Jan 8, 2021. This Markdown refers to the article entitled “Resilience and vulnerability in adolescents with primary headaches: a cross-sectional population-based study”, currently under review in Headache. All data and codes are available at https://osf.io/wmxc9/
If you want to reproduce all results from the beginning, you will have to download the original data (OSF -> Original data), change the file name in read_excel command, and run all chunks with eval = FALSE. Please keep in mind that this data was an excel file in which anyone could find names and other identifications. Therefore, to preserve participants anonymity, I removed all identification variables before uploading it to open science framework website. No other changes were carried out.
If you just want to reproduce the results presented in the manuscript, please download and load the the importable data (CSV or Rdata- line 77) and run the chunks without eval = false. The analystical procedures start at line ~740.
All chunks are named to make the sections clear.
If you have any comments or questions, please reach me out at luisfca@puc-rio.br Thank you
Load this file and then go to line 740.
If someone wants to get the raw data, i.e. the original dataset, please run the following code and all the other chunks in which “eval = false” is present.
Data cleaning is the first step of data analysis. The function clean_names from janitor package will be used.
How many participants do not have filled cases in mastery
## # A tibble: 20 x 3
## feature num_missing pct_missing
## <fct> <int> <dbl>
## 1 m1 3 0.00885
## 2 m2 2 0.00590
## 3 m3 9 0.0265
## 4 m4 7 0.0206
## 5 m5 6 0.0177
## 6 m6 4 0.0118
## 7 m7 6 0.0177
## 8 m8 4 0.0118
## 9 m9 4 0.0118
## 10 m10 4 0.0118
## 11 m11 5 0.0147
## 12 m12 3 0.00885
## 13 m13 3 0.00885
## 14 m14 7 0.0206
## 15 m15 3 0.00885
## 16 m16 5 0.0147
## 17 m17 1 0.00295
## 18 m18 3 0.00885
## 19 m19 2 0.00590
## 20 m20 3 0.00885
## # A tibble: 9 x 2
## age sumNA
## <dbl> <dbl>
## 1 10 0
## 2 11 14
## 3 12 10
## 4 13 14
## 5 14 11
## 6 15 9
## 7 16 14
## 8 17 12
## 9 18 0
Mastery is formed of all 20 items that, in sequence, give the opportunity to have results of optimism,self-efficacy, and adaptability. Based on the DSM-5 criterion for learning disabilities, if the standardized result of a raw score was less or equal than -1.5 standard deviation (using all group as reference), the participant was allocated in the cattegory of being ‘at risk’.
Following this criterion, 23 (7%) children were classified in ‘at risk’ group.
| mastery_prob | n | prop |
|---|---|---|
| 0 | 316 | 0.93 |
| 1 | 23 | 0.07 |
I’m assuming optimis is composed of items 1-4 and 18-20, as exposed in excel spreadsheet. The standardized score was computed based on their sum.
In this sample, 22 (6%) of the children were classified in ‘at risk’ group.
| optimism_prob | n | prop |
|---|---|---|
| 0 | 317 | 0.94 |
| 1 | 22 | 0.06 |
I’m assuming Self-efficacy is composed of 10 items (5-14), as exposed in excel spreadsheet. The standardized score was computed based on their sum.
In this sample, 20 (6%) of the children were classified in ‘at risk’ group.
| self_prob | n | prop |
|---|---|---|
| 0 | 319 | 0.94 |
| 1 | 20 | 0.06 |
I’m assuming adaptability is composed of 3 items (15-17), as exposed in excel spreadsheet. This (sub)scale is applied to certain age-interval. The standardized score was computed based on their sum.
In this sample, 12 (4%) of the children were classified in ‘at risk’ group.
| adaptability_prob | n | prop |
|---|---|---|
| 0 | 128 | 0.38 |
| 1 | 12 | 0.04 |
| NA | 199 | 0.59 |
The cronbach’s alpha was computed for this subscale just to certify some of its properties
##
## Reliability analysis
## Call: alpha(x = .)
##
## raw_alpha std.alpha G6(smc) average_r S/N ase mean sd median_r
## 0.56 0.56 0.48 0.3 1.3 0.042 2.8 0.81 0.24
##
## lower alpha upper 95% confidence boundaries
## 0.48 0.56 0.64
##
## Reliability if an item is dropped:
## raw_alpha std.alpha G6(smc) average_r S/N alpha se var.r med.r
## m15 0.63 0.63 0.46 0.46 1.70 0.040 NA 0.46
## m16 0.33 0.33 0.20 0.20 0.49 0.073 NA 0.20
## m17 0.38 0.38 0.24 0.24 0.62 0.067 NA 0.24
##
## Item statistics
## n raw.r std.r r.cor r.drop mean sd
## m15 336 0.66 0.66 0.33 0.25 2.8 1.1
## m16 334 0.78 0.78 0.61 0.45 2.7 1.1
## m17 338 0.75 0.76 0.58 0.42 2.9 1.1
##
## Non missing response frequency for each item
## 0 1 2 3 4 miss
## m15 0.05 0.05 0.30 0.25 0.35 0.01
## m16 0.03 0.09 0.34 0.21 0.33 0.01
## m17 0.03 0.07 0.28 0.23 0.39 0.00
Reactivity is composed of 20 items that form 3 subscales. The higher the score in this scale, the greater the risk of developmental problems.
In this study, 32 (9%) children were classified at risk.
| reactivity_prob | n | prop |
|---|---|---|
| 0 | 307 | 0.91 |
| 1 | 32 | 0.09 |
Sensitivy subscale is composed of 6 items.
In this study, 27 (8%) children were classified at risk.
| sensitivity_prob | n | prop |
|---|---|---|
| 0 | 312 | 0.92 |
| 1 | 27 | 0.08 |
Recovery subscale is composed of 4 items (10-13.)
In this study, 30 (9%) children were classified at risk.
| recovery_prob | n | prop |
|---|---|---|
| 0 | 309 | 0.91 |
| 1 | 30 | 0.09 |
Impairment subscale is composed of 10 items (7-9 and 14-20)
In this study, 28 (8%) children were classified at risk.
| impairment_prob | n | prop |
|---|---|---|
| 0 | 311 | 0.92 |
| 1 | 28 | 0.08 |
Total ressources are formed of the average of the raw scores of Mastery and Relatedness. In this scale, the lower the result, the greater the risk.
The standardized score of Total Ressources was computed. If a participant has 0 as his/her result, it means an average score. Results above than 0 indicates a protective environment and results below 0 indicates a risk factor.
In this study, 28 (8%) children were classified at risk.
| resources_prob | n | prop |
|---|---|---|
| 0 | 311 | 0.92 |
| 1 | 28 | 0.08 |
This scale is composed of the difference between Reactivity and Resources. To achieve these results, one needs to subtract the resource T-score from the emotional Reactivity t-score. In this study, we used the raw score.
Positive results reveal risk outcomes. It means the child has more reactivity behaviors than resources to deal with them. On the other hand, negative results means child has more resources than emotional reactivity.
In this study, 18 (5%) children were classified at risk.
| vulnerability_prob | n | prop |
|---|---|---|
| 0 | 321 | 0.95 |
| 1 | 18 | 0.05 |
The distribution of the raw results of vulnerability is exposed below.
! Done with raw data
! Done with everything (last check on october 9, 2020)
Background: The scarcity of studies on the role of resilience resources (RRs) and vulnerability risk (VR) in children and adolescents with primary headache hampers the development of a risk-resilience model for pediatric headaches. Objective: To examine the extent to which headache frequency and diagnosis are associated with RRs and VR and explore possible predictors of low RRs and high VR in a cross-sectional population-based study in adolescents. Methods: This is a cross-sectional population study conducted in a small city in Brazil (Delfinópolis). Consents and analyzable data were obtained from 339/378 adolescents (89.7%). RRs and VR were assessed using the validated Brazilian version of the Resiliency Scales for Children and Adolescents (RSCA), completed by the adolescents. Parents filled a structured questionnaire assessing sociodemographic and headache characteristics, as well as the Brazilian-validated version of the Strengths and Difficulties Questionnaire (SDQ) added to the impact supplement to evaluate the adolescent’s psychosocial adjustment skills. Teachers completed a structured questionnaire about the students’ school performance. Results: A higher frequency of headache was associated with lower RRs (F3,335 = 2.99, p = 0.031) and higher VR (F3,335 = 4.05, p = 0.007). Headache diagnosis did not significantly influence the risk of having lower RRs or higher VR. In the exploratory analysis, females (OR 3.07 (95%CI: 1.16 to 9.34)) and individuals with psychosocial adjustment problems (OR 7.53 (95%CI: 2.51 to 22.36)) were predictors of low RRs, and prenatal exposure to tobacco (OR 5.61 (95%CI: 1.57 to 20.86)) was a predictor of high VR in adolescents with primary headache. Conclusions: The risk of low RRs and high VR was associated with a higher headache frequency, but not with headache diagnosis. These findings may contribute to the development of a risk-resilience model of headaches in pediatric population and help identify novel targets and develop effective resources for successful interventions.
## # A tibble: 5 x 3
## feature num_missing pct_missing
## <fct> <int> <dbl>
## 1 mastery_total 0 0
## 2 relatedness_total 0 0
## 3 reactivity_total 0 0
## 4 ressources_total 0 0
## 5 vulnerability_total 0 0
## Frequencies
## base_uso$age_group
## Type: Factor
##
## Freq % Valid % Valid Cum. % Total % Total Cum.
## -------------- ------ --------- -------------- --------- --------------
## [10,12] 99 29.20 29.20 29.20 29.20
## (12,15] 160 47.20 76.40 47.20 76.40
## (15,Inf] 80 23.60 100.00 23.60 100.00
## <NA> 0 0.00 100.00
## Total 339 100.00 100.00 100.00 100.00
##
## base_uso$sex
## Type: Factor
##
## Freq % Valid % Valid Cum. % Total % Total Cum.
## ------------ ------ --------- -------------- --------- --------------
## Female 181 53.39 53.39 53.39 53.39
## Male 158 46.61 100.00 46.61 100.00
## <NA> 0 0.00 100.00
## Total 339 100.00 100.00 100.00 100.00
##
## base_uso$race
## Type: Factor
##
## Freq % Valid % Valid Cum. % Total % Total Cum.
## ----------- ------ --------- -------------- --------- --------------
## white 239 72.64 72.64 70.50 70.50
## Other 90 27.36 100.00 26.55 97.05
## <NA> 10 2.95 100.00
## Total 339 100.00 100.00 100.00 100.00
##
## base_uso$classe_economica
## Type: Character
##
## Freq % Valid % Valid Cum. % Total % Total Cum.
## ----------- ------ --------- -------------- --------- --------------
## AB 93 27.43 27.43 27.43 27.43
## C 203 59.88 87.32 59.88 87.32
## DE 43 12.68 100.00 12.68 100.00
## <NA> 0 0.00 100.00
## Total 339 100.00 100.00 100.00 100.00
This research relied on the results obtained by several scales developed to access and measure different domains of children’s resilience. All scales had its psychometric properties previously studied and this research accessed the realibility of the data gathered through the Cronbach’s alpha coefficient. The following information presents the measures.
