Using Auto arima for forecasting Deaths of COVID-19 in Chelyabinsk

By

Makarovskikh Tatyana Anatolyevna“Макаровских Татьяна Анатольевна”

Abotaleb mostafa “Аботалеб Мостафа”

Department of Electrical Engineering and Computer Science

South ural state university, Chelyabinsk, Russian federation

# Imports
# Imports
library(fpp2)
## Warning: package 'fpp2' was built under R version 4.0.3
## Registered S3 method overwritten by 'quantmod':
##   method            from
##   as.zoo.data.frame zoo
## -- Attaching packages ------------------------------------------------------------------------------ fpp2 2.4 --
## v ggplot2   3.3.2     v fma       2.4  
## v forecast  8.13      v expsmooth 2.3
## Warning: package 'ggplot2' was built under R version 4.0.3
## Warning: package 'forecast' was built under R version 4.0.3
## 
library(forecast)
library(ggplot2)
library("readxl")
## Warning: package 'readxl' was built under R version 4.0.3
library(moments)
## Warning: package 'moments' was built under R version 4.0.3
library(forecast)
require(forecast)  
require(tseries)
## Loading required package: tseries
## Warning: package 'tseries' was built under R version 4.0.3
require(markovchain)
## Loading required package: markovchain
## Warning: package 'markovchain' was built under R version 4.0.3
## Package:  markovchain
## Version:  0.8.5-3
## Date:     2020-12-03
## BugReport: https://github.com/spedygiorgio/markovchain/issues
require(data.table)
## Loading required package: data.table
Full_original_data<-read_excel("F:/Phd/ALL Russia Analysis/Data Russia till 29_11_2020 Covid four country.xlsx",sheet = "Russia_till_10 Month of May")
y_lab<- "COVID 19 Infection cases in Russia "   # input name of data
Actual_date_interval <- c("2020/01/22","2020/05/10")
Forecast_date_interval <- c("2020/05/11","2020/05/17")
validation_data_days <-11
frequency<-"days"
# Data Preparation & calculate some of statistics measures
original_data<-Full_original_data$infection
summary(original_data)
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##       0       2     102   25044   17689  209688
sd(original_data)  # calculate standard deviation
## [1] 50188.53
skewness(original_data)  # calculate Cofficient of skewness
## [1] 2.186267
kurtosis(original_data)   # calculate Cofficient of kurtosis
## [1] 6.81233
rows <- NROW(original_data)
training_data<-original_data[1:(rows-validation_data_days)]
testing_data<-original_data[(rows-validation_data_days+1):rows]
AD<-fulldate<-seq(as.Date(Actual_date_interval[1]),as.Date(Actual_date_interval[2]), frequency)  #input range for actual date
FD<-seq(as.Date(Forecast_date_interval[1]),as.Date(Forecast_date_interval[2]), frequency)  #input range forecasting date
N_forecasting_days<-nrow(data.frame(FD)) 
validation_dates<-tail(AD,validation_data_days)
validation_data_by_name<-weekdays(validation_dates)
forecasting_data_by_name<-weekdays(FD)
data_series<-ts(training_data)
#plot  COVID 19 infection cases in Chelyabinsk
autoplot(data_series ,xlab=paste ("Time in  ", frequency, sep=" "), ylab = y_lab, main=paste ("Actual Data :", y_lab, sep=" "))

#Auto arima model
##################

require(tseries) # need to install tseries tj test Stationarity in time series 
paste ("tests For Check Stationarity in series  ==> ",y_lab, sep=" ")
## [1] "tests For Check Stationarity in series  ==>  COVID 19 Infection cases in Russia "
kpss.test(data_series) # applay kpss test
## Warning in kpss.test(data_series): p-value smaller than printed p-value
## 
##  KPSS Test for Level Stationarity
## 
## data:  data_series
## KPSS Level = 1.3117, Truncation lag parameter = 3, p-value = 0.01
pp.test(data_series)   # applay pp test
## Warning in pp.test(data_series): p-value greater than printed p-value
## 
##  Phillips-Perron Unit Root Test
## 
## data:  data_series
## Dickey-Fuller Z(alpha) = 7.1914, Truncation lag parameter = 3, p-value
## = 0.99
## alternative hypothesis: stationary
adf.test(data_series)  # applay adf test
## 
##  Augmented Dickey-Fuller Test
## 
## data:  data_series
## Dickey-Fuller = -2.4522, Lag order = 4, p-value = 0.3894
## alternative hypothesis: stationary
ndiffs(data_series)    # Doing first diffrencing on data
## [1] 2
##Taking the first difference
diff1_x1<-diff(data_series)
autoplot(diff1_x1, xlab = paste ("Time in  ", frequency ,y_lab , sep=" "), ylab=y_lab,main = "1nd differenced series")

