La base cuenta de 2201 registros y 4 variables. Para cada pasajero se dispone de la clase en la que viajaba (1ª, 2ª, 3ª o crew), la edad (Adult o Child), el sexo (Male o Female) y si sobrevivió o no. Una vez cargados los datos se creará un modelo que permitirá analizar qué tipo de persona tenía probabilidades de sobrevivir. Se utilizará un árbol de decisión para determinar si un pasajero sobreviviría o no. ———————————————————————–

##     Class    Sex   Age Survived
## 1     3rd   Male Child       No
## 2     3rd   Male Child       No
## 3     3rd   Male Child       No
## 4     3rd   Male Child       No
## 5     3rd   Male Child       No
## 6     3rd   Male Child       No
## 7     3rd   Male Child       No
## 8     3rd   Male Child       No
## 9     3rd   Male Child       No
## 10    3rd   Male Child       No
## 11    3rd   Male Child       No
## 12    3rd   Male Child       No
## 13    3rd   Male Child       No
## 14    3rd   Male Child       No
## 15    3rd   Male Child       No
## 16    3rd   Male Child       No
## 17    3rd   Male Child       No
## 18    3rd   Male Child       No
## 19    3rd   Male Child       No
## 20    3rd   Male Child       No
## 21    3rd   Male Child       No
## 22    3rd   Male Child       No
## 23    3rd   Male Child       No
## 24    3rd   Male Child       No
## 25    3rd   Male Child       No
## 26    3rd   Male Child       No
## 27    3rd   Male Child       No
## 28    3rd   Male Child       No
## 29    3rd   Male Child       No
## 30    3rd   Male Child       No
## 31    3rd   Male Child       No
## 32    3rd   Male Child       No
## 33    3rd   Male Child       No
## 34    3rd   Male Child       No
## 35    3rd   Male Child       No
## 36    3rd Female Child       No
## 37    3rd Female Child       No
## 38    3rd Female Child       No
## 39    3rd Female Child       No
## 40    3rd Female Child       No
## 41    3rd Female Child       No
## 42    3rd Female Child       No
## 43    3rd Female Child       No
## 44    3rd Female Child       No
## 45    3rd Female Child       No
## 46    3rd Female Child       No
## 47    3rd Female Child       No
## 48    3rd Female Child       No
## 49    3rd Female Child       No
## 50    3rd Female Child       No
## 51    3rd Female Child       No
## 52    3rd Female Child       No
## 53    1st   Male Adult       No
## 54    1st   Male Adult       No
## 55    1st   Male Adult       No
## 56    1st   Male Adult       No
## 57    1st   Male Adult       No
## 58    1st   Male Adult       No
## 59    1st   Male Adult       No
## 60    1st   Male Adult       No
## 61    1st   Male Adult       No
## 62    1st   Male Adult       No
## 63    1st   Male Adult       No
## 64    1st   Male Adult       No
## 65    1st   Male Adult       No
## 66    1st   Male Adult       No
## 67    1st   Male Adult       No
## 68    1st   Male Adult       No
## 69    1st   Male Adult       No
## 70    1st   Male Adult       No
## 71    1st   Male Adult       No
## 72    1st   Male Adult       No
## 73    1st   Male Adult       No
## 74    1st   Male Adult       No
## 75    1st   Male Adult       No
## 76    1st   Male Adult       No
## 77    1st   Male Adult       No
## 78    1st   Male Adult       No
## 79    1st   Male Adult       No
## 80    1st   Male Adult       No
## 81    1st   Male Adult       No
## 82    1st   Male Adult       No
## 83    1st   Male Adult       No
## 84    1st   Male Adult       No
## 85    1st   Male Adult       No
## 86    1st   Male Adult       No
## 87    1st   Male Adult       No
## 88    1st   Male Adult       No
## 89    1st   Male Adult       No
## 90    1st   Male Adult       No
## 91    1st   Male Adult       No
## 92    1st   Male Adult       No
## 93    1st   Male Adult       No
## 94    1st   Male Adult       No
## 95    1st   Male Adult       No
## 96    1st   Male Adult       No
## 97    1st   Male Adult       No
## 98    1st   Male Adult       No
## 99    1st   Male Adult       No
## 100   1st   Male Adult       No
## 101   1st   Male Adult       No
## 102   1st   Male Adult       No
## 103   1st   Male Adult       No
## 104   1st   Male Adult       No
## 105   1st   Male Adult       No
## 106   1st   Male Adult       No
## 107   1st   Male Adult       No
## 108   1st   Male Adult       No
## 109   1st   Male Adult       No
## 110   1st   Male Adult       No
## 111   1st   Male Adult       No
## 112   1st   Male Adult       No
## 113   1st   Male Adult       No
## 114   1st   Male Adult       No
## 115   1st   Male Adult       No
## 116   1st   Male Adult       No
## 117   1st   Male Adult       No
## 118   1st   Male Adult       No
## 119   1st   Male Adult       No
## 120   1st   Male Adult       No
## 121   1st   Male Adult       No
## 122   1st   Male Adult       No
## 123   1st   Male Adult       No
## 124   1st   Male Adult       No
## 125   