diff1_x1)     # applay pp test after taking first differences
## Warning in pp.test(diff1_x1): p-value greater than printed p-value
## 
##  Phillips-Perron Unit Root Test
## 
## data:  diff1_x1
## Dickey-Fuller Z(alpha) = 1.7973, Truncation lag parameter = 5, p-value
## = 0.99
## alternative hypothesis: stationary
adf.test(diff1_x1)    # applay adf test after taking first differences
## Warning in adf.test(diff1_x1): p-value greater than printed p-value
## 
##  Augmented Dickey-Fuller Test
## 
## data:  diff1_x1
## Dickey-Fuller = 4.4347, Lag order = 6, p-value = 0.99
## alternative hypothesis: stationary
#Taking the second difference
diff2_x1=diff(diff1_x1)
autoplot(diff2_x1, xlab = paste ("Time in  ", frequency ,y_lab , sep=" "),  col.main="black", col.lab="blue", col.sub="black", cex.main=1, cex.lab=1, cex.sub=1,font.main=4, font.lab=4, ylab=y_lab ,main = "2nd differenced series")
## Warning: Ignoring unknown parameters: col.main, col.lab, col.sub, cex.main,
## cex.lab, cex.sub, font.main, font.lab

##Testing the stationary of the first differenced series
paste ("tests For Check Stationarity in series after taking Second differences in",y_lab, sep=" ")
## [1] "tests For Check Stationarity in series after taking Second differences in COVID 19 Infection cases in USA"
kpss.test(diff2_x1)   # applay kpss test after taking Second differences
## 
##  KPSS Test for Level Stationarity
## 
## data:  diff2_x1
## KPSS Level = 0.63643, Truncation lag parameter = 5, p-value = 0.01932
pp.test(diff2_x1)     # applay pp test after taking Second differences
## Warning in pp.test(diff2_x1): p-value smaller than printed p-value
## 
##  Phillips-Perron Unit Root Test
## 
## data:  diff2_x1
## Dickey-Fuller Z(alpha) = -235.18, Truncation lag parameter = 5, p-value
## = 0.01
## alternative hypothesis: stationary
adf.test(diff2_x1)    # applay adf test after taking Second differences
## Warning in adf.test(diff2_x1): p-value smaller than printed p-value
## 
##  Augmented Dickey-Fuller Test
## 
## data:  diff2_x1
## Dickey-Fuller = -5.6385, Lag order = 6, p-value = 0.01
## alternative hypothesis: stationary
####Fitting an ARIMA Model
#1. Using auto arima function
model1 <- auto.arima(data_series,stepwise=FALSE, approximation=FALSE, trace=T, test = c("kpss", "adf", "pp"))  #applaying auto arima
## 
##  ARIMA(0,2,0)                    : 6212
##  ARIMA(0,2,1)                    : 6211.772
##  ARIMA(0,2,2)                    : 6201.66
##  ARIMA(0,2,3)                    : 6199.609
##  ARIMA(0,2,4)                    : 6175.255
##  ARIMA(0,2,5)                    : 6197.879
##  ARIMA(1,2,0)                    : 6212.497
##  ARIMA(1,2,1)                    : 6203.812
##  ARIMA(1,2,2)                    : 6201.308
##  ARIMA(1,2,3)                    : 6199.108
##  ARIMA(1,2,4)                    : 6147.698
##  ARIMA(2,2,0)                    : 6207.999
##  ARIMA(2,2,1)                    : 6198.815
##  ARIMA(2,2,2)                    : 6122.805
##  ARIMA(2,2,3)                    : 6200.991
##  ARIMA(3,2,0)                    : 6202.602
##  ARIMA(3,2,1)                    : 6196.018
##  ARIMA(3,2,2)                    : Inf
##  ARIMA(4,2,0)                    : 6197.556
##  ARIMA(4,2,1)                    : 6192.262
##  ARIMA(5,2,0)                    : 6166.48
## 
## 
## 
##  Best model: ARIMA(2,2,2)
model1 # show the result of autoarima 
## Series: data_series 
## ARIMA(2,2,2) 
## 
## Coefficients:
##          ar1      ar2      ma1     ma2
##       1.2454  -0.8517  -1.5330  0.8997
## s.e.  0.0371   0.0525   0.0527  0.0271
## 
## sigma^2 estimated as 33963590:  log likelihood=-3056.3
## AIC=6122.6   AICc=6122.8   BIC=6141.17
#Make changes in the source of auto arima to run the best model
arima.string <- function (object, padding = FALSE) 
{
  order <- object$arma[c(1, 6, 2, 3, 7, 4, 5)]
  m <- order[7]
  result <- paste("ARIMA(", order[1], ",", order[2], ",", 
                  order[3], ")", sep = "")
  if (m > 1 && sum(order[4:6]) > 0) {
    result <- paste(result, "(", order[4], ",", order[5], 
                    ",", order[6], ")[", m, "]", sep = "")
  }
  if (padding && m > 1 && sum(order[4:6]) == 0) {
    result <- paste(result, "         ", sep = "")
    if (m <= 9) {
      result <- paste(result, " ", sep = "")
    }
    else if (m <= 99) {
      result <- paste(result, "  ", sep = "")
    }
    else {
      result <- paste(result, "   ", sep = "")
    }
  }
  if (!is.null(object$xreg)) {
    if (NCOL(object$xreg) == 1 && is.element("drift", names(object$coef))) {
      result <- paste(result, "with drift        ")
    }
    else {
      result <- paste("Regression with", result, "errors")
    }
  }
  else {
    if (is.element("constant", names(object$coef)) || is.element("intercept", 
                                                                 names(object$coef))) {
      result <- paste(result, "with non-zero mean")
    }
    else if (order[2] == 0 && order[5] == 0) {
      result <- paste(result, "with zero mean    ")
    }
    else {
      result <- paste(result, "                  ")
    }
  }
  if (!padding) {
    result <- gsub("[ ]*$", "", result)
  }
  return(result)
}