##Testing the stationary of the first differenced series
paste ("tests For Check Stationarity in series after taking first differences in  ==> ",y_lab, sep=" ")
## [1] "tests For Check Stationarity in series after taking first differences in  ==>  COVID 19 Infection cases in Russia "
kpss.test(diff1_x1)   # applay kpss test after taking first differences
## Warning in kpss.test(diff1_x1): p-value smaller than printed p-value
## 
##  KPSS Test for Level Stationarity
## 
## data:  diff1_x1
## KPSS Level = 1.5274, Truncation lag parameter = 3, p-value = 0.01
pp.test(diff1_x1)     # applay pp test after taking first differences
## Warning in pp.test(diff1_x1): p-value greater than printed p-value
## 
##  Phillips-Perron Unit Root Test
## 
## data:  diff1_x1
## Dickey-Fuller Z(alpha) = -0.59232, Truncation lag parameter = 3,
## p-value = 0.99
## alternative hypothesis: stationary
adf.test(diff1_x1)    # applay adf test after taking first differences
## 
##  Augmented Dickey-Fuller Test
## 
## data:  diff1_x1
## Dickey-Fuller = -0.43302, Lag order = 4, p-value = 0.9831
## alternative hypothesis: stationary
#Taking the second difference
diff2_x1=diff(diff1_x1)
autoplot(diff2_x1, xlab = paste ("Time in  ", frequency ,y_lab , sep=" "), ylab=y_lab ,main = "2nd differenced series")