1st   Male Adult       No
## 126   1st   Male Adult       No
## 127   1st   Male Adult       No
## 128   1st   Male Adult       No
## 129   1st   Male Adult       No
## 130   1st   Male Adult       No
## 131   1st   Male Adult       No
## 132   1st   Male Adult       No
## 133   1st   Male Adult       No
## 134   1st   Male Adult       No
## 135   1st   Male Adult       No
## 136   1st   Male Adult       No
## 137   1st   Male Adult       No
## 138   1st   Male Adult       No
## 139   1st   Male Adult       No
## 140   1st   Male Adult       No
## 141   1st   Male Adult       No
## 142   1st   Male Adult       No
## 143   1st   Male Adult       No
## 144   1st   Male Adult       No
## 145   1st   Male Adult       No
## 146   1st   Male Adult       No
## 147   1st   Male Adult       No
## 148   1st   Male Adult       No
## 149   1st   Male Adult       No
## 150   1st   Male Adult       No
## 151   1st   Male Adult       No
## 152   1st   Male Adult       No
## 153   1st   Male Adult       No
## 154   1st   Male Adult       No
## 155   1st   Male Adult       No
## 156   1st   Male Adult       No
## 157   1st   Male Adult       No
## 158   1st   Male Adult       No
## 159   1st   Male Adult       No
## 160   1st   Male Adult       No
## 161   1st   Male Adult       No
## 162   1st   Male Adult       No
## 163   1st   Male Adult       No
## 164   1st   Male Adult       No
## 165   1st   Male Adult       No
## 166   1st   Male Adult       No
## 167   1st   Male Adult       No
## 168   1st   Male Adult       No
## 169   1st   Male Adult       No
## 170   1st   Male Adult       No
## 171   2nd   Male Adult       No
## 172   2nd   Male Adult       No
## 173   2nd   Male Adult       No
## 174   2nd   Male Adult       No
## 175   2nd   Male Adult       No
## 176   2nd   Male Adult       No
## 177   2nd   Male Adult       No
## 178   2nd   Male Adult       No
## 179   2nd   Male Adult       No
## 180   2nd   Male Adult       No
## 181   2nd   Male Adult       No
## 182   2nd   Male Adult       No
## 183   2nd   Male Adult       No
## 184   2nd   Male Adult       No
## 185   2nd   Male Adult       No
## 186   2nd   Male Adult       No
## 187   2nd   Male Adult       No
## 188   2nd   Male Adult       No
## 189   2nd   Male Adult       No
## 190   2nd   Male Adult       No
## 191   2nd   Male Adult       No
## 192   2nd   Male Adult       No
## 193   2nd   Male Adult       No
## 194   2nd   Male Adult       No
## 195   2nd   Male Adult       No
## 196   2nd   Male Adult       No
## 197   2nd   Male Adult       No
## 198   2nd   Male Adult       No
## 199   2nd   Male Adult       No
## 200   2nd   Male Adult       No
## 201   2nd   Male Adult       No
## 202   2nd   Male Adult       No
## 203   2nd   Male Adult       No
## 204   2nd   Male Adult       No
## 205   2nd   Male Adult       No
## 206   2nd   Male Adult       No
## 207   2nd   Male Adult       No
## 208   2nd   Male Adult       No
## 209   2nd   Male Adult       No
## 210   2nd   Male Adult       No
## 211   2nd   Male Adult       No
## 212   2nd   Male Adult       No
## 213   2nd   Male Adult       No
## 214   2nd   Male Adult       No
## 215   2nd   Male Adult       No
## 216   2nd   Male Adult       No
## 217   2nd   Male Adult       No
## 218   2nd   Male Adult       No
## 219   2nd   Male Adult       No
## 220   2nd   Male Adult       No
## 221   2nd   Male Adult       No
## 222   2nd   Male Adult       No
## 223   2nd   Male Adult       No
## 224   2nd   Male Adult       No
## 225   2nd   Male Adult       No
## 226   2nd   Male Adult       No
## 227   2nd   Male Adult       No
## 228   2nd   Male Adult       No
## 229   2nd   Male Adult       No
## 230   2nd   Male Adult       No
## 231   2nd   Male Adult       No
## 232   2nd   Male Adult       No
## 233   2nd   Male Adult       No
## 234   2nd   Male Adult       No
## 235   2nd   Male Adult       No
## 236   2nd   Male Adult       No
## 237   2nd   Male Adult       No
## 238   2nd   Male Adult       No
## 239   2nd   Male Adult       No
## 240   2nd   Male Adult       No
## 241   2nd   Male Adult       No
## 242   2nd   Male Adult       No
## 243   2nd   Male Adult       No
## 244   2nd   Male Adult       No
## 245   2nd   Male Adult       No
## 246   2nd   Male Adult       No
## 247   2nd   Male Adult       No
## 248   2nd   Male Adult       No
## 249   2nd   Male Adult       No
## 250   2nd   Male Adult       No
## [1] 2201    4
## 'data.frame':    2201 obs. of  4 variables:
##  $ Class   : Factor w/ 4 levels "1st","2nd","3rd",..: 3 3 3 3 3 3 3 3 3 3 ...
##  $ Sex     : Factor w/ 2 levels "Female","Male": 2 2 2 2 2 2 2 2 2 2 ...
##  $ Age     : Factor w/ 2 levels "Adult","Child": 2 2 2 2 2 2 2 2 2 2 ...
##  $ Survived: Factor w/ 2 levels "No","Yes": 1 1 1 1 1 1 1 1 1 1 ...
## [1] "Class"    "Sex"      "Age"      "Survived"

