Here I provide two types of plots for each of p_hat_cnn , p_hat_covariate, and risk_pred_prob:
Here we include the 18 raw skin-tone levels and do not account for the non-linearity in p_hat_cnn. This is our baseline.
| Dependent variable: | |||||
| Release Outcome | |||||
| (1) | (2) | (3) | (4) | (5) | |
| risk_pred_prob | -1.074*** | -1.077*** | -1.072*** | -0.742*** | -0.682*** |
| (-1.188, -0.960) | (-1.192, -0.962) | (-1.187, -0.956) | (-0.855, -0.629) | (-0.794, -0.569) | |
| skin_tonenumber_f7ddc4 | 0.006 | 0.006 | -0.021 | -0.037 | |
| (-0.033, 0.045) | (-0.034, 0.045) | (-0.059, 0.017) | (-0.075, 0.001) | ||
| age | -0.0004 | 0.0003 | 0.001* | ||
| (-0.002, 0.001) | (-0.001, 0.001) | (0.00002, 0.002) | |||
| attractiveness | -0.002 | 0.002 | 0.002 | ||
| (-0.013, 0.009) | (-0.009, 0.012) | (-0.008, 0.013) | |||
| competence | 0.002 | -0.002 | -0.003 | ||
| (-0.010, 0.015) | (-0.014, 0.010) | (-0.015, 0.009) | |||
| dominance | -0.002 | 0.003 | 0.005 | ||
| (-0.011, 0.007) | (-0.006, 0.011) | (-0.004, 0.013) | |||
| trustworthiness | 0.004 | 0.004 | 0.001 | ||
| (-0.007, 0.015) | (-0.007, 0.014) | (-0.010, 0.012) | |||
| p_hat_covariates | 1.085*** | 1.003*** | |||
| (1.015, 1.155) | (0.932, 1.074) | ||||
| p_hat_cnn | 0.415*** | ||||
| (0.343, 0.487) | |||||
| Constant | 1.095*** | 1.091*** | 1.095*** | 0.109* | -0.171*** |
| (1.059, 1.131) | (1.043, 1.139) | (1.018, 1.171) | (0.012, 0.205) | (-0.279, -0.063) | |
| Observations | 7,318 | 7,318 | 7,318 | 7,318 | 7,318 |
| Adjusted R2 | 0.032 | 0.032 | 0.031 | 0.111 | 0.122 |
| F Statistic | 239.132*** (df = 1; 7316) | 14.271*** (df = 18; 7299) | 11.215*** (df = 23; 7294) | 39.038*** (df = 24; 7293) | 41.532*** (df = 25; 7292) |
| Note: | p<0.1; p<0.05; p<0.01 | ||||
Here I fixed the average decile values for p_hat_cnn and we now see the regression coefficient becoming significant.
| Dependent variable: | ||||
| Release Outcome | ||||
| (1) | (2) | (3) | (4) | |
| risk_pred_prob | -1.074*** | -1.072*** | -0.742*** | -0.683*** |
| (-1.188, -0.960) | (-1.187, -0.956) | (-0.855, -0.629) | (-0.796, -0.571) | |
| skin_tonenumber_f7ddc4 | 0.006 | -0.021 | -0.037 | |
| (-0.034, 0.045) | (-0.059, 0.017) | (-0.074, 0.001) | ||
| age | -0.0004 | 0.0003 | 0.001 | |
| (-0.002, 0.001) | (-0.001, 0.001) | (-0.00005, 0.002) | ||
| attractiveness | -0.002 | 0.002 | 0.002 | |
| (-0.013, 0.009) | (-0.009, 0.012) | (-0.008, 0.012) | ||
| competence | 0.002 | -0.002 | -0.003 | |
| (-0.010, 0.015) | (-0.014, 0.010) | (-0.015, 0.009) | ||
| dominance | -0.002 | 0.003 | 0.005 | |
| (-0.011, 0.007) | (-0.006, 0.011) | (-0.004, 0.013) | ||
| trustworthiness | 0.004 | 0.004 | 0.001 | |
| (-0.007, 0.015) | (-0.007, 0.014) | (-0.009, 0.012) | ||
| p_hat_covariates | 1.085*** | 1.005*** | ||
| (1.015, 1.155) | (0.934, 1.075) | |||
| p_hat_cnn_decile_avr | 0.412*** | |||
| (0.339, 0.485) | ||||
| Constant | 1.095*** | 1.095*** | 0.109* | -0.168** |
| (1.059, 1.131) | (1.018, 1.171) | (0.012, 0.205) | (-0.276, -0.061) | |
| Observations | 7,318 | 7,318 | 7,318 | 7,318 |
| Adjusted R2 | 0.032 | 0.031 | 0.111 | 0.121 |
| F Statistic | 239.132*** (df = 1; 7316) | 11.215*** (df = 23; 7294) | 39.038*** (df = 24; 7293) | 41.372*** (df = 25; 7292) |
| Note: | p<0.1; p<0.05; p<0.01 | |||
Here I include integers 1-10 for the corresponding decile that the observation is in.
