George Callil Player Comp Graphics

library(tidyverse)
## ── Attaching packages ───────────────────────────────── tidyverse 1.3.0 ──
## ✓ ggplot2 3.3.2     ✓ purrr   0.3.4
## ✓ tibble  3.0.3     ✓ dplyr   1.0.2
## ✓ tidyr   1.1.1     ✓ stringr 1.4.0
## ✓ readr   1.3.1     ✓ forcats 0.5.0
## ── Conflicts ──────────────────────────────────── tidyverse_conflicts() ──
## x dplyr::filter() masks stats::filter()
## x dplyr::lag()    masks stats::lag()
data <- read.csv('Callil_Data.csv')
data <- data %>% mutate(BB_Rate = BB / PA)
data <- data %>% mutate(SO_Rate = SO / PA)
data <- data %>% mutate(XBH_Rate = (X2B + X3B + HR) / H)
data
##              Name Age  G  PA  AB  R  H X2B X3B HR RBI SB BB SO    BA   OBP
## 1   George Callil  21 43 160 131 19 28   6   1  4  17  1 15 37 0.214 0.329
## 2   George Callil  22 16  65  48  9 13   1   0  1  10  1  4 12 0.271 0.446
## 3  Madison Stokes  19 25  86  82  6 17   4   0  0   9  0  3 24 0.207 0.233
## 4  Madison Stokes  20 31 119 102 16 31   5   0  1  12  5  7 29 0.304 0.371
## 5  Madison Stokes  21 47 190 165 18 37  10   0  3  17  3 15 41 0.224 0.312
## 6  Madison Stokes  22 50 220 183 32 59  12   1 11  44  1 29 44 0.322 0.414
## 7  Jordan Rodgers  19 11  30  23  4  3   0   0  0   2  3  5  5 0.130 0.333
## 8  Jordan Rodgers  20 38 114  97  9 27   6   0  0  12  0  8 21 0.278 0.351
## 9  Jordan Rodgers  21 56 243 216 36 61  15   5  4  56 13 15 41 0.282 0.337
## 10    Conner Hale  21 60 226 209 38 64  11   1  4  29  0 10 17 0.306 0.335
## 11    Conner Hale  22 64 288 263 49 86  17   3  4  56  1 18 34 0.327 0.373
## 12    Kyle Farmer  20 65 287 253 39 78  16   0  8  58  3 19 33 0.308 0.364
## 13    Kyle Farmer  21 56 262 245 35 74  19   3  4  41  3  8 26 0.302 0.337
## 14    Kyle Farmer  22 52 237 210 26 61  12   2  3  44  0 12 12 0.290 0.315
## 15    Tyler Smith  19 55 146 113 18 25   4   0  0  11  4 27 23 0.221 0.378
## 16    Tyler Smith  20 58 268 213 46 73  11   2  1  39  9 30 31 0.343 0.434
## 17    Tyler Smith  21 56 260 224 48 69  10   2  2  28  8 24 35 0.308 0.390
##      SLG   OPS Round MLB    BB_Rate    SO_Rate  XBH_Rate
## 1  0.366 0.696    NA  NA 0.09375000 0.23125000 0.3928571
## 2  0.354 0.800    NA  NA 0.06153846 0.18461538 0.1538462
## 3  0.256 0.489    10   0 0.03488372 0.27906977 0.2352941
## 4  0.382 0.753    10   0 0.05882353 0.24369748 0.1935484
## 5  0.339 0.651    10   0 0.07894737 0.21578947 0.3513514
## 6  0.579 0.993    10   0 0.13181818 0.20000000 0.4067797
## 7  0.130 0.464     6   0 0.16666667 0.16666667 0.0000000
## 8  0.340 0.692     6   0 0.07017544 0.18421053 0.2222222
## 9  0.454 0.791     6   0 0.06172840 0.16872428 0.3934426
## 10 0.426 0.761     9   0 0.04424779 0.07522124 0.2500000
## 11 0.460 0.833     9   0 0.06250000 0.11805556 0.2790698
## 12 0.466 0.830     8   1 0.06620209 0.11498258 0.3076923
## 13 0.453 0.790     8   1 0.03053435 0.09923664 0.3513514
## 14 0.410 0.724     8   1 0.05063291 0.05063291 0.2786885
## 15 0.257 0.634     8   1 0.18493151 0.15753425 0.1600000
## 16 0.427 0.861     8   1 0.11194030 0.11567164 0.1917808
## 17 0.397 0.787     8   1 0.09230769 0.13461538 0.2028986
ggplot(data, aes(Age, XBH_Rate, color = Name)) + ylab('XBH %') + geom_line() + ggtitle('George Callil XBH% Comparisons')