Frecuencia de los sobrevivientes

## 
##       No      Yes 
## 0.676965 0.323035

Gráficos de Supervivencia

## Warning: Use of `tic$Class` is discouraged. Use `Class` instead.
## Warning: Use of `tic$Survived` is discouraged. Use `Survived` instead.

## Warning: Use of `tic$Age` is discouraged. Use `Age` instead.
## Warning: Use of `tic$Survived` is discouraged. Use `Survived` instead.

## Warning: Use of `tic$Sex` is discouraged. Use `Sex` instead.
## Warning: Use of `tic$Survived` is discouraged. Use `Survived` instead.

Para que un modelo predictivo sea útil, debe de tener un porcentaje de acierto superior a lo esperado por azar o a un determinado nivel basal. En problemas de clasificación, el nivel basal es el que se obtiene si se asignan todas las observaciones a la clase mayoritaria (la moda). En el naufragio del Titanic, dado que el 68 por ciento de los pasajeros fallecieron, si siempre se predice Survived = No, el porcentaje de aciertos será aproximadamente del 68 por ciento. Este es el porcentaje mínimo que hay que intentar superar con los modelos predictivos. (Siendo estrictos, este porcentaje tendrá que ser recalculado únicamente con el conjunto de entrenamiento).

##      Class    Sex   Age Survived
## 1559   1st   Male Adult      Yes
## 1920   1st Female Adult      Yes
## 687    3rd   Male Adult       No
## 353    3rd   Male Adult       No
## 1724  Crew   Male Adult      Yes
## 1413   3rd Female Adult       No
## 554    3rd   Male Adult       No
## 844   Crew   Male Adult       No
## 2193  Crew Female Adult      Yes
## 1015  Crew   Male Adult       No
## 2143   3rd Female Adult      Yes
## 1443   3rd Female Adult       No
## 984   Crew   Male Adult       No
## 1876  Crew   Male Adult      Yes
## 21     3rd   Male Child       No
## 1477   3rd Female Adult       No
## 323    2nd   Male Adult       No
## 578    3rd   Male Adult       No
## 1922   1st Female Adult      Yes
## 1557   1st   Male Adult      Yes
## [1] 2201    4
## [1] 1453    4
##      Class    Sex   Age Survived
## 1559   1st   Male Adult      Yes
## 1920   1st Female Adult      Yes
## 687    3rd   Male Adult       No
## 353    3rd   Male Adult       No
## 1724  Crew   Male Adult      Yes
## 1413   3rd Female Adult       No
## 554    3rd   Male Adult       No
## 844   Crew   Male Adult       No
## 2193  Crew Female Adult      Yes
## 1015  Crew   Male Adult       No
## 2143   3rd Female Adult      Yes
## 1443   3rd Female Adult       No
## 984   Crew   Male Adult       No
## 1876  Crew   Male Adult      Yes
## 21     3rd   Male Child       No
## 1477   3rd Female Adult       No
## 323    2nd   Male Adult       No
## 578    3rd   Male Adult       No
## 1922   1st Female Adult      Yes
## 1557   1st   Male Adult      Yes
## [1] 748   4
##      Class    Sex   Age Survived
## 940   Crew   Male Adult       No
## 1816  Crew   Male Adult      Yes
## 997   Crew   Male Adult       No
## 1313  Crew   Male Adult       No
## 831   Crew   Male Adult       No
## 1935   1st Female Adult      Yes
## 356    3rd   Male Adult       No
## 620    3rd   Male Adult       No
## 700    3rd   Male Adult       No
## 707    3rd   Male Adult       No
## 1722  Crew   Male Adult      Yes
## 1317  Crew   Male Adult       No
## 1169  Crew   Male Adult       No
## 2201  Crew Female Adult      Yes
## 1905   1st Female Adult      Yes
## 2139   3rd Female Adult      Yes
## 1416   3rd Female Adult       No
## 62     1st   Male Adult       No
## 1906   1st Female Adult      Yes
## 1157  Crew   Male Adult       No
##      Class    Sex   Age Survived
## 1559   1st   Male Adult      Yes
## 1920   1st Female Adult      Yes
## 687    3rd   Male Adult       No
## 353    3rd   Male Adult       No
## 1724  Crew   Male Adult      Yes
##      Class    Sex   Age
## 1559   1st   Male Adult
## 1920   1st Female Adult
## 687    3rd   Male Adult
## 353    3rd   Male Adult
## 1724  Crew   Male Adult
## [1] Yes Yes No  No  Yes
## Levels: No Yes
## 
## Call:
## C5.0.default(x = entrena[, -4], y = entrena[, 4])
## 
## 
## C5.0 [Release 2.07 GPL Edition]      Tue Jan 05 16:05:40 2021
## -------------------------------
## 
## Class specified by attribute `outcome'
## 
## Read 1453 cases (4 attributes) from undefined.data
## 
## Decision tree:
## 
## Sex = Male: No (1130/236)
## Sex = Female:
## :...Class in {1st,2nd,Crew}: Yes (183/15)
##     Class = 3rd: No (140/61)
## 
## 
## Evaluation on training data (1453 cases):
## 
##      Decision Tree   
##    ----------------  
##    Size      Errors  
## 
##       3  312(21.5%)   <<
## 
## 
##     (a)   (b)    <-classified as
##    ----  ----
##     973    15    (a): class No
##     297   168    (b): class Yes
## 
## 
##  Attribute usage:
## 
##  100.00% Sex
##   22.23% Class
## 
## 
## Time: 0.0 secs

