Fig4C_CMSvs.R and Fig4C_contScores.R scripts are using only 10
validation datasets. If you want to use all 18 datasets, block the below lines in
those scripts.# load("data/eSets/trainingSetNames.RData")
# validationSetNames <- setdiff(setNames, trainingSetNames)
# setNames <- validationSetNames
Fig4C_CMSvs.R script requires three environmental variables set before running:
m2_name (column name for the model to be compared to CMS), m2_1 and m2_2 (names
of the two model variables that form the group to be compared to CMS)
Fig4C_contScores.R script requires six environmental variables set before running:
m1_name, m1_1, m1_2 for one model, m2_name, m2_1, m2_2 for the other.
m2_name <- "PCSS"
m2_1 <- "PCSS1"
m2_2 <- "PCSS2"
source("R/Fig4C_CMSvs.R", print.eval = TRUE)
## Warning: Removed 86 rows containing non-finite values (stat_boxplot).
## Warning: Removed 86 rows containing missing values (geom_point).
RAV1575/834 are the most similar PCclsuters to PCSS1/2, respectively, based on Pearson correlation.
m2_name <- "RAV"
m2_1 <- "RAV1575"
m2_2 <- "RAV834"
source("R/Fig4C_CMSvs.R", print.eval = TRUE)
## Warning: Removed 86 rows containing non-finite values (stat_boxplot).
## Warning: Removed 86 rows containing missing values (geom_point).
RAV834/833 have the largest r-squared score when we compared the samples scores against the metadata, CMS.
m2_name <- "RAV"
m2_1 <- "RAV834"
m2_2 <- "RAV833"
source("R/Fig4C_CMSvs.R", print.eval = TRUE)
## Warning: Removed 86 rows containing non-finite values (stat_boxplot).
## Warning: Removed 86 rows containing missing values (geom_point).
m1_name <- "PCSS"
m1_1 <- "PCSS1"
m1_2 <- "PCSS2"
m2_name <- "RAV"
m2_1 <- "RAV1575"
m2_2 <- "RAV834"
source("R/Fig4C_contScores.R", print.eval = TRUE)
## Warning: Removed 86 rows containing non-finite values (stat_boxplot).
## Warning: Removed 86 rows containing missing values (geom_point).
m1_name <- "PCSS"
m1_1 <- "PCSS1"
m1_2 <- "PCSS2"
m2_name <- "RAV"
m2_1 <- "RAV834"
m2_2 <- "RAV833"
source("R/Fig4C_contScores.R", print.eval = TRUE)
## Warning: Removed 82 rows containing non-finite values (stat_boxplot).
## Warning: Removed 82 rows containing missing values (geom_point).
RAV3290 is associated with “stage” metadata of CRC datasets.
m1_name <- "PCSS"
m1_1 <- "PCSS1"
m1_2 <- "PCSS2"
m2_name <- "RAV"
m2_1 <- "RAV834"
m2_2 <- "RAV3290"
source("R/Fig4C_contScores.R", print.eval = TRUE)
## Warning: Removed 86 rows containing non-finite values (stat_boxplot).
## Warning: Removed 86 rows containing missing values (geom_point).
RAV596 is associated with “grade” metadata of CRC datasets.
m1_name <- "PCSS"
m1_1 <- "PCSS1"
m1_2 <- "PCSS2"
m2_name <- "RAV"
m2_1 <- "RAV834"
m2_2 <- "RAV596"
source("R/Fig4C_contScores.R", print.eval = TRUE)
## Warning: Removed 84 rows containing non-finite values (stat_boxplot).
## Warning: Removed 84 rows containing missing values (geom_point).
sessionInfo()
## R version 4.0.3 (2020-10-10)
## Platform: x86_64-pc-linux-gnu (64-bit)
## Running under: Ubuntu 18.04.5 LTS
##
## Matrix products: default
## BLAS: /usr/lib/x86_64-linux-gnu/openblas/libblas.so.3
## LAPACK: /usr/lib/x86_64-linux-gnu/libopenblasp-r0.2.20.so
##
## locale:
## [1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C
## [3] LC_TIME=en_US.UTF-8 LC_COLLATE=en_US.UTF-8
## [5] LC_MONETARY=en_US.UTF-8 LC_MESSAGES=en_US.UTF-8
## [7] LC_PAPER=en_US.UTF-8 LC_NAME=C
## [9] LC_ADDRESS=C LC_TELEPHONE=C
## [11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C
##
## attached base packages:
## [1] parallel stats graphics grDevices utils datasets methods
## [8] base
##
## other attached packages:
## [1] logistf_1.24 metafor_2.4-0 Matrix_1.3-0
## [4] survival_3.2-7 forcats_0.5.0 stringr_1.4.0
## [7] dplyr_1.0.2 purrr_0.3.4 readr_1.4.0
## [10] tidyr_1.1.2 tibble_3.0.4 ggplot2_3.3.2
## [13] tidyverse_1.3.0 Biobase_2.50.0 BiocGenerics_0.36.0
## [16] BiocStyle_2.18.1
##
## loaded via a namespace (and not attached):
## [1] Rcpp_1.0.5 lubridate_1.7.9.2 lattice_0.20-41
## [4] formula.tools_1.7.1 assertthat_0.2.1 digest_0.6.27
## [7] R6_2.5.0 cellranger_1.1.0 backports_1.2.1
## [10] reprex_0.3.0 evaluate_0.14 httr_1.4.2
## [13] pillar_1.4.7 rlang_0.4.9 readxl_1.3.1
## [16] rstudioapi_0.13 magick_2.5.2 rmarkdown_2.6
## [19] labeling_0.4.2 splines_4.0.3 munsell_0.5.0
## [22] broom_0.7.3 compiler_4.0.3 modelr_0.1.8
## [25] xfun_0.19 pkgconfig_2.0.3 mgcv_1.8-33
## [28] htmltools_0.5.0 tidyselect_1.1.0 bookdown_0.21
## [31] fansi_0.4.1 crayon_1.3.4 dbplyr_2.0.0
## [34] withr_2.3.0 grid_4.0.3 nlme_3.1-151
## [37] jsonlite_1.7.2 gtable_0.3.0 lifecycle_0.2.0
## [40] DBI_1.1.0 magrittr_2.0.1 scales_1.1.1
## [43] cli_2.2.0 stringi_1.5.3 farver_2.0.3
## [46] fs_1.5.0 mice_3.12.0 xml2_1.3.2
## [49] ellipsis_0.3.1 generics_0.1.0 vctrs_0.3.6
## [52] tools_4.0.3 glue_1.4.2 hms_0.5.3
## [55] yaml_2.2.1 colorspace_2.0-0 BiocManager_1.30.10
## [58] operator.tools_1.6.3 rvest_0.3.6 knitr_1.30
## [61] haven_2.3.1