Summary
This document contains staggered regressions (OLS) on arrest-release. We include the following variables in this regression:
- Xg-Boost risk predictor
- Arrest and demographic covariates p-hat
- Mugshot CNN p-hat
Note that the new Xg-Boost risk predictor is based on the time-varying historical arrest data. I see an increase in AUC from 0.601 to 0.63 by including these.
My main takeaway from these regressions is:
- The risk predictor coefficient has the expected directionality
- All coefficients appear significant at the 5% level
- We are able to pick up additional variance with the inclusion of covariates and cnn-predictions
- The adjusted R-squared increases in all model witht he inclusion of p-hat-cnn and the coefficients are positive and significant
Multihead 0.3 - ResNet50 - (not) Overfit
Multihead(ResNet50)
|
|
|
|
Dependent variable:
|
|
|
|
|
|
Release Outcome
|
|
|
(1)
|
(2)
|
(3)
|
|
|
|
risk_pred_prob
|
-1.112***
|
-0.787***
|
-0.713***
|
|
|
(-1.216, -1.008)
|
(-0.889, -0.686)
|
(-0.815, -0.612)
|
|
|
|
|
|
|
p_hat_covariates
|
|
1.084***
|
1.010***
|
|
|
|
(1.023, 1.146)
|
(0.947, 1.073)
|
|
|
|
|
|
|
p_hat_cnn
|
|
|
0.378***
|
|
|
|
|
(0.313, 0.443)
|
|
|
|
|
|
|
Constant
|
1.105***
|
0.151***
|
-0.095**
|
|
|
(1.072, 1.138)
|
(0.088, 0.214)
|
(-0.171, -0.020)
|
|
|
|
|
|
|
|
|
Observations
|
8,835
|
8,835
|
8,835
|
|
Adjusted R2
|
0.034
|
0.116
|
0.125
|
|
F Statistic
|
307.362*** (df = 1; 8833)
|
583.222*** (df = 2; 8832)
|
423.407*** (df = 3; 8831)
|
|
|
|
Note:
|
p<0.1; p<0.05; p<0.01
|
Decile Plots
Here I provide two types of plots for each of p_hat_cnn , p_hat_covariate, and risk_pred_prob:
- Decile Plot A - The max value in a decile vs. the mean arrest outcome in that decile
- Decile Plot B - The mean arrest outcome at each decile index
Decile Plot 1 - p_hat_cnn


Decile Plot 2 - p_hat_covariate


Decile Plot 3 - risk_pred_prob


MTurk Features
We now include MTurk results in our covariates. These are collected for some (not all) of the validation set, reaching 7318 arrest_ids. The included features are:
- Attractiveness
- Competence
- Dominance
- Trustworthiness
- Age
- Race (Black, White, Hispanic, Asian, Indian, Unsure/Other)
- Skin-color (18 variants)
Multihead 0.3 - ResNet50 - (not) Overfit
Table _01 - Model 03
- The
p_hat_features model includes 18 skin-tone variants (not super-categorized as in regression table No.2)
p_hat_cnn is significant throughout !
- These effects are robust to the inclusion/exclusion of
race in the covariate model on top of the skin_color levels
- Quite confident that in this sense we are picking up signal on-top of the information gained through knowing race/skin_color !