The Sense of Mastery scale (α = .87) is composed of 20 items and aims to access three different domains, i.e., Optimism, SeItslf-Efficacy, and Adaptability. Its manual guide defines optimis as a positive attitude(s) about the world/life in general and about individual’s life specifically, currenly, and in the future. Self-efficacy is conceived as the sense that one can master his or her environment. Adaptability is the ability to learn from one’s mistakes and to accept feedback from others. In the present research, results were roughly normally distributed (Mean = 50, Median = 50).
The Sense of Relatedness scale (α = .90) is composed of 24 items and access fours domains, such as sense of trust, perceived access to comfort with others, and tolerance. The Sense of Turst is conceptualized as the extent to which others are perceived as reliable and the extent to which one can be authentic in relationship with others. Results were slightly left skewed (Mean = 63, Median = 65).
The Emotional Reactivity Scale (α = .90) is composed of 20 items and access two domains, that is sensitivity and recovery. In addition to that, this scale also includes a measure of the participant’s overall resources (named as Resource Index Score) and Vulnerability (named as Vulnerability Index Score. The Resource Index Score is computed by the standardized average of the sense of Mastery T score and Sense of Relatedness T score. Similarly, the Vulnerability Index Score is derived by the standardized difference between the Resource Index and the Emotional Reactivity T score. Results were slightly right skewed (Mean = 31, Median = 29).
Attention-deficit/hyperactivity disorder (ADHD) and mental health were evaluated to assess their role as mediators of RRs, VR, and primary headaches. ADHD symptoms were assessed using the Brazilian-validated version of the Multimodality Treatment Study–Swanson, Nolan, and Pelham–version IV (MTA-SNAP-IV) scale,22 in accordance with the Diagnostic and Statistical Manual of Mental Disorders, 5th edition (DSM-5).23. The Cronbach’s alpha of this scale was 0.91 (95% CI = [0.9 0.92]).
##
## Reliability analysis
## Call: alpha(x = .)
##
## raw_alpha std.alpha G6(smc) average_r S/N ase mean sd median_r
## 0.91 0.91 0.93 0.37 10 0.007 0.63 0.52 0.35
##
## lower alpha upper 95% confidence boundaries
## 0.9 0.91 0.92
##
## Reliability if an item is dropped:
## raw_alpha std.alpha G6(smc) average_r S/N alpha se var.r med.r
## snap1 0.91 0.91 0.93 0.37 10.2 0.0072 0.012 0.36
## snap2 0.91 0.91 0.92 0.36 9.7 0.0075 0.012 0.35
## snap3 0.91 0.91 0.92 0.37 10.0 0.0073 0.012 0.35
## snap4 0.91 0.91 0.92 0.37 9.8 0.0074 0.012 0.35
## snap5 0.90 0.91 0.92 0.36 9.6 0.0075 0.011 0.34
## snap6 0.90 0.91 0.92 0.36 9.6 0.0076 0.011 0.34
## snap7 0.91 0.91 0.92 0.37 9.8 0.0074 0.013 0.35
## snap8 0.90 0.90 0.92 0.36 9.4 0.0077 0.011 0.34
## snap9 0.90 0.91 0.92 0.36 9.7 0.0075 0.011 0.35
## snap10 0.91 0.91 0.92 0.37 10.1 0.0072 0.013 0.36
## snap11 0.91 0.91 0.92 0.36 9.8 0.0074 0.013 0.35
## snap12 0.91 0.91 0.92 0.37 10.0 0.0073 0.012 0.36
## snap13 0.91 0.91 0.93 0.38 10.2 0.0072 0.012 0.36
## snap14 0.91 0.91 0.92 0.37 9.9 0.0073 0.012 0.35
## snap15 0.91 0.91 0.92 0.38 10.2 0.0071 0.011 0.36
## snap16 0.90 0.91 0.92 0.36 9.7 0.0075 0.012 0.34
## snap17 0.90 0.91 0.92 0.36 9.7 0.0075 0.012 0.35
## snap18 0.90 0.91 0.92 0.36 9.7 0.0075 0.012 0.35
##
## Item statistics
## n raw.r std.r r.cor r.drop mean sd
## snap1 334 0.55 0.55 0.50 0.48 0.90 0.90
## snap2 336 0.66 0.67 0.65 0.61 0.61 0.77
## snap3 336 0.61 0.60 0.57 0.54 0.65 0.85
## snap4 332 0.63 0.63 0.61 0.57 0.52 0.79
## snap5 328 0.71 0.71 0.70 0.66 0.56 0.75
## snap6 329 0.70 0.70 0.69 0.65 0.79 0.91
## snap7 334 0.64 0.64 0.61 0.58 0.60 0.87
## snap8 328 0.75 0.75 0.74 0.71 0.87 0.85
## snap9 330 0.68 0.68 0.66 0.62 0.73 0.88
## snap10 330 0.57 0.57 0.53 0.50 0.66 0.90
## snap11 329 0.65 0.66 0.63 0.60 0.55 0.80
## snap12 329 0.56 0.59 0.56 0.52 0.22 0.56
## snap13 333 0.52 0.53 0.49 0.46 0.35 0.67
## snap14 333 0.60 0.61 0.59 0.54 0.47 0.80
## snap15 331 0.53 0.52 0.49 0.46 0.80 0.95
## snap16 330 0.68 0.68 0.66 0.63 0.66 0.84
## snap17 328 0.68 0.67 0.66 0.62 0.75 0.90
## snap18 333 0.68 0.67 0.65 0.62 0.71 0.91
##
## Non missing response frequency for each item
## 0 1 2 3 10 miss
## snap1 0.31 0.55 0.10 0.04 0 0.01
## snap2 0.54 0.35 0.08 0.03 0 0.01
## snap3 0.55 0.31 0.09 0.05 0 0.01
## snap4 0.63 0.27 0.07 0.04 0 0.02
## snap5 0.57 0.32 0.08 0.03 0 0.03
## snap6 0.46 0.37 0.09 0.08 0 0.03
## snap7 0.60 0.26 0.08 0.06 0 0.01
## snap8 0.37 0.46 0.11 0.06 0 0.03
## snap9 0.51 0.32 0.12 0.05 0 0.03
## snap10 0.56 0.27 0.11 0.06 0 0.03
## snap11 0.61 0.27 0.09 0.03 0 0.03
## snap12 0.84 0.12 0.03 0.01 0 0.03
## snap13 0.74 0.18 0.06 0.02 0 0.02
## snap14 0.69 0.20 0.08 0.04 0 0.02
## snap15 0.49 0.31 0.11 0.09 0 0.02
## snap16 0.53 0.32 0.11 0.05 0 0.03
## snap17 0.50 0.31 0.12 0.06 0 0.03
## snap18 0.53 0.29 0.11 0.07 0 0.02
The parents also completed the validated Brazilian version of the Strengths and Difficulties Questionnaire (SDQ) added to the impact supplement.24, 25 The SDQ is a 25-item instrument that was developed to evaluate psychosocial adjustment from the perspective of parents and/or teachers. The SDQ consists of five scales, each with five items that assess emotional symptoms, conduct problems, hyperactivity/inattention, peer problems, and prosocial behavior problems. The parents completed the parental version of the SDQ and the impact supplement that was related to any adjustment symptoms in terms of chronicity, resultant distress, social impairment, and burden to others, a compulsory criterion for an ADHD diagnosis according to the DSM-5.23 The Cronbach’s alpha of this questionnaire was 0.8 (95% CI = [0.77,0.83]).