source("stringthearima.R")  
bestmodel <- arima.string(model1, padding = TRUE)
bestmodel <- substring(bestmodel,7,11)
bestmodel <- gsub(" ", "", bestmodel)
bestmodel <- gsub(")", "", bestmodel)
bestmodel <- strsplit(bestmodel, ",")[[1]]
bestmodel <- c(strtoi(bestmodel[1]),strtoi(bestmodel[2]),strtoi(bestmodel[3]))
bestmodel
## [1] 2 2 2
strtoi(bestmodel[3])
## [1] 2
#2. Using ACF and PACF Function
#par(mfrow=c(1,2))  # Code for making two plot in one graph 
acf(diff2_x1,xlab = paste ("Time in  ", frequency ,y_lab , sep=" "),  col.main="black", col.lab="blue", col.sub="black", cex.main=1, cex.lab=1, cex.sub=1,font.main=4, font.lab=4, ylab=y_lab, main=paste("ACF-2nd differenced series ",y_lab, sep=" ",lag.max=20))    # plot ACF "auto correlation function after taking second diffrences

pacf(diff2_x1,xlab = paste ("Time in  ", frequency ,y_lab , sep=" "),  col.main="black", col.lab="blue", col.sub="black", cex.main=1, cex.lab=1, cex.sub=1,font.main=4, font.lab=4, ylab=y_lab,main=paste("PACF-2nd differenced series ",y_lab, sep=" ",lag.max=20))   # plot PACF " Partial auto correlation function after taking second diffrences

library(forecast)   # install library forecast             
x1_model1= arima(data_series, order=c(bestmodel)) # Run Best model of auto arima  for forecasting
x1_model1  # Show result of best model of auto arima 
## 
## Call:
## arima(x = data_series, order = c(bestmodel))
## 
## Coefficients:
##          ar1      ar2      ma1     ma2
##       1.2454  -0.8517  -1.5330  0.8997
## s.e.  0.0371   0.0525   0.0527  0.0271
## 
## sigma^2 estimated as 33515226:  log likelihood = -3056.3,  aic = 6122.6
paste ("accuracy of autoarima Model For  ==> ",y_lab, sep=" ")
## [1] "accuracy of autoarima Model For  ==>  COVID 19 Infection cases in USA"
accuracy(x1_model1)  # aacuracy of best model from auto arima
##                    ME     RMSE      MAE      MPE     MAPE       MASE
## Training set 954.8594 5770.221 3537.249 1.065116 2.660938 0.08884012
##                     ACF1
## Training set -0.07778797
x1_model1$x          # show result of best model from auto arima 
## NULL
checkresiduals(x1_model1,xlab = paste ("Time in  ", frequency ,y_lab , sep=" "),  col.main="black", col.lab="blue", col.sub="black", cex.main=1, cex.lab=1, cex.sub=1,font.main=4, font.lab=4, ylab=y_lab)  # checkresiduals from best model from using auto arima 