##Testing the stationary of the first differenced series
paste ("tests For Check Stationarity in series after taking Second differences in",y_lab, sep=" ")
## [1] "tests For Check Stationarity in series after taking Second differences in COVID 19 Infection cases in Russia "
kpss.test(diff2_x1)   # applay kpss test after taking Second differences
## 
##  KPSS Test for Level Stationarity
## 
## data:  diff2_x1
## KPSS Level = 0.72548, Truncation lag parameter = 3, p-value = 0.01123
pp.test(diff2_x1)     # applay pp test after taking Second differences
## Warning in pp.test(diff2_x1): p-value smaller than printed p-value
## 
##  Phillips-Perron Unit Root Test
## 
## data:  diff2_x1
## Dickey-Fuller Z(alpha) = -145.76, Truncation lag parameter = 3, p-value
## = 0.01
## alternative hypothesis: stationary
adf.test(diff2_x1)    # applay adf test after taking Second differences
## 
##  Augmented Dickey-Fuller Test
## 
## data:  diff2_x1
## Dickey-Fuller = -3.9097, Lag order = 4, p-value = 0.01666
## alternative hypothesis: stationary
####Fitting an ARIMA Model
#1. Using auto arima function
model1 <- auto.arima(data_series,stepwise=FALSE, approximation=FALSE, trace=T, test = c("kpss", "adf", "pp"))  #applaying auto arima
## 
##  ARIMA(0,2,0)                    : 1407.09
##  ARIMA(0,2,1)                    : 1400.891
##  ARIMA(0,2,2)                    : 1383.127
##  ARIMA(0,2,3)                    : 1384.959
##  ARIMA(0,2,4)                    : 1383.777
##  ARIMA(0,2,5)                    : 1385.361
##  ARIMA(1,2,0)                    : 1396.681
##  ARIMA(1,2,1)                    : 1398.357
##  ARIMA(1,2,2)                    : 1385.11
##  ARIMA(1,2,3)                    : Inf
##  ARIMA(1,2,4)                    : Inf
##  ARIMA(2,2,0)                    : 1397.427
##  ARIMA(2,2,1)                    : 1385.27
##  ARIMA(2,2,2)                    : 1382.526
##  ARIMA(2,2,3)                    : 1384.678
##  ARIMA(3,2,0)                    : 1385.054
##  ARIMA(3,2,1)                    : 1382.309
##  ARIMA(3,2,2)                    : 1384.625
##  ARIMA(4,2,0)                    : 1384.228
##  ARIMA(4,2,1)                    : 1383.958
##  ARIMA(5,2,0)                    : 1386.41
## 
## 
## 
##  Best model: ARIMA(3,2,1)
model1 # show the result of autoarima 
## Series: data_series 
## ARIMA(3,2,1) 
## 
## Coefficients:
##          ar1     ar2     ar3      ma1
##       0.2216  0.4029  0.2641  -0.7199
## s.e.  0.1456  0.0953  0.1107   0.1310
## 
## sigma^2 estimated as 83734:  log likelihood=-685.82
## AIC=1381.65   AICc=1382.31   BIC=1394.52
#Make changes in the source of auto arima to run the best model
arima.string <- function (object, padding = FALSE) 
{
  order <- object$arma[c(1, 6, 2, 3, 7, 4, 5)]
  m <- order[7]
  result <- paste("ARIMA(", order[1], ",", order[2], ",", 
                  order[3], ")", sep = "")
  if (m > 1 && sum(order[4:6]) > 0) {
    result <- paste(result, "(", order[4], ",", order[5], 
                    ",", order[6], ")[", m, "]", sep = "")
  }
  if (padding && m > 1 && sum(order[4:6]) == 0) {
    result <- paste(result, "         ", sep = "")
    if (m <= 9) {
      result <- paste(result, " ", sep = "")
    }
    else if (m <= 99) {
      result <- paste(result, "  ", sep = "")
    }
    else {
      result <- paste(result, "   ", sep = "")
    }
  }
  if (!is.null(object$xreg)) {
    if (NCOL(object$xreg) == 1 && is.element("drift", names(object$coef))) {
      result <- paste(result, "with drift        ")
    }
    else {
      result <- paste("Regression with", result, "errors")
    }
  }
  else {
    if (is.element("constant", names(object$coef)) || is.element("intercept", 
                                                                 names(object$coef))) {
      result <- paste(result, "with non-zero mean")
    }
    else if (order[2] == 0 && order[5] == 0) {
      result <- paste(result, "with zero mean    ")
    }
    else {
      result <- paste(result, "                  ")
    }
  }
  if (!padding) {
    result <- gsub("[ ]*$", "", result)
  }
  return(result)
}

source("stringthearima.R")  
bestmodel <- arima.string(model1, padding = TRUE)
bestmodel <- substring(bestmodel,7,11)
bestmodel <- gsub(" ", "", bestmodel)
bestmodel <- gsub(")", "", bestmodel)
bestmodel <- strsplit(bestmodel, ",")[[1]]
bestmodel <- c(strtoi(bestmodel[1]),strtoi(bestmodel[2]),strtoi(bestmodel[3]))
bestmodel
## [1] 3 2 1
#strtoi(bestmodel[3])
library(forecast)   # install library forecast             
x1_model1= arima(data_series, order=c(bestmodel)) # Run Best model of auto arima  for forecasting
x1_model1  # Show result of best model of auto arima 
## 
## Call:
## arima(x = data_series, order = c(bestmodel))
## 
## Coefficients:
##          ar1     ar2     ar3      ma1
##       0.2216  0.4029  0.2641  -0.7199
## s.e.  0.1456  0.0953  0.1107   0.1310
## 
## sigma^2 estimated as 80281:  log likelihood = -685.82,  aic = 1381.65
paste("accuracy of autoarima Model For  ==> ",y_lab, sep=" ")
## [1] "accuracy of autoarima Model For  ==>  COVID 19 Infection cases in Russia "
accuracy(x1_model1)  # aacuracy of best model from auto arima
##                    ME     RMSE      MAE      MPE     MAPE      MASE
## Training set 28.46647 280.4627 116.3324 1.564832 7.886917 0.1146951
##                      ACF1
## Training set -0.001096242
x1_model1$x          # show result of best model from auto arima 
## NULL
checkresiduals(x1_model1,xlab = paste ("Time in  ", frequency ,y_lab , sep=" "),  col.main="black", col.lab="blue", col.sub="black", cex.main=1, cex.lab=1, cex.sub=1,font.main=4, font.lab=4, ylab=y_lab)  # checkresiduals from best model from using auto arima 