##
## Reliability analysis
## Call: alpha(x = ., check.keys = T)
##
## raw_alpha std.alpha G6(smc) average_r S/N ase mean sd median_r
## 0.8 0.8 0.84 0.14 4.1 0.015 0.76 0.29 0.14
##
## lower alpha upper 95% confidence boundaries
## 0.77 0.8 0.83
##
## Reliability if an item is dropped:
## raw_alpha std.alpha G6(smc) average_r S/N alpha se var.r med.r
## sdq_1- 0.79 0.79 0.83 0.14 3.8 0.016 0.012 0.13
## sdq2 0.79 0.80 0.83 0.14 3.9 0.016 0.012 0.14
## sdq3 0.80 0.80 0.83 0.14 4.0 0.015 0.012 0.14
## sdq4- 0.79 0.80 0.83 0.14 3.9 0.016 0.013 0.13
## sdq5 0.79 0.79 0.82 0.14 3.8 0.017 0.012 0.13
## sdq6 0.80 0.80 0.83 0.14 4.1 0.015 0.013 0.14
## sdq7 0.79 0.80 0.83 0.14 3.9 0.016 0.011 0.13
## sdq8 0.81 0.81 0.84 0.15 4.2 0.015 0.011 0.15
## sdq9- 0.80 0.80 0.83 0.14 4.0 0.015 0.012 0.14
## sdq10 0.79 0.80 0.83 0.14 3.9 0.016 0.012 0.13
## sdq11 0.80 0.80 0.83 0.14 4.0 0.015 0.013 0.14
## sdq12 0.79 0.79 0.82 0.14 3.8 0.016 0.012 0.13
## sdq13 0.79 0.79 0.82 0.14 3.8 0.016 0.012 0.13
## sdq14 0.80 0.80 0.83 0.14 3.9 0.016 0.013 0.14
## sdq15 0.79 0.79 0.82 0.14 3.8 0.017 0.012 0.13
## sdq16 0.80 0.80 0.83 0.14 4.0 0.016 0.013 0.15
## sdq17- 0.80 0.80 0.83 0.14 4.0 0.016 0.013 0.14
## sdq18 0.79 0.79 0.82 0.13 3.7 0.016 0.012 0.13
## sdq19 0.79 0.79 0.83 0.14 3.9 0.016 0.013 0.13
## sdq20- 0.80 0.80 0.83 0.14 4.0 0.016 0.012 0.14
## sdq21 0.79 0.79 0.83 0.14 3.9 0.016 0.012 0.13
## sdq22 0.80 0.81 0.84 0.15 4.2 0.015 0.012 0.15
## sdq23 0.81 0.81 0.84 0.15 4.2 0.015 0.012 0.15
## sdq24 0.79 0.80 0.83 0.14 3.9 0.016 0.013 0.14
## sdq25 0.79 0.79 0.82 0.14 3.8 0.016 0.012 0.13
##
## Item statistics
## n raw.r std.r r.cor r.drop mean sd
## sdq_1- 329 0.44 0.49 0.47 0.388 1.228 0.47
## sdq2 333 0.43 0.42 0.38 0.349 0.363 0.66
## sdq3 328 0.39 0.35 0.30 0.282 0.854 0.86
## sdq4- 329 0.43 0.45 0.41 0.357 1.422 0.67
## sdq5 332 0.58 0.55 0.53 0.500 0.666 0.84
## sdq6 326 0.32 0.31 0.25 0.223 0.475 0.73
## sdq7 331 0.42 0.43 0.41 0.342 0.559 0.66
## sdq8 323 0.21 0.18 0.12 0.098 0.904 0.81
## sdq9- 325 0.31 0.36 0.32 0.237 1.422 0.63
## sdq10 329 0.48 0.46 0.43 0.388 0.565 0.81
## sdq11 326 0.30 0.36 0.31 0.246 0.150 0.44
## sdq12 330 0.55 0.54 0.53 0.480 0.327 0.63
## sdq13 331 0.55 0.54 0.52 0.471 0.574 0.76
## sdq14 326 0.38 0.43 0.39 0.314 0.227 0.51
## sdq15 328 0.59 0.56 0.55 0.502 0.954 0.85
## sdq16 329 0.39 0.36 0.32 0.294 1.304 0.76
## sdq17- 330 0.34 0.37 0.32 0.265 1.276 0.55
## sdq18 327 0.59 0.58 0.58 0.514 0.468 0.69
## sdq19 328 0.49 0.48 0.44 0.405 0.518 0.74
## sdq20- 329 0.37 0.38 0.34 0.287 1.547 0.69
## sdq21 329 0.46 0.47 0.44 0.377 0.684 0.69
## sdq22 328 0.17 0.23 0.17 0.126 0.052 0.28
## sdq23 329 0.24 0.23 0.16 0.140 1.128 0.81
## sdq24 328 0.46 0.43 0.39 0.355 0.723 0.83
## sdq25 333 0.50 0.52 0.50 0.435 0.613 0.70
##
## Non missing response frequency for each item
## 0 1 2 3 miss
## sdq_1 0.02 0.18 0.80 0 0.03
## sdq2 0.74 0.16 0.10 0 0.02
## sdq3 0.45 0.24 0.30 0 0.03
## sdq4 0.10 0.23 0.67 0 0.03
## sdq5 0.58 0.19 0.23 0 0.02
## sdq6 0.67 0.19 0.14 0 0.04
## sdq7 0.54 0.37 0.10 0 0.02
## sdq8 0.38 0.33 0.28 0 0.05
## sdq9 0.07 0.27 0.65 0 0.04
## sdq10 0.64 0.15 0.21 0 0.03
## sdq11 0.88 0.09 0.03 0 0.04
## sdq12 0.76 0.15 0.09 0 0.03
## sdq13 0.60 0.24 0.17 0 0.02
## sdq14 0.81 0.15 0.04 0 0.04
## sdq15 0.38 0.28 0.34 0 0.03
## sdq16 0.19 0.33 0.49 0 0.03
## sdq17 0.05 0.17 0.78 0 0.03
## sdq18 0.65 0.24 0.12 0 0.04
## sdq19 0.63 0.23 0.15 0 0.03
## sdq20 0.11 0.32 0.57 0 0.03
## sdq21 0.45 0.42 0.13 0 0.03
## sdq22 0.96 0.02 0.02 0 0.03
## sdq23 0.27 0.33 0.40 0 0.03
## sdq24 0.52 0.23 0.25 0 0.03
## sdq25 0.51 0.36 0.13 0 0.02
Information obtained from teachers. Before conducting the interviews with the parents, the teachers completed the MTA-SNAP-IV and were also asked to provide structured information about the students’ school performance, with measurements of overall achievement for the school year that was derived from competencies in language, mathematics, science, and social studies. The Cronbach’s alpha of this questionnaire was 0.97 (95% CI = [0.96,0.97]). Adolescents were ranked as being below expectations (i.e., failed to achieve a minimal number of established milestones for the year), matching expectations, or exceeding expectations (i.e., achieved milestones that are only expected to be achieved in the following school year) for the grade in accordance with education board standards.
##
## Reliability analysis
## Call: alpha(x = .)
##
## raw_alpha std.alpha G6(smc) average_r S/N ase mean sd median_r
## 0.97 0.97 0.98 0.63 30 0.0026 0.64 0.71 0.61
##
## lower alpha upper 95% confidence boundaries
## 0.96 0.97 0.97
##
## Reliability if an item is dropped:
## raw_alpha std.alpha G6(smc) average_r S/N alpha se var.r med.r
## snapp1 0.96 0.97 0.98 0.62 28 0.0028 0.013 0.61
## snapp2 0.96 0.97 0.98 0.62 28 0.0028 0.013 0.61
## snapp3 0.96 0.97 0.98 0.62 28 0.0029 0.015 0.60
## snapp4 0.96 0.96 0.98 0.62 28 0.0029 0.013 0.61
## snapp5 0.96 0.97 0.98 0.62 28 0.0029 0.013 0.61
## snapp6 0.96 0.97 0.98 0.62 28 0.0028 0.013 0.61
## snapp7 0.97 0.97 0.98 0.62 28 0.0028 0.015 0.60
## snapp8 0.96 0.97 0.98 0.62 28 0.0028 0.014 0.61
## snapp9 0.96 0.97 0.98 0.62 28 0.0029 0.014 0.61
## snapp10 0.97 0.97 0.98 0.64 30 0.0027 0.014 0.62
## snapp11 0.96 0.97 0.98 0.62 28 0.0029 0.015 0.60
## snapp12 0.97 0.97 0.98 0.63 29 0.0027 0.014 0.62
## snapp13 0.97 0.97 0.98 0.63 29 0.0028 0.015 0.62
## snapp14 0.97 0.97 0.98 0.63 28 0.0028 0.015 0.61
## snapp15 0.97 0.97 0.98 0.64 30 0.0026 0.014 0.62
## snapp16 0.97 0.97 0.98 0.63 29 0.0027 0.014 0.62
## snapp17 0.96 0.97 0.98 0.62 28 0.0028 0.014 0.61
## snapp18 0.96 0.97 0.98 0.62 28 0.0028 0.015 0.61
##
## Item statistics
## n raw.r std.r r.cor r.drop mean sd
## snapp1 339 0.83 0.83 0.82 0.81 0.94 0.92
## snapp2 339 0.83 0.83 0.82 0.81 0.87 0.92
## snapp3 338 0.86 0.86 0.85 0.84 0.64 0.86
## snapp4 338 0.87 0.87 0.87 0.86 0.78 0.97
## snapp5 338 0.84 0.84 0.84 0.82 0.75 0.96
## snapp6 339 0.83 0.82 0.82 0.80 0.76 0.96
## snapp7 339 0.80 0.81 0.80 0.78 0.45 0.81
## snapp8 338 0.82 0.81 0.80 0.79 1.10 1.01
## snapp9 337 0.86 0.85 0.85 0.84 0.78 0.93
## snapp10 338 0.70 0.70 0.68 0.66 0.41 0.96
## snapp11 338 0.84 0.85 0.84 0.82 0.52 0.88
## snapp12 336 0.73 0.75 0.73 0.70 0.25 0.67
## snapp13 339 0.76 0.77 0.76 0.73 0.33 0.73
## snapp14 338 0.79 0.80 0.79 0.76 0.40 0.79
## snapp15 338 0.70 0.69 0.67 0.66 0.97 1.05
## snapp16 337 0.76 0.77 0.76 0.73 0.44 0.83
## snapp17 339 0.80 0.81 0.81 0.78 0.50 0.85
## snapp18 339 0.81 0.82 0.82 0.79 0.55 0.90
##
## Non missing response frequency for each item
## 0 1 2 3 10 miss
## snapp1 0.38 0.36 0.19 0.07 0 0.00
## snapp2 0.43 0.33 0.17 0.06 0 0.00
## snapp3 0.56 0.29 0.09 0.06 0 0.00
## snapp4 0.52 0.25 0.14 0.08 0 0.00
## snapp5 0.53 0.26 0.12 0.08 0 0.00
## snapp6 0.52 0.29 0.11 0.09 0 0.00
## snapp7 0.69 0.22 0.03 0.06 0 0.00
## snapp8 0.34 0.35 0.19 0.13 0 0.00
## snapp9 0.48 0.34 0.10 0.08 0 0.01
## snapp10 0.76 0.15 0.01 0.07 0 0.00
## snapp11 0.67 0.20 0.05 0.07 0 0.00
## snapp12 0.85 0.09 0.03 0.03 0 0.01
## snapp13 0.78 0.15 0.02 0.04 0 0.00
## snapp14 0.74 0.17 0.04 0.05 0 0.00
## snapp15 0.43 0.30 0.14 0.13 0 0.00
## snapp16 0.72 0.18 0.05 0.06 0 0.01
## snapp17 0.68 0.20 0.05 0.06 0 0.00
## snapp18 0.66 0.21 0.06 0.07 0 0.00
The table below summarises the main statistics. Double checked on november 6 2020. In the manuscript, this represents the table 3.
| cefaleia_mes | No headache | Low frequency | Intermediate | High frequency |
| Count | 40 | 254 | 28 | 17 |
| mastery_total_mean | 52.0 | 50.6 | 45.9 | 43.9 |
| optimism_mean | 18.6 | 18.1 | 16.4 | 15.1 |
| self_efficacy_mean | 25.1 | 24.1 | 22.0 | 21.1 |
| adaptability_numeric_mean | 8.0 | 8.4 | 7.3 | 7.9 |
| relatedness_total_mean | 67.4 | 63.7 | 63.1 | 58.9 |
| trust_mean | 19.1 | 18.6 | 17.9 | 16.6 |
| support_mean | 18.5 | 17.4 | 16.8 | 17.5 |
| comfort_mean | 10.9 | 10.4 | 10.8 | 9.2 |
| tolerance_numeric_mean | 19.1 | 17.0 | 17.7 | 15.2 |
| reactivity_total_mean | 28.5 | 30.4 | 36.1 | 38.4 |
| sensitivity_mean | 10.3 | 11.1 | 13.1 | 13.9 |
| recovery_mean | 5.5 | 6.2 | 7.8 | 7.0 |
| impairment_mean | 12.7 | 13.1 | 15.2 | 17.5 |
| ressources_total_mean | 59.7 | 57.2 | 54.5 | 51.4 |
| vulnerability_total_mean | -31.2 | -26.8 | -18.4 | -13.1 |
| mastery_total_sd | 11.9 | 11.9 | 11.8 | 11.4 |
| optimism_sd | 4.9 | 4.9 | 4.6 | 5.0 |
| self_efficacy_sd | 6.8 | 6.8 | 6.7 | 5.6 |
| adaptability_numeric_sd | 2.4 | 2.3 | 2.1 | 2.1 |
| relatedness_total_sd | 15.7 | 15.0 | 14.5 | 11.4 |
| trust_sd | 5.2 | 4.9 | 5.3 | 4.8 |
| support_sd | 4.6 | 4.8 | 4.7 | 3.5 |
| comfort_sd | 3.1 | 3.4 | 2.9 | 4.0 |
| tolerance_numeric_sd | 4.9 | 4.5 | 4.9 | 5.1 |
| reactivity_total_sd | 16.8 | 14.8 | 16.9 | 13.6 |
| sensitivity_sd | 5.4 | 4.8 | 5.1 | 5.3 |
| recovery_sd | 4.6 | 4.0 | 3.8 | 4.1 |
| impairment_sd | 8.8 | 8.6 | 10.3 | 7.0 |
| ressources_total_sd | 13.1 | 12.1 | 12.2 | 8.0 |
| vulnerability_total_sd | 22.4 | 20.0 | 20.9 | 17.7 |
We accessed the relationship between headache and the results obtained by each scales descriptively by using graphs and frequencies. Bar graphs are easy to understan, and very useful for showing the pattern of the results.