## 
##  Ljung-Box test
## 
## data:  Residuals from ARIMA(2,2,2)
## Q* = 79.178, df = 6, p-value = 5.329e-15
## 
## Model df: 4.   Total lags used: 10
paste("Box-Ljung test , Ljung-Box test For Modelling for   ==> ",y_lab, sep=" ")
## [1] "Box-Ljung test , Ljung-Box test For Modelling for   ==>  COVID 19 Infection cases in USA"
Box.test(x1_model1$residuals^2, lag=20, type="Ljung-Box")   # Do test for resdulas by using Box-Ljung test , Ljung-Box test For Modelling
## 
##  Box-Ljung test
## 
## data:  x1_model1$residuals^2
## X-squared = 225.56, df = 20, p-value < 2.2e-16
library(tseries)
jarque.bera.test(x1_model1$residuals)  # Do test jarque.bera.test 
## 
##  Jarque Bera Test
## 
## data:  x1_model1$residuals
## X-squared = 1120.5, df = 2, p-value < 2.2e-16
#Actual Vs Fitted
plot(data_series, col='red',lwd=2, main="Actual vs Fitted Plot", xlab='Time in (days)', ylab=y_lab) # plot actual and Fitted model 
lines(fitted(x1_model1), col='blue')

#Test data

x1_test <- ts(testing_data, start =(rows-validation_data_days+1) ) # make testing data in time series and start from rows-6
forecasting_auto_arima <- forecast(x1_model1, h=N_forecasting_days+validation_data_days)
validation_forecast<-head(forecasting_auto_arima$mean,validation_data_days)
MAPE_Per_Day<-round(abs(((testing_data-validation_forecast)/testing_data)*100)  ,3)
paste ("MAPE % For ",validation_data_days,frequency,"by using bats Model for  ==> ",y_lab, sep=" ")
## [1] "MAPE % For  7 days by using bats Model for  ==>  COVID 19 Infection cases in USA"
MAPE_Mean_All<-paste(round(mean(MAPE_Per_Day),3),"% MAPE ",validation_data_days,frequency,y_lab,sep=" ")
MAPE_auto_arima<-paste(round(MAPE_Per_Day,3),"%")
MAPE_auto.arima_Model<-paste(MAPE_Per_Day ,"%")
paste (" MAPE that's Error of Forecasting for ",validation_data_days," days in bats Model for  ==> ",y_lab, sep=" ")
## [1] " MAPE that's Error of Forecasting for  7  days in bats Model for  ==>  COVID 19 Infection cases in USA"
paste(MAPE_Mean_All,"%")
## [1] "0.281 % MAPE  7 days COVID 19 Infection cases in USA %"
paste ("MAPE that's Error of Forecasting day by day for ",validation_data_days," days in bats Model for  ==> ",y_lab, sep=" ")
## [1] "MAPE that's Error of Forecasting day by day for  7  days in bats Model for  ==>  COVID 19 Infection cases in USA"
data.frame(date_auto.arima=validation_dates,validation_data_by_name,actual_data=testing_data,forecasting_auto.arima=validation_forecast,MAPE_auto.arima_Model)
##   date_auto.arima validation_data_by_name actual_data forecasting_auto.arima
## 1      2020-11-22             воскресенье    12246766               12268907
## 2      2020-11-23             понедельник    12418228               12429410
## 3      2020-11-24                 вторник    12591163               12595706
## 4      2020-11-25                   среда    12772653               12772943
## 5      2020-11-26                 четверг    12883264               12958871
## 6      2020-11-27                 пятница    13088821               13146305
## 7      2020-11-28                 суббота    13244417               13328213
##   MAPE_auto.arima_Model
## 1               0.181 %
## 2                0.09 %
## 3               0.036 %
## 4               0.002 %
## 5               0.587 %
## 6               0.439 %
## 7               0.633 %
data.frame(FD,forecating_date=forecasting_data_by_name,forecasting_by_auto.arima=tail(forecasting_auto_arima$mean,N_forecasting_days))
##           FD forecating_date forecasting_by_auto.arima
## 1 2020-11-29     воскресенье                  13501956
## 2 2020-11-30     понедельник                  13670237
## 3 2020-12-01         вторник                  13838669
## 4 2020-12-02           среда                  14011940
## 5 2020-12-03         четверг                  14191110
## 6 2020-12-04         пятница                  14373506
## 7 2020-12-05         суббота                  14554894
plot(forecasting_auto_arima)
x1_test <- ts(testing_data, start =(rows-validation_data_days+1) )
lines(x1_test, col='red',lwd=2)