Multihead(ResNet50)
|
|
|
|
Dependent variable:
|
|
|
|
|
|
Release Outcome
|
|
|
(1)
|
(2)
|
(3)
|
(4)
|
|
|
|
risk_pred_prob
|
-1.074***
|
-1.053***
|
-0.716***
|
-0.654***
|
|
|
(-1.188, -0.960)
|
(-1.167, -0.938)
|
(-0.828, -0.604)
|
(-0.766, -0.543)
|
|
|
|
|
|
|
|
p_hat_features
|
|
0.773***
|
0.543***
|
0.362*
|
|
|
|
(0.447, 1.099)
|
(0.230, 0.856)
|
(0.048, 0.675)
|
|
|
|
|
|
|
|
p_hat_covariates
|
|
|
1.070***
|
0.989***
|
|
|
|
|
(1.000, 1.139)
|
(0.919, 1.060)
|
|
|
|
|
|
|
|
p_hat_cnn
|
|
|
|
0.387***
|
|
|
|
|
|
(0.316, 0.458)
|
|
|
|
|
|
|
|
Constant
|
1.095***
|
0.498***
|
-0.273*
|
-0.379**
|
|
|
(1.059, 1.131)
|
(0.243, 0.752)
|
(-0.522, -0.023)
|
(-0.627, -0.130)
|
|
|
|
|
|
|
|
|
|
Observations
|
7,318
|
7,318
|
7,318
|
7,318
|
|
Adjusted R2
|
0.032
|
0.033
|
0.111
|
0.121
|
|
F Statistic
|
239.132*** (df = 1; 7316)
|
127.396*** (df = 2; 7315)
|
307.049*** (df = 3; 7314)
|
252.805*** (df = 4; 7313)
|
|
|
|
Note:
|
p<0.1; p<0.05; p<0.01
|
Table _02 - Model 03
covariates_lm excludes race (so as to allow the skin_tone to account for all race signal in this test)
- The results (
p_hat_cnn being significant) are robust to the inclusion of race, though the skin_tone_cat_light become insignificant
skin_tone_(category) is a factor variable which encodes the 18 raw hexidecimal color variants (included in Table _01) into three categories comprised of 6 such variants into one of light, medium, and dark skin categories respectively.
Multihead(ResNet50)
|
|
|
|
Dependent variable:
|
|
|
|
|
|
Release Outcome
|
|
|
(1)
|
(2)
|
(3)
|
(4)
|
|
|
|
risk_pred_prob
|
-1.074***
|
-1.068***
|
-0.733***
|
-0.672***
|
|
|
(-1.188, -0.960)
|
(-1.183, -0.953)
|
(-0.846, -0.621)
|
(-0.784, -0.559)
|
|
|
|
|
|
|
|
skin_tone_cat_light_skin
|
|
-0.004
|
-0.015
|
-0.019*
|
|
|
|
(-0.022, 0.015)
|
(-0.033, 0.002)
|
(-0.037, -0.002)
|
|
|
|
|
|
|
|
skin_tone_cat_medium_skin
|
|
0.004
|
-0.004
|
-0.008
|
|
|
|
(-0.018, 0.026)
|
(-0.025, 0.017)
|
(-0.029, 0.014)
|
|
|
|
|
|
|
|
age
|
|
-0.0005
|
0.0002
|
0.001
|
|
|
|
(-0.002, 0.001)
|
(-0.001, 0.001)
|
(-0.0001, 0.002)
|
|
|
|
|
|
|
|
attractiveness
|
|
-0.003
|
0.00001
|
0.0004
|
|
|
|
(-0.013, 0.008)
|
(-0.010, 0.010)
|
(-0.010, 0.011)
|
|
|
|
|
|
|
|
competence
|
|
0.003
|
-0.002
|
-0.002
|
|
|
|
(-0.010, 0.015)
|
(-0.014, 0.010)
|
(-0.014, 0.009)
|
|
|
|
|
|
|
|
dominance
|
|
-0.002
|
0.003
|
0.005
|
|
|
|
(-0.011, 0.007)
|
(-0.005, 0.012)
|
(-0.003, 0.014)
|
|
|
|
|
|
|
|
trustworthiness
|
|
0.004
|
0.004
|
0.001
|
|
|
|
(-0.007, 0.015)
|
(-0.007, 0.014)
|
(-0.009, 0.012)
|
|
|
|
|
|
|
|
p_hat_covariates
|
|
|
1.080***
|
0.997***
|
|
|
|
|
(1.010, 1.149)
|
(0.926, 1.067)
|
|
|
|
|
|
|
|
p_hat_cnn
|
|
|
|
0.409***
|
|
|
|
|
|
(0.338, 0.481)
|
|
|
|
|
|
|
|
Constant
|
1.095***
|
1.100***
|
0.111**
|
-0.168***
|
|
|
(1.059, 1.131)
|
(1.030, 1.170)
|
(0.019, 0.204)
|
(-0.272, -0.064)
|
|
|
|
|
|
|
|
|
|
Observations
|
7,318
|
7,318
|
7,318
|
7,318
|
|
Adjusted R2
|
0.032
|
0.031
|
0.110
|
0.121
|
|
F Statistic
|
239.132*** (df = 1; 7316)
|
30.083*** (df = 8; 7309)
|
101.669*** (df = 9; 7308)
|
101.451*** (df = 10; 7307)
|
|
|
|
Note:
|
p<0.1; p<0.05; p<0.01
|
Table _03 - Model 03
Here we include the 18 raw skin-tone levels.