## $data
## Outcome
## Predictor 1 0 Total
## [10,12] 89 10 99
## (12,15] 141 19 160
## (15,Inf] 69 11 80
## Total 299 40 339
##
## $measure
## odds ratio with 95% C.I.
## Predictor estimate lower upper
## [10,12] 1.000000 NA NA
## (12,15] 1.190430 0.5359415 2.799646
## (15,Inf] 1.414157 0.5586810 3.621071
##
## $p.value
## two-sided
## Predictor midp.exact fisher.exact chi.square
## [10,12] NA NA NA
## (12,15] 0.6740582 0.8396325 0.6599642
## (15,Inf] 0.4617109 0.4899402 0.4506905
##
## $correction
## [1] FALSE
##
## attr(,"method")
## [1] "median-unbiased estimate & mid-p exact CI"
## $data
## Outcome
## Predictor 1 0 Total
## Female 172 9 181
## Male 127 31 158
## Total 299 40 339
##
## $measure
## odds ratio with 95% C.I.
## Predictor estimate lower upper
## Female 1.000000 NA NA
## Male 4.590844 2.183984 10.63592
##
## $p.value
## two-sided
## Predictor midp.exact fisher.exact chi.square
## Female NA NA NA
## Male 2.917951e-05 3.356408e-05 3.040773e-05
##
## $correction
## [1] FALSE
##
## attr(,"method")
## [1] "median-unbiased estimate & mid-p exact CI"
## $data
## Outcome
## Predictor 1 0 Total
## 1 211 28 239
## 2 80 10 90
## 3 8 2 10
## Total 299 40 339
##
## $measure
## odds ratio with 95% C.I.
## Predictor estimate lower upper
## 1 1.000 NA NA
## 2 0.951 0.419 2.00
## 3 1.976 0.261 8.62
##
## $p.value
## two-sided
## Predictor midp.exact fisher.exact chi.square
## 1 NA NA NA
## 2 0.898 1.000 0.878
## 3 0.450 0.344 0.430
##
## $correction
## [1] FALSE
##
## attr(,"method")
## [1] "median-unbiased estimate & mid-p exact CI"
## $data
## Outcome
## Predictor 1 0 Total
## AB 77 16 93
## C 184 19 203
## DE 38 5 43
## Total 299 40 339
##
## $measure
## odds ratio with 95% C.I.
## Predictor estimate lower upper
## AB 1.000 NA NA
## C 0.498 0.242 1.03
## DE 0.647 0.195 1.81
##
## $p.value
## two-sided
## Predictor midp.exact fisher.exact chi.square
## AB NA NA NA
## C 0.0613 0.0792 0.0523
## DE 0.4223 0.4566 0.4027
##
## $correction
## [1] FALSE
##
## attr(,"method")
## [1] "median-unbiased estimate & mid-p exact CI"
## $data
## Outcome
## Predictor 1 0 Total
## [10,12] 79 20 99
## (12,15] 117 43 160
## (15,Inf] 58 22 80
## Total 254 85 339
##
## $measure
## odds ratio with 95% C.I.
## Predictor estimate lower upper
## [10,12] 1.00 NA NA
## (12,15] 1.44 0.797 2.69
## (15,Inf] 1.49 0.743 3.02
##
## $p.value
## two-sided
## Predictor midp.exact fisher.exact chi.square
## [10,12] NA NA NA
## (12,15] 0.228 0.237 0.224
## (15,Inf] 0.260 0.289 0.252
##
## $correction
## [1] FALSE
##
## attr(,"method")
## [1] "median-unbiased estimate & mid-p exact CI"
## $data
## Outcome
## Predictor 1 0 Total
## Female 141 40 181
## Male 113 45 158
## Total 254 85 339
##
## $measure
## odds ratio with 95% C.I.
## Predictor estimate lower upper
## Female 1.0 NA NA
## Male 1.4 0.856 2.3
##
## $p.value
## two-sided
## Predictor midp.exact fisher.exact chi.square
## Female NA NA NA
## Male 0.18 0.209 0.176
##
## $correction
## [1] FALSE
##
## attr(,"method")
## [1] "median-unbiased estimate & mid-p exact CI"
## $data
## Outcome
## Predictor 1 0 Total
## 1 177 62 239
## 2 72 18 90
## 3 5 5 10
## Total 254 85 339
##
## $measure
## odds ratio with 95% C.I.
## Predictor estimate lower upper
## 1 1.000 NA NA
## 2 0.718 0.387 1.28
## 3 2.840 0.741 10.89
##
## $p.value
## two-sided
## Predictor midp.exact fisher.exact chi.square
## 1 NA NA NA
## 2 0.266 0.314 0.2628
## 3 0.124 0.139 0.0928
##
## $correction
## [1] FALSE
##
## attr(,"method")
## [1] "median-unbiased estimate & mid-p exact CI"
## $data
## Outcome
## Predictor 1 0 Total
## AB 67 26 93
## C 157 46 203
## DE 30 13 43
## Total 254 85 339
##
## $measure
## odds ratio with 95% C.I.
## Predictor estimate lower upper
## AB 1.000 NA NA
## C 0.754 0.432 1.33
## DE 1.120 0.494 2.46
##
## $p.value
## two-sided
## Predictor midp.exact fisher.exact chi.square
## AB NA NA NA
## C 0.329 0.381 0.324
## DE 0.782 0.839 0.785
##
## $correction
## [1] FALSE
##
## attr(,"method")
## [1] "median-unbiased estimate & mid-p exact CI"
## $data
## Outcome
## Predictor 1 0 Total
## [10,12] 7 92 99
## (12,15] 13 147 160
## (15,Inf] 8 72 80
## Total 28 311 339
##
## $measure
## odds ratio with 95% C.I.
## Predictor estimate lower upper
## [10,12] 1.000 NA NA
## (12,15] 0.869 0.312 2.23
## (15,Inf] 0.688 0.227 2.04
##
## $p.value
## two-sided
## Predictor midp.exact fisher.exact chi.square
## [10,12] NA NA NA
## (12,15] 0.775 0.815 0.757
## (15,Inf] 0.496 0.590 0.482
##
## $correction
## [1] FALSE
##
## attr(,"method")
## [1] "median-unbiased estimate & mid-p exact CI"
## $data
## Outcome
## Predictor 1 0 Total
## Female 19 162 181
## Male 9 149 158
## Total 28 311 339
##
## $measure
## odds ratio with 95% C.I.
## Predictor estimate lower upper
## Female 1.00 NA NA
## Male 1.92 0.859 4.63
##
## $p.value
## two-sided
## Predictor midp.exact fisher.exact chi.square
## Female NA NA NA
## Male 0.114 0.118 0.109
##
## $correction
## [1] FALSE
##
## attr(,"method")
## [1] "median-unbiased estimate & mid-p exact CI"
## $data
## Outcome
## Predictor 1 0 Total
## 1 20 219 239
## 2 5 85 90
## 3 3 7 10
## Total 28 311 339
##
## $measure
## odds ratio with 95% C.I.
## Predictor estimate lower upper
## 1 1.00 NA NA
## 2 1.52 0.5873 4.77
## 3 0.21 0.0521 1.09
##
## $p.value
## two-sided
## Predictor midp.exact fisher.exact chi.square
## 1 NA NA NA
## 2 0.409 0.4884 0.3907
## 3 0.062 0.0539 0.0206
##
## $correction
## [1] FALSE
##
## attr(,"method")
## [1] "median-unbiased estimate & mid-p exact CI"
## $data
## Outcome
## Predictor 1 0 Total
## AB 7 86 93
## C 17 186 203
## DE 4 39 43
## Total 28 311 339
##
## $measure
## odds ratio with 95% C.I.
## Predictor estimate lower upper
## AB 1.000 NA NA
## C 0.902 0.333 2.19
## DE 0.783 0.217 3.26
##
## $p.value
## two-sided
## Predictor midp.exact fisher.exact chi.square
## AB NA NA NA
## C 0.826 1.000 0.804
## DE 0.719 0.742 0.724
##
## $correction
## [1] FALSE
##
## attr(,"method")
## [1] "median-unbiased estimate & mid-p exact CI"
## $data
## Outcome
## Predictor 1 0 Total
## [10,12] 3 96 99
## (12,15] 11 149 160
## (15,Inf] 3 77 80
## Total 17 322 339
##
## $measure
## odds ratio with 95% C.I.
## Predictor estimate lower upper
## [10,12] 1.000 NA NA
## (12,15] 0.440 0.093 1.48
## (15,Inf] 0.803 0.135 4.79
##
## $p.value
## two-sided
## Predictor midp.exact fisher.exact chi.square
## [10,12] NA NA NA
## (12,15] 0.195 0.26 0.184
## (15,Inf] 0.800 1.00 0.790
##
## $correction
## [1] FALSE
##
## attr(,"method")
## [1] "median-unbiased estimate & mid-p exact CI"
## $data
## Outcome
## Predictor 1 0 Total
## Female 12 169 181
## Male 5 153 158
## Total 17 322 339
##
## $measure
## odds ratio with 95% C.I.
## Predictor estimate lower upper
## Female 1.00 NA NA
## Male 2.13 0.761 6.98
##
## $p.value
## two-sided
## Predictor midp.exact fisher.exact chi.square
## Female NA NA NA
## Male 0.154 0.212 0.145
##
## $correction
## [1] FALSE
##
## attr(,"method")
## [1] "median-unbiased estimate & mid-p exact CI"
##
##
## Cell Contents
## |-------------------------|
## | N |
## | Chi-square contribution |
## | N / Row Total |
## | N / Col Total |
## | N / Table Total |
## |-------------------------|
##
##
## Total Observations in Table: 339
##
##
## | .$high_frequency
## .$cor_1_branca_2_nao_branca_3_nao_informou | 0 | 1 | Row Total |
## -------------------------------------------|-----------|-----------|-----------|
## 1 | 225 | 14 | 239 |
## | 0.018 | 0.339 | |
## | 0.941 | 0.059 | 0.705 |
## | 0.699 | 0.824 | |
## | 0.664 | 0.041 | |
## -------------------------------------------|-----------|-----------|-----------|
## 2 | 87 | 3 | 90 |
## | 0.027 | 0.507 | |
## | 0.967 | 0.033 | 0.265 |
## | 0.270 | 0.176 | |
## | 0.257 | 0.009 | |
## -------------------------------------------|-----------|-----------|-----------|
## 3 | 10 | 0 | 10 |
## | 0.026 | 0.501 | |
## | 1.000 | 0.000 | 0.029 |
## | 0.031 | 0.000 | |
## | 0.029 | 0.000 | |
## -------------------------------------------|-----------|-----------|-----------|
## Column Total | 322 | 17 | 339 |
## | 0.950 | 0.050 | |
## -------------------------------------------|-----------|-----------|-----------|
##
##
## Statistics for All Table Factors
##
##
## Pearson's Chi-squared test
## ------------------------------------------------------------
## Chi^2 = 1.42 d.f. = 2 p = 0.492
##
##
##
## [1] 1.8
## [1] Inf
## $data
## Outcome
## Predictor 1 0 Total
## AB 3 90 93
## C 10 193 203
## DE 4 39 43
## Total 17 322 339
##
## $measure
## odds ratio with 95% C.I.
## Predictor estimate lower upper
## AB 1.000 NA NA
## C 0.667 0.1397 2.28
## DE 0.332 0.0588 1.66
##
## $p.value
## two-sided
## Predictor midp.exact fisher.exact chi.square
## AB NA NA NA
## C 0.541 0.761 0.508
## DE 0.174 0.207 0.136
##
## $correction
## [1] FALSE
##
## attr(,"method")
## [1] "median-unbiased estimate & mid-p exact CI"
To check the RSCA indexes, scales, and subscales as a function of headache frequency, a Robust one-way ANOVA was carried out using the raw score results as the dependent variable. The effect of headache on the Mastery results was significant (F(3, 335) = 3.13, p = 0.03). Post-hoc comparison revealed significant differences between the headache-free group and the intermediate (Δ: -6.096, CI 95% [-11.96, -0.97]) and high frequency group (Δ: -8.39, CI 95% [-15.17, -1.23]).