graph4<-autoplot(forecasting_auto_arima,xlab = paste ("Time in  ", frequency ,y_lab , sep=" "),  col.main="black", col.lab="blue", col.sub="black", cex.main=1, cex.lab=1, cex.sub=1,font.main=4, font.lab=4, ylab=y_lab)
graph4

## Error of forecasting
Error_auto.arima<-abs(testing_data-validation_forecast)  # Absolute error of forecast (AEOF)
REOF_A_auto.arima<-abs(((testing_data-validation_forecast)/testing_data)*100)  #Relative error of forecast (divided by actual)(REOF_A)
REOF_F_auto.arima<-abs(((testing_data-validation_forecast)/validation_forecast)*100)  #Relative error of forecast (divided by forecast)(REOF_F)
correlation_auto.arima<-cor(testing_data,validation_forecast, method = c("pearson"))     # correlation coefficient between predicted and actual values 
RMSE_auto.arima<-sqrt(sum((Error_auto.arima^2))/validation_data_days)   #  Root mean square forecast error
MAD_auto.arima<-abs((sum(testing_data-validation_forecast))/validation_data_days)   # average forecast accuracy
AEOF_auto.arima<-c(Error_auto.arima)
REOF_auto.arima1<-c(paste(round(REOF_A_auto.arima,3),"%"))
REOF_auto.arima2<-c(paste(round(REOF_F_auto.arima,3),"%"))
data.frame(correlation_auto.arima,RMSE_auto.arima,MAPE_Mean_All,MAD_auto.arima) # analysis of Error  by using Holt's linear model shows result of correlation ,MSE ,MPER
##   correlation_auto.arima RMSE_auto.arima
## 1              0.9981032        48812.35
##                                          MAPE_Mean_All MAD_auto.arima
## 1 0.281 % MAPE  7 days COVID 19 Infection cases in USA       36434.71
data.frame(validation_dates,Validation_day_name=validation_data_by_name,AEOF_auto.arima,REOF_A_auto.arima=REOF_auto.arima1,REOF_F_auto.arima=REOF_auto.arima2)   # Analysis of error shows result AEOF,REOF_A,REOF_F
##   validation_dates Validation_day_name AEOF_auto.arima REOF_A_auto.arima
## 1       2020-11-22         воскресенье      22141.1357           0.181 %
## 2       2020-11-23         понедельник      11181.5880            0.09 %
## 3       2020-11-24             вторник       4543.3001           0.036 %
## 4       2020-11-25               среда        290.3628           0.002 %
## 5       2020-11-26             четверг      75607.0518           0.587 %
## 6       2020-11-27             пятница      57483.7846           0.439 %
## 7       2020-11-28             суббота      83795.7144           0.633 %
##   REOF_F_auto.arima
## 1            0.18 %
## 2            0.09 %
## 3           0.036 %
## 4           0.002 %
## 5           0.583 %
## 6           0.437 %
## 7           0.629 %
# SIR Model 
#install.packages("dplyr")
library(deSolve)
first<-rows-13
secondr<-rows-7
vector_SIR<-original_data[first:secondr]
Infected <- c(vector_SIR)
Day <- 1:(length(Infected))
N <- Population # population of the us
SIR <- function(time, state, parameters) {
  par <- as.list(c(state, parameters))
  with(par, {
    dS <- -beta/N * I * S
    dI <- beta/N * I * S - gamma * I
    dR <- gamma * I
    list(c(dS, dI, dR))
  })
}

init <- c(S = N-Infected[1], I = Infected[1], R = 0)
RSS <- function(parameters) {
  names(parameters) <- c("beta", "gamma")
  out <- ode(y = init, times = Day, func = SIR, parms = parameters)
  fit <- out[ , 3]
  sum((Infected - fit)^2)
}