## 
##  Ljung-Box test
## 
## data:  Residuals from ARIMA(3,2,1)
## Q* = 19.917, df = 6, p-value = 0.002865
## 
## Model df: 4.   Total lags used: 10
paste("Box-Ljung test , Ljung-Box test For Modelling for   ==> ",y_lab, sep=" ")
## [1] "Box-Ljung test , Ljung-Box test For Modelling for   ==>  COVID 19 Infection cases in Russia "
Box.test(x1_model1$residuals^2, lag=20, type="Ljung-Box")   # Do test for resdulas by using Box-Ljung test , Ljung-Box test For Modelling
## 
##  Box-Ljung test
## 
## data:  x1_model1$residuals^2
## X-squared = 44.782, df = 20, p-value = 0.001181
library(tseries)
jarque.bera.test(x1_model1$residuals)  # Do test jarque.bera.test 
## 
##  Jarque Bera Test
## 
## data:  x1_model1$residuals
## X-squared = 890.5, df = 2, p-value < 2.2e-16
#Actual Vs Fitted
par(mfrow=c(1,2))
plot(data_series, col='red',lwd=2, main="Actual vs Fitted Plot", xlab='Timein (days)', ylab=y_lab) # plot actual and Fitted model 
lines(fitted(x1_model1), col='blue')

#Test data

x1_test <- ts(testing_data, start =(rows-validation_data_days+1) ) # make testing data in time series and start from rows-6
forecasting_auto_arima <- forecast(x1_model1, h=N_forecasting_days+validation_data_days)
validation_forecast<-head(forecasting_auto_arima$mean,validation_data_days)
MAPE_Per_Day<-round(abs(((testing_data-validation_forecast)/testing_data)*100)  ,3)
paste ("MAPE % For ",validation_data_days,frequency,"by using bats Model for  ==> ",y_lab, sep=" ")
## [1] "MAPE % For  11 days by using bats Model for  ==>  COVID 19 Infection cases in Russia "
MAPE_Mean_All<-paste(round(mean(MAPE_Per_Day),3),"% MAPE ",validation_data_days,frequency,y_lab,sep=" ")
MAPE_auto_arima<-paste(round(MAPE_Per_Day,3),"%")
MAPE_auto.arima_Model<-paste(MAPE_Per_Day ,"%")
paste (" MAPE that's Error of Forecasting for ",validation_data_days," days in bats Model for  ==> ",y_lab, sep=" ")
## [1] " MAPE that's Error of Forecasting for  11  days in bats Model for  ==>  COVID 19 Infection cases in Russia "
paste(MAPE_Mean_All,"%")
## [1] "10.784 % MAPE  11 days COVID 19 Infection cases in Russia  %"
paste ("MAPE that's Error of Forecasting day by day for ",validation_data_days," days in bats Model for  ==> ",y_lab, sep=" ")
## [1] "MAPE that's Error of Forecasting day by day for  11  days in bats Model for  ==>  COVID 19 Infection cases in Russia "
data.frame(date_auto.arima=validation_dates,validation_data_by_name,actual_data=testing_data,forecasting_auto.arima=validation_forecast,MAPE_auto.arima_Model)
##    date_auto.arima validation_data_by_name actual_data forecasting_auto.arima
## 1       2020-04-30                 четверг      106498               105702.3
## 2       2020-05-01                 пятница      114431               111934.6
## 3       2020-05-02                 суббота      124054               118186.9
## 4       2020-05-03             воскресенье      134687               124537.2
## 5       2020-05-04             понедельник      145268               130898.4
## 6       2020-05-05                 вторник      155370               137306.8
## 7       2020-05-06                   среда      165929               143756.0
## 8       2020-05-07                 четверг      177160               150236.2
## 9       2020-05-08                 пятница      187859               156752.0
## 10      2020-05-09                 суббота      198676               163299.0
## 11      2020-05-10             воскресенье      209688               169875.5
##    MAPE_auto.arima_Model
## 1                0.747 %
## 2                2.182 %
## 3                4.729 %
## 4                7.536 %
## 5                9.892 %
## 6               11.626 %
## 7               13.363 %
## 8               15.197 %
## 9               16.559 %
## 10              17.806 %
## 11              18.987 %
data.frame(FD,forecating_date=forecasting_data_by_name,forecasting_by_auto.arima=tail(forecasting_auto_arima$mean,N_forecasting_days))
##           FD forecating_date forecasting_by_auto.arima
## 1 2020-05-11     понедельник                  176480.5
## 2 2020-05-12         вторник                  183111.9
## 3 2020-05-13           среда                  189768.5
## 4 2020-05-14         четверг                  196448.7
## 5 2020-05-15         пятница                  203151.4
## 6 2020-05-16         суббота                  209875.2
## 7 2020-05-17     воскресенье                  216618.9
plot(forecasting_auto_arima)
x1_test <- ts(testing_data, start =(rows-validation_data_days+1) )
lines(x1_test, col='red',lwd=2)