##
## Breusch Pagan Test for Heteroskedasticity
## -----------------------------------------
## Ho: the variance is constant
## Ha: the variance is not constant
##
## Data
## -----------------------------------------
## Response : mastery_total
## Variables: fitted values of mastery_total
##
## Test Summary
## -------------------------
## DF = 1
## Chi2 = 0.1495
## Prob > Chi2 = 0.6990
## -----------------------------------------------
## Test Statistic pvalue
## -----------------------------------------------
## Shapiro-Wilk 0.9899 0.0189
## Kolmogorov-Smirnov 0.0514 0.3329
## Cramer-von Mises 26.8886 0.0000
## Anderson-Darling 0.5751 0.1344
## -----------------------------------------------
| Df | F | Pr(>F) | |
|---|---|---|---|
| (Intercept) | 1 | 761.45 | 0.00 |
| factor(cefaleia_mes) | 3 | 3.13 | 0.03 |
| Residuals | 335 | NA | NA |
| Re-checked on Janury 8, | 2021. |
| estimate | original | boot_bias | boot_se | boot_med | boot_skew | boot_kurtosis | x2_5_percent | x97_5_percent | r | sig | sd_aprox | epm_apro | t_stats | p_val |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 1 | 52.7 | 0.0 | 1.7 | 52.8 | -0.1 | 0.1 | 49.4 | 56.1 | 1000 | p < 0.05 | 54.4 | 1.7 | 30.6 | 0.0 |
| 2 | -1.9 | 0.0 | 1.9 | -1.9 | 0.0 | 0.2 | -5.6 | 1.8 | 1000 | ns | 59.5 | 1.9 | -1.0 | 0.3 |
| 3 | -6.5 | 0.0 | 2.7 | -6.5 | -0.1 | 0.0 | -11.9 | -1.2 | 1000 | p < 0.05 | 86.7 | 2.7 | -2.4 | 0.0 |
| 4 | -8.4 | -0.2 | 3.5 | -8.5 | 0.0 | -0.3 | -15.0 | -1.4 | 1000 | p < 0.05 | 109.6 | 3.5 | -2.4 | 0.0 |
The following images report the confidence interval and the variables distribution. These results provide evidence that after the bootstrap, data were normally distributed.
##
##
## ANOVA results using mastery_total as the dependent variable
##
##
## Predictor SS df MS F p partial_eta2
## (Intercept) 108264.02 1 108264.02 767.90 .000
## factor(cefaleia_mes) 1367.01 3 455.67 3.23 .023 .03
## Error 47230.99 335 140.99
## CI_90_partial_eta2
##
## [.00, .06]
##
##
## Note: Values in square brackets indicate the bounds of the 90% confidence interval for partial eta-squared
## $emmeans
## cefaleia_mes emmean SE df lower.CL upper.CL
## No headache 52.0 1.877 335 47.3 56.7
## Low frequency 50.6 0.745 335 48.8 52.5
## Intermediate 45.9 2.244 335 40.3 51.5
## High frequency 43.9 2.880 335 36.7 51.1
##
## Confidence level used: 0.95
## Conf-level adjustment: mvt method for 4 estimates
##
## $contrasts
## contrast estimate SE df t.ratio p.value
## Low frequency - No headache -1.38 2.02 335 -0.685 0.8320
## Intermediate - No headache -6.10 2.93 335 -2.084 0.0970
## High frequency - No headache -8.14 3.44 335 -2.369 0.0490
##
## P value adjustment: mvt method for 3 tests
##
## Simultaneous Tests for General Linear Hypotheses
##
## Multiple Comparisons of Means: Dunnett Contrasts
##
##
## Fit: lm(formula = mastery_total ~ cefaleia_mes, data = base_uso)
##
## Linear Hypotheses:
## Estimate Std. Error t value Pr(>|t|)
## Low frequency - No headache == 0 -1.38 2.02 -0.68 0.832
## Intermediate - No headache == 0 -6.10 2.93 -2.08 0.097 .
## High frequency - No headache == 0 -8.14 3.44 -2.37 0.049 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## (Adjusted p values reported -- single-step method)
Based on DSM-5 recommendation, we used results below of 1.5 standard deviation to assign children to a ‘at risk’ group, as previously cited.
|
|
No. of observations = 339 AIC value = 170.1378 | |
The table below reports the estimate values in the log-odds form, the standard error of each estimate, and the odds ratio. The interpretation of the estimates considers the log odds scale. As an example, the expected change in log odds is 0.57 for those with a low-frequency headache when compared to those with no headache. The Odds-Ratio is the ratio of the odds for the groups, is always non-negative, and between 0 and \(infinity\). its interpretation is recommended, once its results are more straightforward and intuitive. The odds ratio of having a low sense of mastery among those with low-frequency headache is 1.77 compared to those with no headache, i.e, the odds of low sense of mastery in headache-free participants is estimated to be 1.77 times the odds of low sense of mastery in children experiencing low-frequency headache (77.1% higher = (1-1.771*100)). However, this result is not significant. Significant results are marked by asterisks.
Relative risks can be estimated by OR applying this equation:
\[\hat{RR} = \frac{OR}{1-Risk_{control}+Risk_{control}*OR}\]
are computed below from the contingency table between the factor and the outcome:
The following plot shows the Odds-ratio results. The overall effect estimate and its 95% confidence intervals are plotted, and the vertical line right over the number 1 means equal chances.
| D | f | F Pr | (>F) |
|---|---|---|---|
| (Intercept) | 1 | 594.93 | 0.00 |
| factor(cefaleia_mes) | 3 | 3.52 | 0.02 |
| Residuals | 335 | NA | NA |
| estimate | original | boot_bias | boot_se | boot_med | boot_skew | boot_kurtosis | x2_5_percent | x97_5_percent | r | sig | sd_aprox | epm_apro | t_stats | p_val |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 1 | 18.94 | -0.02 | 0.73 | 18.93 | -0.14 | 0.00 | 17.52 | 20.40 | 1000 | p < 0.05 | 23.2 | 0.73 | 25.81 | 0.00 |
| 2 | -0.73 | 0.02 | 0.80 | -0.69 | 0.11 | -0.08 | -2.31 | 0.82 | 1000 | ns | 25.3 | 0.80 | -0.91 | 0.36 |
| 3 | -2.35 | 0.02 | 1.09 | -2.31 | -0.03 | -0.10 | -4.49 | -0.23 | 1000 | p < 0.05 | 34.4 | 1.09 | -2.16 | 0.03 |
| 4 | -3.94 | 0.06 | 1.44 | -3.92 | 0.08 | -0.06 | -6.83 | -1.17 | 1000 | p < 0.05 | 45.6 | 1.44 | -2.73 | 0.01 |
## $emmeans
## cefaleia_mes emmean SE df lower.CL upper.CL
## No headache 18.6 0.768 335 16.7 20.6
## Low frequency 18.1 0.305 335 17.3 18.9
## Intermediate 16.4 0.917 335 14.1 18.7
## High frequency 15.1 1.177 335 12.1 18.0
##
## Confidence level used: 0.95
## Conf-level adjustment: mvt method for 4 estimates
##
## $contrasts
## contrast estimate SE df t.ratio p.value
## Low frequency - No headache -0.52 0.826 335 -0.633 0.8610
## Intermediate - No headache -2.23 1.196 335 -1.866 0.1550
## High frequency - No headache -3.57 1.405 335 -2.537 0.0310
##
## P value adjustment: mvt method for 3 tests
##
## Simultaneous Tests for General Linear Hypotheses
##
## Multiple Comparisons of Means: Dunnett Contrasts
##
##
## Fit: lm(formula = optimism ~ cefaleia_mes, data = base_uso)
##
## Linear Hypotheses:
## Estimate Std. Error t value Pr(>|t|)
## Low frequency - No headache == 0 -0.523 0.826 -0.63 0.861
## Intermediate - No headache == 0 -2.232 1.196 -1.87 0.155
## High frequency - No headache == 0 -3.566 1.405 -2.54 0.031 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## (Adjusted p values reported -- single-step method)
| D | f | F Pr | (>F) |
|---|---|---|---|
| (Intercept) | 1 | 537.27 | 0.00 |
| factor(cefaleia_mes) | 3 | 2.05 | 0.11 |
| Residuals | 335 | NA | NA |
| D | f | F Pr | (>F) |
|---|---|---|---|
| (Intercept) | 1 | 188.64 | 0.00 |
| factor(cefaleia_mes) | 3 | 1.01 | 0.39 |
| Residuals | 136 | NA | NA |
The effect of headache on the Reactivity results was significant (F(3, 335) = 3.04, p =.03). The higher frequency headache group had higher results on the Reactivity scale when compared to group headache-free (Δ: 11.07, CI 95% [2.43, 20.12]).