# optimize with some sensible conditions
Opt <- optim(c(0.5, 0.5), RSS, method = "L-BFGS-B", 
             lower = c(0, 0), upper = c(10, 10))
Opt$message
## [1] "CONVERGENCE: REL_REDUCTION_OF_F <= FACTR*EPSMCH"
Opt_par <- setNames(Opt$par, c("beta", "gamma"))
Opt_par
##        beta       gamma 
## 0.023168796 0.007366625
# beta     gamma 
# 0.6512503 0.4920399 

out <- ode(y = init, times = Day, func = SIR, parms = Opt_par)

plot(out)
plot(out, obs=data.frame(time=Day, I=Infected))

result_SIR<-data.frame(out)
validation_forecast<-result_SIR$I
## Error of forecasting
Error_SIR<-abs(testing_data-validation_forecast)  # Absolute error of forecast (AEOF)
REOF_A_SIR<-abs(((testing_data-validation_forecast)/testing_data)*100)  #Relative error of forecast (divided by actual)(REOF_A)
REOF_F_SIR<-abs(((testing_data-validation_forecast)/validation_forecast)*100)  #Relative error of forecast (divided by forecast)(REOF_F)
correlation_SIR<-cor(testing_data,validation_forecast, method = c("pearson"))     # correlation coefficient between predicted and actual values 
RMSE_SIR<-sqrt(sum((Error_SIR^2))/validation_data_days)   #  Root mean square forecast error
MAD_SIR<-abs((sum(testing_data-validation_forecast))/validation_data_days)   # average forecast accuracy
AEOF_SIR<-c(Error_SIR)
REOF_A_SIR<-c(paste(round(REOF_A_SIR,3),"%"))
REOF_A_SIR1<-mean(abs(((testing_data-validation_forecast)/testing_data)*100))

REOF_F_SIR<-c(paste(round(REOF_F_SIR,3),"%"))
MAPE_Mean_All<-paste(round(mean(abs(((testing_data-validation_forecast)/testing_data)*100)),3),"% MAPE ",validation_data_days,frequency,y_lab,sep=" ")
data.frame(correlation_SIR,RMSE_SIR,MAPE_Mean_All,MAD_SIR) # analysis of Error  by using SIR's linear model shows result of correlation ,MSE ,MPER
##   correlation_SIR RMSE_SIR                                        MAPE_Mean_All
## 1       0.9987319  1182565 9.283 % MAPE  7 days COVID 19 Infection cases in USA
##   MAD_SIR
## 1 1182338
data.frame(validation_dates,Validation_day_name=validation_data_by_name,AEOF_SIR,REOF_A_SIR,REOF_F_SIR,validation_forecast,testing_data)   # Analysis of error shows result AEOF,REOF_A,REOF_F
##   validation_dates Validation_day_name AEOF_SIR REOF_A_SIR REOF_F_SIR
## 1       2020-11-22         воскресенье  1193462    9.745 %   10.797 %
## 2       2020-11-23         понедельник  1197626    9.644 %   10.673 %
## 3       2020-11-24             вторник  1200931    9.538 %   10.544 %
## 4       2020-11-25               среда  1210432    9.477 %   10.469 %
## 5       2020-11-26             четверг  1146669      8.9 %     9.77 %
## 6       2020-11-27             пятница  1175439     8.98 %    9.867 %
## 7       2020-11-28             суббота  1151810    8.697 %    9.525 %
##   validation_forecast testing_data
## 1            11053304     12246766
## 2            11220602     12418228
## 3            11390232     12591163
## 4            11562221     12772653
## 5            11736595     12883264
## 6            11913382     13088821
## 7            12092607     13244417
## forecasting by SIR model

Infected <- c(tail(original_data,validation_data_days))
Day <- 1:(length(Infected))
N <- Population # population of the us

SIR <- function(time, state, parameters) {
  par <- as.list(c(state, parameters))
  with(par, {
    dS <- -beta/N * I * S
    dI <- beta/N * I * S - gamma * I
    dR <- gamma * I
    list(c(dS, dI, dR))
  })
}

init <- c(S = N-Infected[1], I = Infected[1], R = 0)
RSS <- function(parameters) {
  names(parameters) <- c("beta", "gamma")
  out <- ode(y = init, times = Day, func = SIR, parms = parameters)
  fit <- out[ , 3]
  sum((Infected - fit)^2)
}