graph4<-autoplot(forecasting_auto_arima,xlab = paste ("Time in  ", frequency ,y_lab , sep=" "),  col.main="black", col.lab="blue", col.sub="black", cex.main=1, cex.lab=1, cex.sub=1,font.main=4, font.lab=4, ylab=y_lab)
graph4

## Error of forecasting
Error_auto.arima<-abs(testing_data-validation_forecast)  # Absolute error of forecast (AEOF)
REOF_A_auto.arima<-abs(((testing_data-validation_forecast)/testing_data)*100)  #Relative error of forecast (divided by actual)(REOF_A)
REOF_F_auto.arima<-abs(((testing_data-validation_forecast)/validation_forecast)*100)  #Relative error of forecast (divided by forecast)(REOF_F)
correlation_auto.arima<-cor(testing_data,validation_forecast, method = c("pearson"))     # correlation coefficient between predicted and actual values 
RMSE_auto.arima<-sqrt(sum((Error_auto.arima^2))/validation_data_days)   #  Root mean square forecast error
MAD_auto.arima<-abs((sum(testing_data-validation_forecast))/validation_data_days)   # average forecast accuracy
AEOF_auto.arima<-c(Error_auto.arima)
REOF_auto.arima1<-c(paste(round(REOF_A_auto.arima,3),"%"))
REOF_auto.arima2<-c(paste(round(REOF_F_auto.arima,3),"%"))
data.frame(correlation_auto.arima,RMSE_auto.arima,MAPE_Mean_All,MAD_auto.arima) # analysis of Error  by using Holt's linear model shows result of correlation ,MSE ,MPER
##   correlation_auto.arima RMSE_auto.arima
## 1              0.9997402        22759.24
##                                                MAPE_Mean_All MAD_auto.arima
## 1 10.784 % MAPE  11 days COVID 19 Infection cases in Russia        18830.46
data.frame(validation_dates,Validation_day_name=validation_data_by_name,AEOF_auto.arima,REOF_A_auto.arima=REOF_auto.arima1,REOF_F_auto.arima=REOF_auto.arima2)   # Analysis of error shows result AEOF,REOF_A,REOF_F
##    validation_dates Validation_day_name AEOF_auto.arima REOF_A_auto.arima
## 1        2020-04-30             четверг        795.7329           0.747 %
## 2        2020-05-01             пятница       2496.4054           2.182 %
## 3        2020-05-02             суббота       5867.0880           4.729 %
## 4        2020-05-03         воскресенье      10149.8485           7.536 %
## 5        2020-05-04         понедельник      14369.5874           9.892 %
## 6        2020-05-05             вторник      18063.1555          11.626 %
## 7        2020-05-06               среда      22172.9712          13.363 %
## 8        2020-05-07             четверг      26923.8414          15.197 %
## 9        2020-05-08             пятница      31106.9794          16.559 %
## 10       2020-05-09             суббота      35376.9701          17.806 %
## 11       2020-05-10         воскресенье      39812.4908          18.987 %
##    REOF_F_auto.arima
## 1            0.753 %
## 2             2.23 %
## 3            4.964 %
## 4             8.15 %
## 5           10.978 %
## 6           13.155 %
## 7           15.424 %
## 8           17.921 %
## 9           19.845 %
## 10          21.664 %
## 11          23.436 %