ggplot(data, aes(Age, SO_Rate, color = Name)) + ylab('SO %') + geom_line() + ggtitle('George Callil SO% Comparisons')

ggplot(data, aes(Age, BB_Rate, color = Name)) + ylab('BB %') + geom_line() + ggtitle('George Callil BB% Comparisons')

ggplot(data, aes(Age, BA, color = Name)) + ylab('BA') + geom_line() + ggtitle('George Callil BA Comparisons')

ggplot(data, aes(Age, OPS, color = Name)) + ylab('OPS') + geom_line() + ggtitle('George Callil OPS Comparisons')

ggplot(data, aes(Age, SLG, color = Name)) + ylab('SLG') + geom_line() + ggtitle('George Callil SLG Comparisons')

ggplot(data, aes(Age, OBP, color = Name)) + ylab('OBP') + geom_line() + ggtitle('George Callil OBP Comparisons')

MiLB Comparison Statistics

MiLB_data <- read.csv('Callil_Comp_MiLB.csv')
MiLB_data <- MiLB_data %>% mutate(BB_Rate = BB / PA)
MiLB_data <- MiLB_data %>% mutate(SO_Rate = SO / PA)
MiLB_data <- MiLB_data %>% mutate(XBH_Rate = (X2B + X3B + HR) / H)
MiLB_data
##             Name Highest.Level   G   PA   AB   R   H X2B X3B HR RBI  BB  SO
## 1 Madison Stokes             A 165  666  612  71 159  35   5 12  67  41 149
## 2 Jordan Rodgers             A 214  769  718  66 163  39   5 10  69  27 159
## 3    Conner Hale             A 184  701  645  69 150  25   2  8  60  43 143
## 4    Kyle Farmer           MLB 505 2081 1896 254 558 145  16 33 279 131 299
## 5    Tyler Smith           MLB 564 2313 2021 261 541 106  14 30 199 228 401
##      BA   OBP   SLG   OPS Total.Seasons    BB_Rate   SO_Rate  XBH_Rate
## 1 0.260 0.314 0.392 0.706             2 0.06156156 0.2237237 0.3270440
## 2 0.227 0.272 0.337 0.609             3 0.03511053 0.2067620 0.3312883
## 3 0.233 0.280 0.315 0.595             3 0.06134094 0.2039943 0.2333333
## 4 0.294 0.347 0.440 0.787            11 0.06295050 0.1436809 0.3476703
## 5 0.268 0.349 0.379 0.728             8 0.09857328 0.1733679 0.2772643
ggplot(MiLB_data, aes(Name, BB_Rate, fill = Name)) + geom_col(show.legend = FALSE) + ylab('BB%') + ggtitle('G. Callil Comps. MiLB BB%') + theme(axis.title.x=element_blank())

ggplot(MiLB_data, aes(Name, SO_Rate, fill = Name)) + geom_col(show.legend = FALSE) + ylab('SO%') + ggtitle('G. Callil Comps. MiLB SO%') + theme(axis.title.x=element_blank())

ggplot(MiLB_data, aes(Name, XBH_Rate, fill = Name)) + geom_col(show.legend = FALSE) + ylab('XBH%') + ggtitle('G. Callil Comps. MiLB XBH%') + theme(axis.title.x=element_blank())

ggplot(MiLB_data, aes(Name, OPS, fill = Name)) + geom_col(show.legend = FALSE) + ylab('BB Rate') + ggtitle('G. Callil Comps. MiLB OPS') + theme(axis.title.x=element_blank())

ggplot(MiLB_data, aes(Name, SLG, fill = Name)) + geom_col(show.legend = FALSE) + ylab('SLG%') + ggtitle('G. Callil Comps. MiLB SLG%') + theme(axis.title.x=element_blank())

ggplot(MiLB_data, aes(Name, BA, fill = Name)) + geom_col(show.legend = FALSE) + ylab('BA') + ggtitle('G. Callil Comps. MiLB BA') + theme(axis.title.x=element_blank())

ggplot(MiLB_data, aes(Name, Total.Seasons, fill = Name)) + geom_col(show.legend = FALSE) + ylab('Seasons') + ggtitle('G. Callil Comps. MiLB Total Seasons') + theme(axis.title.x=element_blank())