# optimize with some sensible conditions
Opt <- optim(c(0.5, 0.5), RSS, method = "L-BFGS-B", 
             lower = c(0, 0), upper = c(10, 10))
Opt$message
## [1] "CONVERGENCE: REL_REDUCTION_OF_F <= FACTR*EPSMCH"
Opt_par <- setNames(Opt$par, c("beta", "gamma"))
Opt_par
##       beta      gamma 
## 0.11015019 0.09183258
# beta     gamma 
# 0.6512503 0.4920399 

out <- ode(y = init, times = Day, func = SIR, parms = Opt_par)

plot(out)
plot(out, obs=data.frame(time=Day, I=Infected))

result_SIR <-data.frame(out)
data.frame(FD,forecating_date=forecasting_data_by_name,forecasting_by_SIR=result_SIR$I)
##           FD forecating_date forecasting_by_SIR
## 1 2020-11-29     воскресенье           12246766
## 2 2020-11-30     понедельник           12419901
## 3 2020-12-01         вторник           12590001
## 4 2020-12-02           среда           12756823
## 5 2020-12-03         четверг           12920125
## 6 2020-12-04         пятница           13079668
## 7 2020-12-05         суббота           13235212
# Choose Best model by least error

paste("System Summarizes  Error ==> ( MAPE ) of Forecasting  by using bats model and BATS Model, Holt's Linear Models , and autoarima for  ==> ", y_lab , sep=" ")
## [1] "System Summarizes  Error ==> ( MAPE ) of Forecasting  by using bats model and BATS Model, Holt's Linear Models , and autoarima for  ==>  COVID 19 Infection cases in USA"
M1<-mean(REOF_A_bats)

paste("System Summarizes  Error ==> ( MAPE ) of Forecasting  by using TBATS  Model For ==> ", y_lab , sep=" ")
## [1] "System Summarizes  Error ==> ( MAPE ) of Forecasting  by using TBATS  Model For ==>  COVID 19 Infection cases in USA"
M2<-mean(REOF_A_tbats1)

paste("System Summarizes  Error ==> ( MAPE ) of Forecasting  by using Holt's Linear << Exponential Smoothing >>  For ==> ", y_lab , sep=" ")
## [1] "System Summarizes  Error ==> ( MAPE ) of Forecasting  by using Holt's Linear << Exponential Smoothing >>  For ==>  COVID 19 Infection cases in USA"
M3<-REOF_A_Holt11

paste("System Summarizes  Error ==> ( MAPE ) of Forecasting  by using auto arima  Model For ==> ", y_lab , sep=" ")
## [1] "System Summarizes  Error ==> ( MAPE ) of Forecasting  by using auto arima  Model For ==>  COVID 19 Infection cases in USA"
M4<-mean(REOF_A_auto.arima)
paste("System Summarizes  Error ==> ( MAPE ) of Forecasting  by using SIR Model For ==> ", y_lab , sep=" ")
## [1] "System Summarizes  Error ==> ( MAPE ) of Forecasting  by using SIR Model For ==>  COVID 19 Infection cases in USA"
M5<-REOF_A_SIR1