| D | f | F Pr | (>F) |
|---|---|---|---|
| (Intercept) | 1 | 134.46 | 0.00 |
| cefaleia_mes | 3 | 3.04 | 0.03 |
| Residuals | 335 | NA | NA |
| estimate | original | boot_bias | boot_se | boot_med | boot_skew | boot_kurtosis | x2_5_percent | x97_5_percent | r | sig | sd_aprox | epm_apro | t_stats | p_val |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 1 | 27.7 | -0.1 | 2.8 | 27.6 | 0.0 | -0.3 | 22.3 | 33.4 | 1000 | p < 0.05 | 89.4 | 2.8 | 9.8 | 0.0 |
| 2 | 1.7 | 0.1 | 3.0 | 1.8 | 0.0 | -0.3 | -4.2 | 7.5 | 1000 | ns | 94.6 | 3.0 | 0.6 | 0.6 |
| 3 | 6.5 | 0.0 | 4.0 | 6.5 | -0.1 | -0.1 | -1.5 | 14.4 | 1000 | ns | 128.0 | 4.0 | 1.6 | 0.1 |
| 4 | 11.1 | -0.1 | 4.5 | 10.9 | 0.0 | 0.7 | 2.4 | 20.0 | 1000 | p < 0.05 | 141.8 | 4.5 | 2.5 | 0.0 |
## $emmeans
## cefaleia_mes emmean SE df lower.CL upper.CL
## No headache 28.5 2.40 335 22.5 34.5
## Low frequency 30.4 0.95 335 28.0 32.8
## Intermediate 36.1 2.87 335 28.9 43.3
## High frequency 38.4 3.68 335 29.1 47.6
##
## Confidence level used: 0.95
## Conf-level adjustment: mvt method for 4 estimates
##
## $contrasts
## contrast estimate SE df t.ratio p.value
## Low frequency - No headache 1.89 2.58 335 0.730 0.8050
## Intermediate - No headache 7.57 3.74 335 2.024 0.1110
## High frequency - No headache 9.85 4.40 335 2.242 0.0670
##
## P value adjustment: mvt method for 3 tests
##
## Simultaneous Tests for General Linear Hypotheses
##
## Multiple Comparisons of Means: Dunnett Contrasts
##
##
## Fit: lm(formula = optimism ~ cefaleia_mes, data = base_uso)
##
## Linear Hypotheses:
## Estimate Std. Error t value Pr(>|t|)
## Low frequency - No headache == 0 -0.523 0.826 -0.63 0.861
## Intermediate - No headache == 0 -2.232 1.196 -1.87 0.155
## High frequency - No headache == 0 -3.566 1.405 -2.54 0.031 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## (Adjusted p values reported -- single-step method)
|
|
No. of observations = 339 AIC value = 218.9285 | |
| D | f | F Pr | (>F) |
|---|---|---|---|
| (Intercept) | 1 | 158.55 | 0.00 |
| factor(cefaleia_mes) | 3 | 2.64 | 0.05 |
| Residuals | 335 | NA | NA |
| estimate | original | boot_bias | boot_se | boot_med | boot_skew | boot_kurtosis | x2_5_percent | x97_5_percent | sig |
|---|---|---|---|---|---|---|---|---|---|
| (Intercept) | 10.42 | -0.04 | 1.03 | 10.38 | -0.07 | -0.24 | 8.45 | 12.49 | p < 0.05 |
| factor(cefaleia_mes)Low frequency | 0.48 | 0.06 | 1.08 | 0.52 | 0.11 | -0.27 | -1.70 | 2.54 | ns |
| factor(cefaleia_mes)Intermediate | 2.19 | 0.05 | 1.45 | 2.27 | 0.01 | -0.29 | -0.70 | 4.98 | ns |
| factor(cefaleia_mes)High frequency | 3.39 | 0.04 | 1.76 | 3.43 | 0.09 | 0.21 | -0.11 | 6.81 | ns |
| D | f | F Pr | (>F) |
|---|---|---|---|
| (Intercept) | 1 | 50.96 | 0.00 |
| factor(cefaleia_mes) | 3 | 2.15 | 0.09 |
| Residuals | 335 | NA | NA |
| D | f | F Pr | (>F) |
|---|---|---|---|
| (Intercept) | 1 | 76.35 | 0.00 |
| factor(cefaleia_mes) | 3 | 1.98 | 0.12 |
| Residuals | 335 | NA | NA |
The effect of headache on the Resources scale was significant F(3, 335) = 2.99, p = 0.03). The high frequency group had significant results (Δ: -9.44, CI 95% [-15.02, -4.12]) when compared to headache-free group.
| D | f | F Pr | (>F) |
|---|---|---|---|
| (Intercept) | 1 | 1064.55 | 0.00 |
| cefaleia_mes | 3 | 2.99 | 0.03 |
| Residuals | 335 | NA | NA |
| estimate | original | boot_bias | boot_se | boot_med | boot_skew | boot_kurtosis | x2_5_percent | x97_5_percent | r | sig | sd_aprox | epm_apro | t_stats | p_val |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 1 | 60.79 | -0.02 | 1.97 | 60.77 | -0.11 | -0.10 | 56.95 | 64.67 | 1000 | p < 0.05 | 62.3 | 1.97 | 30.86 | 0.00 |
| 2 | -3.21 | 0.03 | 2.10 | -3.18 | 0.11 | 0.17 | -7.35 | 0.87 | 1000 | ns | 66.3 | 2.10 | -1.53 | 0.13 |
| 3 | -5.73 | -0.02 | 3.03 | -5.69 | -0.12 | 0.19 | -11.65 | 0.23 | 1000 | ns | 95.8 | 3.03 | -1.89 | 0.06 |
| 4 | -9.44 | 0.10 | 2.75 | -9.33 | 0.11 | -0.08 | -14.94 | -4.15 | 1000 | p < 0.05 | 87.1 | 2.75 | -3.43 | 0.00 |
## $emmeans
## cefaleia_mes emmean SE df lower.CL upper.CL
## No headache 59.7 1.904 335 55.0 64.5
## Low frequency 57.2 0.756 335 55.3 59.1
## Intermediate 54.5 2.275 335 48.8 60.2
## High frequency 51.4 2.920 335 44.1 58.7
##
## Confidence level used: 0.95
## Conf-level adjustment: mvt method for 4 estimates
##
## $contrasts
## contrast estimate SE df t.ratio p.value
## Low frequency - No headache -2.56 2.05 335 -1.249 0.4540
## Intermediate - No headache -5.23 2.97 335 -1.761 0.1910
## High frequency - No headache -8.31 3.49 335 -2.385 0.0470
##
## P value adjustment: mvt method for 3 tests
##
## Simultaneous Tests for General Linear Hypotheses
##
## Multiple Comparisons of Means: Dunnett Contrasts
##
##
## Fit: lm(formula = optimism ~ cefaleia_mes, data = base_uso)
##
## Linear Hypotheses:
## Estimate Std. Error t value Pr(>|t|)
## Low frequency - No headache == 0 -0.523 0.826 -0.63 0.861
## Intermediate - No headache == 0 -2.232 1.196 -1.87 0.155
## High frequency - No headache == 0 -3.566 1.405 -2.54 0.031 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## (Adjusted p values reported -- single-step method)
The Resource Index is the standardized average of the Sense of Mastery and Sense of Relatedness scales.
|
|
No. of observations = 339 AIC value = 198.4095 | |
In the same direction of the results of Ressources, the main effect of headache on Vulnerability results was significant F(3, 335) = 4.05, p < 0.01) and the comparison revealed that intermediate (Δ: 11.04, CI 95% [0.12, 21.51]) and high fequency group (Δ: 18.34, CI 95% [7.42, 29.71]) had higher results than the disease-free group.
| D | f | F Pr | (>F) |
|---|---|---|---|
| (Intercept) | 1 | 87.40 | 0.00 |
| cefaleia_mes | 3 | 4.05 | 0.01 |
| Residuals | 335 | NA | NA |
| estimate | original | boot_bias | boot_se | boot_med | boot_skew | boot_kurtosis | x2_5_percent | x97_5_percent | r | sig | sd_aprox | epm_apro | t_stats | p_val |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 1 | -30.85 | -0.16 | 3.73 | -31.03 | -0.12 | -0.10 | -38.00 | -23.4 | 1000 | p < 0.05 | 118 | 3.73 | -8.27 | 0.00 |
| 2 | 3.99 | 0.13 | 4.00 | 4.09 | 0.14 | -0.24 | -3.98 | 11.7 | 1000 | ns | 126 | 4.00 | 1.00 | 0.32 |
| 3 | 11.04 | 0.02 | 5.45 | 11.02 | 0.01 | -0.15 | 0.35 | 21.7 | 1000 | p < 0.05 | 172 | 5.45 | 2.03 | 0.04 |
| 4 | 18.34 | -0.18 | 5.74 | 18.35 | -0.10 | 0.44 | 7.27 | 29.8 | 1000 | p < 0.05 | 181 | 5.74 | 3.20 | 0.00 |
## $emmeans
## cefaleia_mes emmean SE df lower.CL upper.CL
## No headache -31.2 3.21 335 -39.3 -23.19
## Low frequency -26.8 1.27 335 -30.0 -23.59
## Intermediate -18.4 3.83 335 -28.0 -8.83
## High frequency -13.1 4.92 335 -25.4 -0.74
##
## Confidence level used: 0.95
## Conf-level adjustment: mvt method for 4 estimates
##
## $contrasts
## contrast estimate SE df t.ratio p.value
## Low frequency - No headache 4.44 3.45 335 1.288 0.4290
## Intermediate - No headache 12.80 5.00 335 2.560 0.0300
## High frequency - No headache 18.17 5.87 335 3.093 0.0060
##
## P value adjustment: mvt method for 3 tests
##
## Simultaneous Tests for General Linear Hypotheses
##
## Multiple Comparisons of Means: Dunnett Contrasts
##
##
## Fit: lm(formula = optimism ~ cefaleia_mes, data = base_uso)
##
## Linear Hypotheses:
## Estimate Std. Error t value Pr(>|t|)
## Low frequency - No headache == 0 -0.523 0.826 -0.63 0.861
## Intermediate - No headache == 0 -2.232 1.196 -1.87 0.155
## High frequency - No headache == 0 -3.566 1.405 -2.54 0.031 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## (Adjusted p values reported -- single-step method)
The Vulnerability Index scrore is the standardized difference between the Emotional Reactivy T-score and the Resource Index score. It quantifies children’s personal vulnerability as the relative discrepancy between their combined self-perceived resources (the Resource Index) and their fragility as described by emotional reactivity (the Emotional Reactitivy Scale).
|
|
No. of observations = 339 AIC value = 143.2185 | |
First, I’ll add a specific variable to the dataset.
| D | f | F Pr | (>F) |
|---|---|---|---|
| (Intercept) | 1 | 752.80 | 0.00 |
| factor(migraine_status) | 6 | 1.68 | 0.12 |
| Residuals | 332 | NA | NA |
| D | f | F Pr | (>F) |
|---|---|---|---|
| (Intercept) | 1 | 858.07 | 0.00 |
| factor(migraine_status) | 6 | 1.92 | 0.08 |
| Residuals | 332 | NA | NA |
| D | f | F Pr | (>F) |
|---|---|---|---|
| (Intercept) | 1 | 130.27 | 0.00 |
| factor(migraine_status) | 6 | 0.46 | 0.84 |
| Residuals | 332 | NA | NA |
| D | f | F Pr | (>F) |
|---|---|---|---|
| (Intercept) | 1 | 1075.44 | 0.00 |
| factor(migraine_status) | 6 | 2.25 | 0.04 |
| Residuals | 332 | NA | NA |
| D | f | F Pr | (>F) |
|---|---|---|---|
| (Intercept) | 1 | 84.18 | 0.00 |
| factor(migraine_status) | 6 | 1.25 | 0.28 |
| Residuals | 332 | NA | NA |
Another aim of this study is to check which variables are related to children at great psychological risk. These children were assigned to specific groups. The first one was composed of children that experienced at least one episode of headache in their lifetime and previously classified at low resources risk group (n =27). The second group included children with at last one episode of headache during his/her life and previously classified at high vulnerability group (n =17).
logistic regression was conducted including all established risk factors and subject variables (Migraine, age, race, sex, socioeconomic status, problems at sleeping, prematurity, use of tobacco and alcohol during pregnancy, low birth weight during delivery, low psychological strengths, and having ADHD). The variance inflation factor was calculated to determine the degree of multicollinearity present in the data results.