## Arbol de Decision

Arbol de Clasificación

## Call:
## rpart(formula = Survived ~ ., data = entrena)
##   n= 1453 
## 
##           CP nsplit rel error    xerror       xstd
## 1 0.29032258      0 1.0000000 1.0000000 0.03824011
## 2 0.03870968      1 0.7096774 0.7096774 0.03434481
## 3 0.01290323      2 0.6709677 0.6709677 0.03366157
## 4 0.01000000      4 0.6451613 0.6580645 0.03342386
## 
## Variable importance
##   Sex Class   Age 
##    69    25     5 
## 
## Node number 1: 1453 observations,    complexity param=0.2903226
##   predicted class=No   expected loss=0.3200275  P(node) =1
##     class counts:   988   465
##    probabilities: 0.680 0.320 
##   left son=2 (1130 obs) right son=3 (323 obs)
##   Primary splits:
##       Sex   splits as  RL,   improve=125.663500, (0 missing)
##       Class splits as  RRLL, improve= 42.427350, (0 missing)
##       Age   splits as  LR,   improve=  7.339061, (0 missing)
## 
## Node number 2: 1130 observations,    complexity param=0.01290323
##   predicted class=No   expected loss=0.2088496  P(node) =0.7777013
##     class counts:   894   236
##    probabilities: 0.791 0.209 
##   left son=4 (1087 obs) right son=5 (43 obs)
##   Primary splits:
##       Age   splits as  LR,   improve=6.985235, (0 missing)
##       Class splits as  RLLR, improve=5.865266, (0 missing)
## 
## Node number 3: 323 observations,    complexity param=0.03870968
##   predicted class=Yes  expected loss=0.2910217  P(node) =0.2222987
##     class counts:    94   229
##    probabilities: 0.291 0.709 
##   left son=6 (140 obs) right son=7 (183 obs)
##   Primary splits:
##       Class splits as  RRLR, improve=36.904080, (0 missing)
##       Age   splits as  RL,   improve= 1.107995, (0 missing)
##   Surrogate splits:
##       Age splits as  RL, agree=0.598, adj=0.071, (0 split)
## 
## Node number 4: 1087 observations
##   predicted class=No   expected loss=0.1977921  P(node) =0.7481074
##     class counts:   872   215
##    probabilities: 0.802 0.198 
## 
## Node number 5: 43 observations,    complexity param=0.01290323
##   predicted class=No   expected loss=0.4883721  P(node) =0.02959394
##     class counts:    22    21
##    probabilities: 0.512 0.488 
##   left son=10 (31 obs) right son=11 (12 obs)
##   Primary splits:
##       Class splits as  RRL-, improve=8.714179, (0 missing)
## 
## Node number 6: 140 observations
##   predicted class=No   expected loss=0.4357143  P(node) =0.09635237
##     class counts:    79    61
##    probabilities: 0.564 0.436 
## 
## Node number 7: 183 observations
##   predicted class=Yes  expected loss=0.08196721  P(node) =0.1259463
##     class counts:    15   168
##    probabilities: 0.082 0.918 
## 
## Node number 10: 31 observations
##   predicted class=No   expected loss=0.2903226  P(node) =0.02133517
##     class counts:    22     9
##    probabilities: 0.710 0.290 
## 
## Node number 11: 12 observations
##   predicted class=Yes  expected loss=0  P(node) =0.008258775
##     class counts:     0    12
##    probabilities: 0.000 1.000