paste("System Summarizes  Error ==> ( MAPE ) of Forecasting  by using autoarima  Model For ==> ", y_lab , sep=" ")
## [1] "System Summarizes  Error ==> ( MAPE ) of Forecasting  by using autoarima  Model For ==>  COVID 19 Infection cases in USA"
data.frame(validation_dates,forecating_date=forecasting_data_by_name,MAPE_bats_error=REOF_A_bats,MAPE_TBATS_error=REOF_A_tbats1,MAPE_Holt_error=REOF_A_Holt1,MAPE_autoarima_error = REOF_A_auto.arima)
##   validation_dates forecating_date MAPE_bats_error MAPE_TBATS_error
## 1       2020-11-22     воскресенье       0.3039772        0.2792126
## 2       2020-11-23     понедельник       0.3970982        0.3435774
## 3       2020-11-24         вторник       0.4868017        0.3943043
## 4       2020-11-25           среда       0.5174322        0.3798900
## 5       2020-11-26         четверг       1.1110083        0.9188072
## 6       2020-11-27         пятница       0.9672534        0.7026922
## 7       2020-11-28         суббота       1.2186323        0.8717449
##   MAPE_Holt_error MAPE_autoarima_error
## 1       0.3124259          0.180791694
## 2       0.3942840          0.090041735
## 3       0.4714235          0.036083245
## 4       0.4882439          0.002273316
## 5       1.0665538          0.586862551
## 6       0.9066229          0.439182296
## 7       1.1404390          0.632687074
recommend_Model<-c(M1,M2,M3,M4,M5)
best_recommended_model<-min(recommend_Model)
paste ("lodaing .....   ... . .Select Minimum MAPE from Models for select best Model ==> ", y_lab , sep=" ")
## [1] "lodaing .....   ... . .Select Minimum MAPE from Models for select best Model ==>  COVID 19 Infection cases in USA"
best_recommended_model
## [1] 0.2811317
paste ("Best Model For Forecasting  ==> ",y_lab, sep=" ")
## [1] "Best Model For Forecasting  ==>  COVID 19 Infection cases in USA"
if(best_recommended_model >= M1) {paste("System Recommend Bats Model That's better  For forecasting==> ",y_lab, sep=" ")}
if(best_recommended_model >= M2) {paste("System Recommend  That's better TBATS  For forecasting ==> ",y_lab, sep=" ")}
if(best_recommended_model >= M3) {paste("System Recommend Holt's Linear Model < Exponential Smoothing Model >   That's better  For forecasting ==> ",y_lab, sep=" ")}
if(best_recommended_model >= M4) {paste("System Recommend auto arima Model  That's better  For forecasting ==> ",y_lab, sep=" ")}
## [1] "System Recommend auto arima Model  That's better  For forecasting ==>  COVID 19 Infection cases in USA"
if(best_recommended_model >= M5) {paste("System Recommend SIR Model  That's better  For forecasting ==> ",y_lab, sep=" ")}
message("System finished Forecasting  by using autoarima and Holt's ,TBATS, and SIR  Model ==>",y_lab, sep=" ")
## System finished Forecasting  by using autoarima and Holt's ,TBATS, and SIR  Model ==>COVID 19 Infection cases in USA
message(" Thank you for using our System For Modelling  ==> ",y_lab, sep=" ")
##  Thank you for using our System For Modelling  ==> COVID 19 Infection cases in USA
## Markov Chain For COVID 19 infection cases

require(markovchain)
require(data.table)
xx9<-original_data[rows]
xx8<-original_data[rows-1]
xx7<-original_data[rows-2]
xx6<-original_data[rows-3]
xx5<-original_data[rows-4]
xx4<-original_data[rows-5]
xx3<-original_data[rows-6]
xx2<-original_data[rows-7]
xx1<-original_data[rows-8]
infection_vector1<-c(xx1,xx2,xx3)
infection_vector2<-c(xx4,xx5,xx6)
infection_vector3<-c(xx7,xx8,xx9)
sum_vector1<-sum(infection_vector1)
sum_vector2<-sum(infection_vector2)
sum_vector3<-sum(infection_vector3)
proba_vector1<-c(infection_vector1/sum_vector1)
proba_vector2<-c(infection_vector2/sum_vector2)
proba_vector3<-c(infection_vector3/sum_vector3)
CovidStates = c("Low Infections", "Mid Infections", "Hight Infections")
byRow = TRUE


CovidMatrix = matrix(data = c(proba_vector1,
                              proba_vector2,
                              proba_vector3), byrow = byRow, nrow = 3,
                     
                     dimnames = list(CovidStates, CovidStates))


mcCovid = new("markovchain", states = CovidStates, byrow = byRow,
              transitionMatrix = CovidMatrix, name = "Cvid 19")

mcCovid = new("markovchain", states = c("Low Infections", "Mid Infections", "Hight Infections"),
              transitionMatrix = matrix(data = c(proba_vector1,
                                                 proba_vector2,
                                                 proba_vector3), byrow = byRow, nrow = 3),
              name = "Cvid 19")

name = ("Cvid 19")
initialState = c(0,1,0)
after2Days = initialState * (mcCovid * mcCovid)
after7Days = initialState * (mcCovid^7)
after30days =initialState * (mcCovid^30)
after7Days
##      Low Infections Mid Infections Hight Infections
## [1,]      0.3286477      0.3335583        0.3377939
plot(mcCovid,xlab = paste ("Time in  ", frequency ,y_lab , sep=" "),  col.main="black", col.lab="blue", col.sub="black", cex.main=1, cex.lab=1, cex.sub=1,font.main=4, font.lab=4, ylab=y_lab,main = "Markov Chain")