Multihead(ResNet50)
|
|
|
|
Dependent variable:
|
|
|
|
|
|
Release Outcome
|
|
|
(1)
|
(2)
|
(3)
|
(4)
|
(5)
|
|
|
|
risk_pred_prob
|
-1.074***
|
-1.077***
|
-1.072***
|
-0.742***
|
-0.682***
|
|
|
(-1.188, -0.960)
|
(-1.192, -0.962)
|
(-1.187, -0.956)
|
(-0.855, -0.629)
|
(-0.794, -0.569)
|
|
|
|
|
|
|
|
|
skin_tonenumber_f7ddc4
|
|
0.006
|
0.006
|
-0.021
|
-0.037
|
|
|
|
(-0.033, 0.045)
|
(-0.034, 0.045)
|
(-0.059, 0.017)
|
(-0.075, 0.001)
|
|
|
|
|
|
|
|
|
age
|
|
|
-0.0004
|
0.0003
|
0.001*
|
|
|
|
|
(-0.002, 0.001)
|
(-0.001, 0.001)
|
(0.00002, 0.002)
|
|
|
|
|
|
|
|
|
attractiveness
|
|
|
-0.002
|
0.002
|
0.002
|
|
|
|
|
(-0.013, 0.009)
|
(-0.009, 0.012)
|
(-0.008, 0.013)
|
|
|
|
|
|
|
|
|
competence
|
|
|
0.002
|
-0.002
|
-0.003
|
|
|
|
|
(-0.010, 0.015)
|
(-0.014, 0.010)
|
(-0.015, 0.009)
|
|
|
|
|
|
|
|
|
dominance
|
|
|
-0.002
|
0.003
|
0.005
|
|
|
|
|
(-0.011, 0.007)
|
(-0.006, 0.011)
|
(-0.004, 0.013)
|
|
|
|
|
|
|
|
|
trustworthiness
|
|
|
0.004
|
0.004
|
0.001
|
|
|
|
|
(-0.007, 0.015)
|
(-0.007, 0.014)
|
(-0.010, 0.012)
|
|
|
|
|
|
|
|
|
p_hat_covariates
|
|
|
|
1.085***
|
1.003***
|
|
|
|
|
|
(1.015, 1.155)
|
(0.932, 1.074)
|
|
|
|
|
|
|
|
|
p_hat_cnn
|
|
|
|
|
0.415***
|
|
|
|
|
|
|
(0.343, 0.487)
|
|
|
|
|
|
|
|
|
Constant
|
1.095***
|
1.091***
|
1.095***
|
0.109*
|
-0.171***
|
|
|
(1.059, 1.131)
|
(1.043, 1.139)
|
(1.018, 1.171)
|
(0.012, 0.205)
|
(-0.279, -0.063)
|
|
|
|
|
|
|
|
|
|
|
Observations
|
7,318
|
7,318
|
7,318
|
7,318
|
7,318
|
|
Adjusted R2
|
0.032
|
0.032
|
0.031
|
0.111
|
0.122
|
|
F Statistic
|
239.132*** (df = 1; 7316)
|
14.271*** (df = 18; 7299)
|
11.215*** (df = 23; 7294)
|
39.038*** (df = 24; 7293)
|
41.532*** (df = 25; 7292)
|
|
|
|
Note:
|
p<0.1; p<0.05; p<0.01
|
Table _04 - Model 03 - Male vs. Female
We now split the regression model into male and female.
- The
p_hat_cnn coefficient is significant and larger than the combined model for both
- The Female
p_hat_cnn is surprisingly large
- The
dominance feature for the female population becomes signficant (which is fascinating !!!)