| Dependent variable: | ||||
| Release Outcome | ||||
| (1) | (2) | (3) | (4) | |
| risk_pred_prob | -1.074*** | -1.072*** | -0.742*** | -0.685*** |
| (-1.188, -0.960) | (-1.187, -0.956) | (-0.855, -0.629) | (-0.798, -0.573) | |
| skin_tonenumber_f7ddc4 | 0.006 | -0.021 | -0.036 | |
| (-0.034, 0.045) | (-0.059, 0.017) | (-0.074, 0.002) | ||
| age | -0.0004 | 0.0003 | 0.001 | |
| (-0.002, 0.001) | (-0.001, 0.001) | (-0.0001, 0.002) | ||
| attractiveness | -0.002 | 0.002 | 0.002 | |
| (-0.013, 0.009) | (-0.009, 0.012) | (-0.008, 0.012) | ||
| competence | 0.002 | -0.002 | -0.003 | |
| (-0.010, 0.015) | (-0.014, 0.010) | (-0.015, 0.009) | ||
| dominance | -0.002 | 0.003 | 0.005 | |
| (-0.011, 0.007) | (-0.006, 0.011) | (-0.004, 0.013) | ||
| trustworthiness | 0.004 | 0.004 | 0.001 | |
| (-0.007, 0.015) | (-0.007, 0.014) | (-0.010, 0.012) | ||
| p_hat_covariates | 1.085*** | 1.004*** | ||
| (1.015, 1.155) | (0.933, 1.074) | |||
| p_hat_cnn_decile | 0.016*** | |||
| (0.013, 0.018) | ||||
| Constant | 1.095*** | 1.095*** | 0.109* | 0.056 |
| (1.059, 1.131) | (1.018, 1.171) | (0.012, 0.205) | (-0.040, 0.153) | |
| Observations | 7,318 | 7,318 | 7,318 | 7,318 |
| Adjusted R2 | 0.032 | 0.031 | 0.111 | 0.121 |
| F Statistic | 239.132*** (df = 1; 7316) | 11.215*** (df = 23; 7294) | 39.038*** (df = 24; 7293) | 41.239*** (df = 25; 7292) |
| Note: | p<0.1; p<0.05; p<0.01 | |||
We now include two higher order terms of p_hat_cnn, none of which become significant.
| Dependent variable: | ||||||
| Release Outcome | ||||||
| (1) | (2) | (3) | (4) | (5) | (6) | |
| risk_pred_prob | -1.074*** | -1.072*** | -0.742*** | -0.682*** | -0.681*** | -0.680*** |
| (-1.188, -0.960) | (-1.187, -0.956) | (-0.855, -0.629) | (-0.794, -0.569) | (-0.794, -0.568) | (-0.793, -0.568) | |
| skin_tonenumber_f7ddc4 | 0.006 | -0.021 | -0.037 | -0.037 | -0.036 | |
| (-0.034, 0.045) | (-0.059, 0.017) | (-0.075, 0.001) | (-0.075, 0.001) | (-0.074, 0.002) | ||
| age | -0.0004 | 0.0003 | 0.001* | 0.001* | 0.001* | |
| (-0.002, 0.001) | (-0.001, 0.001) | (0.00002, 0.002) | (0.00001, 0.002) | (0.00004, 0.002) | ||
| attractiveness | -0.002 | 0.002 | 0.002 | 0.002 | 0.002 | |
| (-0.013, 0.009) | (-0.009, 0.012) | (-0.008, 0.013) | (-0.008, 0.013) | (-0.008, 0.013) | ||
| competence | 0.002 | -0.002 | -0.003 | -0.003 | -0.003 | |
| (-0.010, 0.015) | (-0.014, 0.010) | (-0.015, 0.009) | (-0.015, 0.009) | (-0.015, 0.009) | ||
| dominance | -0.002 | 0.003 | 0.005 | 0.005 | 0.005 | |
| (-0.011, 0.007) | (-0.006, 0.011) | (-0.004, 0.013) | (-0.004, 0.013) | (-0.004, 0.013) | ||
| trustworthiness | 0.004 | 0.004 | 0.001 | 0.001 | 0.001 | |
| (-0.007, 0.015) | (-0.007, 0.014) | (-0.010, 0.012) | (-0.010, 0.012) | (-0.010, 0.012) | ||
| p_hat_covariates | 1.085*** | 1.003*** | 1.002*** | 1.001*** | ||
| (1.015, 1.155) | (0.932, 1.074) | (0.931, 1.073) | (0.930, 1.072) | |||
| p_hat_cnn | 0.415*** | 0.271 | 2.524 | |||
| (0.343, 0.487) | (-0.436, 0.979) | (-1.938, 6.985) | ||||
| I(p_hat_cnn2) | 0.099 | -3.157 | ||||
| (-0.387, 0.585) | (-9.543, 3.230) | |||||
| I(p_hat_cnn3) | 1.534 | |||||
| (-1.466, 4.533) | ||||||
| Constant | 1.095*** | 1.095*** | 0.109* | -0.171*** | -0.120 | -0.627 |
| (1.059, 1.131) | (1.018, 1.171) | (0.012, 0.205) | (-0.279, -0.063) | (-0.394, 0.154) | (-1.657, 0.402) | |
| Observations | 7,318 | 7,318 | 7,318 | 7,318 | 7,318 | 7,318 |
| Adjusted R2 | 0.032 | 0.031 | 0.111 | 0.122 | 0.122 | 0.121 |
| F Statistic | 239.132*** (df = 1; 7316) | 11.215*** (df = 23; 7294) | 39.038*** (df = 24; 7293) | 41.532*** (df = 25; 7292) | 39.934*** (df = 26; 7291) | 38.479*** (df = 27; 7290) |
| Note: | p<0.1; p<0.05; p<0.01 | |||||