Predicción

##   [1] No  No  No  No  No  Yes No  No  No  No  No  No  No  Yes Yes No  No  No 
##  [19] Yes No  No  No  No  No  No  No  No  No  No  No  No  No  No  No  No  No 
##  [37] No  No  No  No  No  Yes No  No  No  No  No  No  No  No  No  No  No  No 
##  [55] No  Yes No  No  No  No  No  No  No  No  No  No  Yes No  Yes No  No  No 
##  [73] No  Yes No  Yes No  No  No  No  No  No  No  Yes No  Yes No  No  No  No 
##  [91] No  No  Yes No  No  No  No  No  No  No  No  Yes No  No  No  No  No  No 
## [109] No  No  No  No  No  No  No  No  No  No  No  No  No  No  No  No  No  No 
## [127] No  No  No  No  No  No  No  No  No  No  No  No  No  No  No  No  Yes No 
## [145] No  No  No  Yes No  No  No  No  No  No  No  No  No  No  Yes No  No  No 
## [163] No  No  No  No  No  Yes No  No  No  No  No  No  No  No  No  No  No  No 
## [181] No  No  Yes No  No  No  Yes Yes No  No  No  No  Yes No  Yes Yes No  No 
## [199] No  No  No  No  No  No  No  No  No  No  No  No  No  No  No  No  No  No 
## [217] No  No  No  No  Yes No  No  No  Yes No  No  No  No  No  No  No  No  No 
## [235] No  No  Yes No  No  No  Yes No  No  No  No  No  No  No  No  No  No  No 
## [253] No  No  Yes No  Yes No  No  No  No  No  No  No  No  No  No  Yes No  No 
## [271] No  No  No  No  No  No  No  No  No  No  No  No  No  Yes No  No  No  No 
## [289] No  No  No  No  No  No  Yes Yes Yes Yes No  Yes No  No  No  No  No  No 
## [307] No  No  No  No  No  No  No  No  No  No  Yes Yes No  No  No  No  Yes No 
## [325] Yes Yes No  No  No  No  No  No  No  No  Yes No  No  No  No  No  No  Yes
## [343] No  No  No  No  No  No  No  Yes Yes Yes No  No  Yes Yes Yes No  No  No 
## [361] No  Yes Yes No  No  No  No  No  No  No  Yes No  No  No  Yes No  No  No 
## [379] No  No  No  No  Yes No  No  No  No  No  No  No  No  No  No  No  No  No 
## [397] No  Yes No  Yes No  No  No  No  No  No  No  No  No  No  No  No  No  No 
## [415] No  No  No  Yes No  No  No  No  No  No  Yes No  No  No  No  No  No  No 
## [433] Yes No  No  No  No  Yes No  No  No  No  No  No  Yes No  No  No  No  No 
## [451] No  Yes No  No  Yes No  No  No  No  No  No  No  No  No  No  No  Yes No 
## [469] No  No  No  No  No  Yes No  No  No  No  No  No  No  No  No  No  No  Yes
## [487] No  No  No  No  No  No  No  No  No  No  No  No  No  No  No  Yes No  No 
## [505] No  No  No  No  No  No  No  Yes No  Yes No  No  No  No  Yes No  No  No 
## [523] No  No  No  No  No  No  No  No  No  Yes No  No  No  No  No  No  No  No 
## [541] No  Yes No  No  No  No  No  No  No  No  No  No  Yes No  No  No  No  No 
## [559] No  No  No  No  No  No  No  No  No  No  No  No  No  No  Yes No  No  No 
## [577] No  No  No  No  No  No  No  No  No  No  No  No  Yes Yes No  No  No  No 
## [595] No  No  No  No  No  No  Yes No  Yes No  