Checking the independence of the groups ? (Mcnemar)
| risk_cefaleia_resources/risk_cefaleia_vulnerability | 0 | 1 | Total |
|---|---|---|---|
| 0 | 96% (300) | 4% (12) | 100% (312) |
| 1 | 81% (22) | 19% (5) | 100% (27) |
| Total | 95% (322) | 5% (17) | 100% (339) |
## Confusion Matrix and Statistics
##
## Reference
## Prediction 0 1
## 0 300 12
## 1 22 5
##
## Accuracy : 0.9
## 95% CI : (0.863, 0.93)
## No Information Rate : 0.95
## P-Value [Acc > NIR] : 1.000
##
## Kappa : 0.177
##
## Mcnemar's Test P-Value : 0.123
##
## Sensitivity : 0.2941
## Specificity : 0.9317
## Pos Pred Value : 0.1852
## Neg Pred Value : 0.9615
## Prevalence : 0.0501
## Detection Rate : 0.0147
## Detection Prevalence : 0.0796
## Balanced Accuracy : 0.6129
##
## 'Positive' Class : 1
##
## Data Frame Summary
## base_uso
## Dimensions: 339 x 10
## Duplicates: 142
##
## -------------------------------------------------------------------------------------------------------------
## No Variable Stats / Values Freqs (% of Valid) Graph Valid Missing
## ---- ------------ ------------------------- -------------------- ----------------------- ---------- ---------
## 1 age Mean (sd) : 13.9 (2.1) 10 : 7 ( 2.1%) 339 0
## [numeric] min < med < max: 11 : 50 (14.8%) II (100%) (0%)
## 10 < 14 < 18 12 : 42 (12.4%) II
## IQR (CV) : 3 (0.1) 13 : 52 (15.3%) III
## 14 : 48 (14.2%) II
## 15 : 60 (17.7%) III
## 16 : 33 ( 9.7%) I
## 17 : 39 (11.5%) II
## 18 : 8 ( 2.4%)
##
## 2 race 1. white 239 (72.6%) IIIIIIIIIIIIII 329 10
## [factor] 2. Other 90 (27.4%) IIIII (97.05%) (2.95%)
##
## 3 sex 1. Female 181 (53.4%) IIIIIIIIII 339 0
## [factor] 2. Male 158 (46.6%) IIIIIIIII (100%) (0%)
##
## 4 ses 1. AB 93 (27.4%) IIIII 339 0
## [factor] 2. C 203 (59.9%) IIIIIIIIIII (100%) (0%)
## 3. DE 43 (12.7%) II
##
## 5 sleeping 1. no 321 (96.7%) IIIIIIIIIIIIIIIIIII 332 7
## [factor] 2. yes 11 ( 3.3%) (97.94%) (2.06%)
##
## 6 premature 1. no 293 (88.0%) IIIIIIIIIIIIIIIII 333 6
## [factor] 2. yes 40 (12.0%) II (98.23%) (1.77%)
##
## 7 smoking 1. no 263 (78.0%) IIIIIIIIIIIIIII 337 2
## [factor] 2. yes 74 (22.0%) IIII (99.41%) (0.59%)
##
## 8 alcohol 1. no 301 (89.6%) IIIIIIIIIIIIIIIII 336 3
## [factor] 2. yes 35 (10.4%) II (99.12%) (0.88%)
##
## 9 sdq_risk 1. no 306 (90.3%) IIIIIIIIIIIIIIIIII 339 0
## [factor] 2. yes 33 ( 9.7%) I (100%) (0%)
##
## 10 adhd 1. no 329 (97.0%) IIIIIIIIIIIIIIIIIII 339 0
## [factor] 2. yes 10 ( 2.9%) (100%) (0%)
## -------------------------------------------------------------------------------------------------------------
Descriptive analysis for all predictors included
## Data Frame Summary
## base_uso
## Dimensions: 339 x 10
## Duplicates: 142
##
## -------------------------------------------------------------------------------------------------------------
## No Variable Stats / Values Freqs (% of Valid) Graph Valid Missing
## ---- ------------ ------------------------- -------------------- ----------------------- ---------- ---------
## 1 age Mean (sd) : 13.9 (2.1) 10 : 7 ( 2.1%) 339 0
## [numeric] min < med < max: 11 : 50 (14.8%) II (100%) (0%)
## 10 < 14 < 18 12 : 42 (12.4%) II
## IQR (CV) : 3 (0.1) 13 : 52 (15.3%) III
## 14 : 48 (14.2%) II
## 15 : 60 (17.7%) III
## 16 : 33 ( 9.7%) I
## 17 : 39 (11.5%) II
## 18 : 8 ( 2.4%)
##
## 2 race 1. white 239 (72.6%) IIIIIIIIIIIIII 329 10
## [factor] 2. Other 90 (27.4%) IIIII (97.05%) (2.95%)
##
## 3 sex 1. Female 181 (53.4%) IIIIIIIIII 339 0
## [factor] 2. Male 158 (46.6%) IIIIIIIII (100%) (0%)
##
## 4 ses 1. AB 93 (27.4%) IIIII 339 0
## [factor] 2. C 203 (59.9%) IIIIIIIIIII (100%) (0%)
## 3. DE 43 (12.7%) II
##
## 5 sleeping 1. no 321 (96.7%) IIIIIIIIIIIIIIIIIII 332 7
## [factor] 2. yes 11 ( 3.3%) (97.94%) (2.06%)
##
## 6 premature 1. no 293 (88.0%) IIIIIIIIIIIIIIIII 333 6
## [factor] 2. yes 40 (12.0%) II (98.23%) (1.77%)
##
## 7 smoking 1. no 263 (78.0%) IIIIIIIIIIIIIII 337 2
## [factor] 2. yes 74 (22.0%) IIII (99.41%) (0.59%)
##
## 8 alcohol 1. no 301 (89.6%) IIIIIIIIIIIIIIIII 336 3
## [factor] 2. yes 35 (10.4%) II (99.12%) (0.88%)
##
## 9 sdq_risk 1. no 306 (90.3%) IIIIIIIIIIIIIIIIII 339 0
## [factor] 2. yes 33 ( 9.7%) I (100%) (0%)
##
## 10 adhd 1. no 329 (97.0%) IIIIIIIIIIIIIIIIIII 339 0
## [factor] 2. yes 10 ( 2.9%) (100%) (0%)
## -------------------------------------------------------------------------------------------------------------
The VIF was then computed for each model.
## GVIF Df GVIF^(1/(2*Df))
## age 1.03 1 1.02
## race 1.11 1 1.05
## relevel(sex, ref = "Male") 1.08 1 1.04
## ses 1.29 2 1.07
## sleeping 1.17 1 1.08
## premature 1.02 1 1.01
## smoking 1.36 1 1.17
## alcohol 1.15 1 1.07
## sdq_risk 1.16 1 1.08
## GVIF Df GVIF^(1/(2*Df))
## age 1.06 1 1.03
## race 1.11 1 1.06
## relevel(sex, ref = "Male") 1.03 1 1.02
## ses 1.47 2 1.10
## sleeping 1.27 1 1.13
## premature 1.03 1 1.02
## smoking 1.45 1 1.21
## alcohol 1.11 1 1.06
## sdq_risk 1.10 1 1.05
##
## Call:
## glm(formula = risk_cefaleia_resources ~ age + race + relevel(sex,
## ref = "Male") + ses + sleeping + premature + smoking + alcohol +
## sdq_risk, family = "binomial", data = base_uso)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -1.327 -0.404 -0.282 -0.208 2.897
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) -0.581 1.685 -0.34 0.73045
## age -0.197 0.121 -1.63 0.10381
## raceOther 0.126 0.543 0.23 0.81661
## relevel(sex, ref = "Male")Female 1.122 0.523 2.15 0.03194 *
## sesC -0.680 0.527 -1.29 0.19738
## sesDE -0.396 0.791 -0.50 0.61657
## sleepingyes 0.166 0.996 0.17 0.86794
## prematureyes 0.464 0.623 0.75 0.45582
## smokingyes -0.131 0.648 -0.20 0.83951
## alcoholyes -0.046 0.754 -0.06 0.95133
## sdq_riskyes 2.019 0.550 3.67 0.00024 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for binomial family taken to be 1)
##
## Null deviance: 169.54 on 313 degrees of freedom
## Residual deviance: 145.60 on 303 degrees of freedom
## (25 observations deleted due to missingness)
## AIC: 167.6
##
## Number of Fisher Scoring iterations: 6
##
## Call:
## glm(formula = risk_cefaleia_vulnerability ~ age + race + relevel(sex,
## ref = "Male") + ses + sleeping + premature + smoking + alcohol +
## sdq_risk, family = "binomial", data = base_uso)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -1.133 -0.342 -0.255 -0.160 2.941
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) -2.7223 1.8668 -1.46 0.1448
## age -0.0430 0.1347 -0.32 0.7495
## raceOther -0.7166 0.7249 -0.99 0.3229
## relevel(sex, ref = "Male")Female 1.0047 0.6104 1.65 0.0998 .
## sesC -1.0719 0.6603 -1.62 0.1045
## sesDE -1.0482 0.9424 -1.11 0.2661
## sleepingyes 1.2047 0.9814 1.23 0.2196
## prematureyes 0.0366 0.8146 0.04 0.9642
## smokingyes 1.7254 0.6475 2.66 0.0077 **
## alcoholyes -0.4620 0.8413 -0.55 0.5829
## sdq_riskyes 0.0157 0.8529 0.02 0.9853
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for binomial family taken to be 1)
##
## Null deviance: 126.43 on 313 degrees of freedom
## Residual deviance: 112.00 on 303 degrees of freedom
## (25 observations deleted due to missingness)
## AIC: 134
##
## Number of Fisher Scoring iterations: 6
some manual computations were then performed, just to ensure the reliability of the results
##
## Call:
## glm(formula = risk_cefaleia_vulnerability ~ sdq_risk, family = binomial,
## data = base_uso)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -0.354 -0.317 -0.317 -0.317 2.456
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) -2.965 0.265 -11.20 <2e-16 ***
## sdq_riskyes 0.224 0.776 0.29 0.77
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for binomial family taken to be 1)
##
## Null deviance: 134.89 on 338 degrees of freedom
## Residual deviance: 134.81 on 337 degrees of freedom
## AIC: 138.8
##
## Number of Fisher Scoring iterations: 5
## $data
## Outcome
## Predictor yes no Total
## 1 2 15 17
## 0 31 291 322
## Total 33 306 339
##
## $measure
## odds ratio with 95% C.I.
## Predictor estimate lower upper
## 1 1.00 NA NA
## 0 1.25 0.273 5.73
##
## $p.value
## two-sided
## Predictor midp.exact fisher.exact chi.square
## 1 NA NA NA
## 0 0.731 0.676 0.772
##
## $correction
## [1] FALSE
##
## attr(,"method")
## [1] "Unconditional MLE & normal approximation (Wald) CI"
| risk cefaleia resources |
risk cefaleia vulnerability |
|||||||
|---|---|---|---|---|---|---|---|---|
| Predictors | Odds Ratios | CI | Statistic | p | Odds Ratios | CI | Statistic | p |
| (Intercept) | 0.560 | 0.020 – 15.565 | -0.345 | 0.730 | 0.066 | 0.001 – 2.388 | -1.458 | 0.145 |
| age | 0.821 | 0.641 – 1.035 | -1.627 | 0.104 | 0.958 | 0.731 – 1.248 | -0.319 | 0.749 |
| race [Other] | 1.134 | 0.363 – 3.162 | 0.232 | 0.817 | 0.488 | 0.095 – 1.771 | -0.989 | 0.323 |
|
relevel(sex, ref = “Male”) [relevel(sex, ref = “Male”)Female] |
3.071 | 1.164 – 9.341 | 2.145 | 0.032 | 2.731 | 0.888 – 10.334 | 1.646 | 0.100 |
| ses [C] | 0.507 | 0.177 – 1.438 | -1.289 | 0.197 | 0.342 | 0.088 – 1.231 | -1.623 | 0.105 |
| ses [DE] | 0.673 | 0.121 – 2.906 | -0.501 | 0.617 | 0.351 | 0.042 – 1.931 | -1.112 | 0.266 |
| sleeping [yes] | 1.180 | 0.128 – 7.050 | 0.166 | 0.868 | 3.336 | 0.378 – 20.187 | 1.228 | 0.220 |
| premature [yes] | 1.591 | 0.409 – 4.970 | 0.746 | 0.456 | 1.037 | 0.151 – 4.287 | 0.045 | 0.964 |
| smoking [yes] | 0.877 | 0.222 – 2.934 | -0.203 | 0.840 | 5.615 | 1.572 – 20.875 | 2.665 | 0.008 |
| alcohol [yes] | 0.955 | 0.181 – 3.745 | -0.061 | 0.951 | 0.630 | 0.088 – 2.759 | -0.549 | 0.583 |
| sdq_risk [yes] | 7.532 | 2.514 – 22.364 | 3.670 | <0.001 | 1.016 | 0.137 – 4.495 | 0.018 | 0.985 |
| Observations | 314 | 314 | ||||||
| R2 Tjur | 0.101 | 0.051 | ||||||
Check distribution of the results
##
## Pearson's Chi-squared test with Yates' continuity correction
##
## data: base_uso$cefaleia_lifetime and base_uso$sexo
## X-squared = 16, df = 1, p-value = 6e-05
## # A tibble: 4 x 3
## cefaleia_lifetime sex n
## <dbl> <fct> <int>
## 1 0 Female 9
## 2 0 Male 31
## 3 1 Female 172
## 4 1 Male 127
## Response z_resources :
##
## Call:
## lm(formula = z_resources ~ age + race + relevel(sex, ref = "Male") +
## ses + sleeping + premature + smoking + alcohol + sdq_risk,
## data = base_uso)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.227 -0.587 0.028 0.681 3.027
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.04140 0.39399 0.11 0.916
## age 0.00489 0.02755 0.18 0.859
## raceOther 0.06061 0.12633 0.48 0.632
## relevel(sex, ref = "Male")Female -0.02438 0.11198 -0.22 0.828
## sesC 0.01326 0.13150 0.10 0.920
## sesDE -0.06567 0.19768 -0.33 0.740
## sleepingyes -0.56626 0.30831 -1.84 0.067 .
## prematureyes -0.02673 0.17277 -0.15 0.877
## smokingyes 0.07950 0.15077 0.53 0.598
## alcoholyes -0.13179 0.19322 -0.68 0.496
## sdq_riskyes -0.84860 0.19175 -4.43 1.3e-05 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.978 on 303 degrees of freedom
## (25 observations deleted due to missingness)
## Multiple R-squared: 0.0818, Adjusted R-squared: 0.0515
## F-statistic: 2.7 on 10 and 303 DF, p-value: 0.00348
##
##
## Response cefaleia_lifetime :
##
## Call:
## lm(formula = cefaleia_lifetime ~ age + race + relevel(sex, ref = "Male") +
## ses + sleeping + premature + smoking + alcohol + sdq_risk,
## data = base_uso)
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.9692 0.0203 0.0953 0.1510 0.3359
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.764740 0.124378 6.15 2.5e-09 ***
## age -0.001712 0.008696 -0.20 0.84404
## raceOther -0.012181 0.039882 -0.31 0.76025
## relevel(sex, ref = "Male")Female 0.128475 0.035350 3.63 0.00033 ***
## sesC 0.107018 0.041513 2.58 0.01041 *
## sesDE 0.095518 0.062405 1.53 0.12691
## sleepingyes 0.116064 0.097329 1.19 0.23400
## prematureyes 0.058610 0.054541 1.07 0.28341
## smokingyes 0.014968 0.047596 0.31 0.75338
## alcoholyes -0.061100 0.060997 -1.00 0.31730
## sdq_riskyes 0.000559 0.060532 0.01 0.99264
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.309 on 303 degrees of freedom
## (25 observations deleted due to missingness)
## Multiple R-squared: 0.0715, Adjusted R-squared: 0.0409
## F-statistic: 2.33 on 10 and 303 DF, p-value: 0.0116
##
## Type II MANOVA Tests: Pillai test statistic
## Df test stat approx F num Df den Df Pr(>F)
## age 1 0.0002 0.03 2 302 0.9680
## race 1 0.0010 0.15 2 302 0.8599
## relevel(sex, ref = "Male") 1 0.0418 6.58 2 302 0.0016 **
## ses 2 0.0226 1.74 4 606 0.1406
## sleeping 1 0.0146 2.24 2 302 0.1084
## premature 1 0.0038 0.58 2 302 0.5615
## smoking 1 0.0013 0.20 2 302 0.8176
## alcohol 1 0.0052 0.79 2 302 0.4558
## sdq_risk 1 0.0610 9.81 2 302 7.4e-05 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## Response z_vulnerability :
##
## Call:
## lm(formula = z_vulnerability ~ age + race + relevel(sex, ref = "Male") +
## ses + sleeping + premature + smoking + alcohol + sdq_risk,
## data = base_uso)
##
## Residuals:
## Min 1Q Median 3Q Max
## -2.4180 -0.6514 -0.0209 0.7108 2.5867
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -0.15601 0.38990 -0.40 0.69
## age 0.00869 0.02726 0.32 0.75
## raceOther -0.08078 0.12502 -0.65 0.52
## relevel(sex, ref = "Male")Female 0.05631 0.11081 0.51 0.61
## sesC -0.16915 0.13013 -1.30 0.19
## sesDE -0.12351 0.19563 -0.63 0.53
## sleepingyes 0.43878 0.30511 1.44 0.15
## prematureyes -0.05906 0.17097 -0.35 0.73
## smokingyes 0.12272 0.14920 0.82 0.41
## alcoholyes 0.20814 0.19121 1.09 0.28
## sdq_riskyes 0.85658 0.18975 4.51 9.1e-06 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.968 on 303 degrees of freedom
## (25 observations deleted due to missingness)
## Multiple R-squared: 0.0942, Adjusted R-squared: 0.0643
## F-statistic: 3.15 on 10 and 303 DF, p-value: 0.000748
##
##
## Response cefaleia_lifetime :
##
## Call:
## lm(formula = cefaleia_lifetime ~ age + race + relevel(sex, ref = "Male") +
## ses + sleeping + premature + smoking + alcohol + sdq_risk,
## data = base_uso)
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.9692 0.0203 0.0953 0.1510 0.3359
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.764740 0.124378 6.15 2.5e-09 ***
## age -0.001712 0.008696 -0.20 0.84404
## raceOther -0.012181 0.039882 -0.31 0.76025
## relevel(sex, ref = "Male")Female 0.128475 0.035350 3.63 0.00033 ***
## sesC 0.107018 0.041513 2.58 0.01041 *
## sesDE 0.095518 0.062405 1.53 0.12691
## sleepingyes 0.116064 0.097329 1.19 0.23400
## prematureyes 0.058610 0.054541 1.07 0.28341
## smokingyes 0.014968 0.047596 0.31 0.75338
## alcoholyes -0.061100 0.060997 -1.00 0.31730
## sdq_riskyes 0.000559 0.060532 0.01 0.99264
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.309 on 303 degrees of freedom
## (25 observations deleted due to missingness)
## Multiple R-squared: 0.0715, Adjusted R-squared: 0.0409
## F-statistic: 2.33 on 10 and 303 DF, p-value: 0.0116
##
## Type II MANOVA Tests: Pillai test statistic
## Df test stat approx F num Df den Df Pr(>F)
## age 1 0.0005 0.08 2 302 0.9262
## race 1 0.0016 0.24 2 302 0.7884
## relevel(sex, ref = "Male") 1 0.0419 6.60 2 302 0.0016 **
## ses 2 0.0294 2.26 4 606 0.0615 .
## sleeping 1 0.0104 1.59 2 302 0.2056
## premature 1 0.0045 0.68 2 302 0.5091
## smoking 1 0.0024 0.37 2 302 0.6944
## alcohol 1 0.0079 1.21 2 302 0.3009
## sdq_risk 1 0.0635 10.25 2 302 5e-05 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1