No  No  No  No  No  Yes No  No 
## [613] No  No  Yes No  No  No  No  No  No  No  No  No  No  No  No  No  No  No 
## [631] No  No  Yes No  No  No  No  No  No  No  No  Yes No  No  No  No  No  No 
## [649] No  No  No  Yes No  No  No  No  No  No  No  No  No  No  No  No  No  No 
## [667] No  No  No  No  No  No  No  No  No  No  No  No  No  No  No  No  No  No 
## [685] No  No  No  No  No  No  No  No  No  Yes No  No  No  No  No  No  No  No 
## [703] No  No  No  No  No  No  No  No  No  No  No  No  No  No  No  No  Yes Yes
## [721] No  No  No  No  No  No  Yes Yes No  No  No  No  No  No  No  No  No  No 
## [739] No  No  No  No  No  No  No  No  Yes Yes
## Levels: No Yes
## 
##  
##    Cell Contents
## |-------------------------|
## |                       N |
## |         N / Table Total |
## |-------------------------|
## 
##  
## Total Observations in Table:  748 
## 
##  
##                | Predicción 
## Resultado real |        No |       Yes | Row Total | 
## ---------------|-----------|-----------|-----------|
##             No |       497 |         5 |       502 | 
##                |     0.664 |     0.007 |           | 
## ---------------|-----------|-----------|-----------|
##            Yes |       160 |        86 |       246 | 
##                |     0.214 |     0.115 |           | 
## ---------------|-----------|-----------|-----------|
##   Column Total |       657 |        91 |       748 | 
## ---------------|-----------|-----------|-----------|
## 
## 
## [1] 0.7794118

Análisis en paralelo

## Warning: package 'party' was built under R version 4.0.3
## Warning: package 'modeltools' was built under R version 4.0.3
## Warning: package 'strucchange' was built under R version 4.0.3
## Warning: package 'sandwich' was built under R version 4.0.3

##      
##        No Yes
##   No  997 330
##   Yes  11 175
##         
## testPred  No Yes
##      No  473 127
##      Yes   9  79

Random Forest

## randomForest 4.6-14
## Type rfNews() to see new features/changes/bug fixes.
## 
## Attaching package: 'randomForest'
## The following object is masked from 'package:ggplot2':
## 
##     margin
##      
##        No Yes
##   No  922 256
##   Yes  75 240
## $names
##  [1] "call"            "type"            "predicted"       "err.rate"       
##  [5] "confusion"       "votes"           "oob.times"       "classes"        
##  [9] "importance"      "importanceSD"    "localImportance" "proximity"      
## [13] "ntree"           "mtry"            "forest"          "y"              
## [17] "test"            "inbag"           "terms"          
## 
## $class
## [1] "randomForest.formula" "randomForest"

##       MeanDecreaseGini
## Class        32.275564
## Sex         118.927334
## Age           4.522967