Table _04 - Male
Multihead(ResNet50)
|
|
|
|
Dependent variable:
|
|
|
|
|
|
Release Outcome
|
|
|
(1)
|
(2)
|
(3)
|
(4)
|
(5)
|
|
|
|
risk_pred_prob
|
-0.997***
|
-1.002***
|
-1.003***
|
-0.754***
|
-0.718***
|
|
|
(-1.125, -0.869)
|
(-1.132, -0.873)
|
(-1.133, -0.874)
|
(-0.879, -0.628)
|
(-0.843, -0.593)
|
|
|
|
|
|
|
|
|
skin_tonenumber_f7ddc4
|
|
-0.004
|
-0.003
|
-0.021
|
-0.046*
|
|
|
|
(-0.049, 0.042)
|
(-0.049, 0.043)
|
(-0.066, 0.023)
|
(-0.090, -0.002)
|
|
|
|
|
|
|
|
|
age
|
|
|
0.0005
|
0.001
|
0.002**
|
|
|
|
|
(-0.001, 0.002)
|
(-0.0002, 0.002)
|
(0.0005, 0.003)
|
|
|
|
|
|
|
|
|
attractiveness
|
|
|
-0.005
|
0.0004
|
0.002
|
|
|
|
|
(-0.018, 0.008)
|
(-0.012, 0.013)
|
(-0.010, 0.014)
|
|
|
|
|
|
|
|
|
competence
|
|
|
0.004
|
0.0003
|
-0.00000
|
|
|
|
|
(-0.011, 0.019)
|
(-0.014, 0.014)
|
(-0.014, 0.014)
|
|
|
|
|
|
|
|
|
dominance
|
|
|
-0.001
|
-0.003
|
-0.004
|
|
|
|
|
(-0.012, 0.009)
|
(-0.013, 0.007)
|
(-0.014, 0.006)
|
|
|
|
|
|
|
|
|
trustworthiness
|
|
|
0.001
|
0.003
|
0.001
|
|
|
|
|
(-0.013, 0.014)
|
(-0.010, 0.015)
|
(-0.011, 0.014)
|
|
|
|
|
|
|
|
|
p_hat_covariates
|
|
|
|
1.071***
|
1.024***
|
|
|
|
|
|
(0.991, 1.151)
|
(0.944, 1.104)
|
|
|
|
|
|
|
|
|
p_hat_cnn
|
|
|
|
|
0.483***
|
|
|
|
|
|
|
(0.395, 0.571)
|
|
|
|
|
|
|
|
|
Constant
|
1.055***
|
1.064***
|
1.053***
|
0.133**
|
-0.199***
|
|
|
(1.014, 1.096)
|
(1.010, 1.118)
|
(0.964, 1.142)
|
(0.024, 0.243)
|
(-0.324, -0.075)
|
|
|
|
|
|
|
|
|
|
|
Observations
|
5,725
|
5,725
|
5,725
|
5,725
|
5,725
|
|
Adjusted R2
|
0.028
|
0.028
|
0.027
|
0.104
|
0.116
|
|
F Statistic
|
164.322*** (df = 1; 5723)
|
10.197*** (df = 18; 5706)
|
8.033*** (df = 23; 5701)
|
28.633*** (df = 24; 5700)
|
31.147*** (df = 25; 5699)
|
|
|
|
Note:
|
p<0.1; p<0.05; p<0.01
|
Table _04 - Female
Multihead(ResNet50)
|
|
|
|
Dependent variable:
|
|
|
|
|
|
Release Outcome
|
|
|
(1)
|
(2)
|
(3)
|
(4)
|
(5)
|
|
|
|
risk_pred_prob
|
-0.996***
|
-0.987***
|
-0.963***
|
-0.705***
|
-0.644***
|
|
|
(-1.280, -0.712)
|
(-1.272, -0.701)
|
(-1.250, -0.677)
|
(-0.985, -0.425)
|
(-0.922, -0.366)
|
|
|
|
|
|
|
|
|
skin_tonenumber_f7ddc4
|
|
0.018
|
0.017
|
0.008
|
0.038
|
|
|
|
(-0.065, 0.100)
|
(-0.066, 0.100)
|
(-0.073, 0.088)
|
(-0.042, 0.118)
|
|
|
|
|
|
|
|
|
age
|
|
|
-0.002*
|
-0.001
|
-0.0004
|
|
|
|
|
(-0.005, -0.00004)
|
(-0.003, 0.001)
|
(-0.003, 0.002)
|
|
|
|
|
|
|
|
|
attractiveness
|
|
|
0.007
|
0.008
|
0.007
|
|
|
|
|
(-0.013, 0.027)
|
(-0.011, 0.027)
|
(-0.012, 0.025)
|
|
|
|
|
|
|
|
|
competence
|
|
|
-0.009
|
-0.011
|
-0.013
|
|
|
|
|
(-0.032, 0.014)
|
(-0.033, 0.011)
|
(-0.035, 0.009)
|
|
|
|
|
|
|
|
|
dominance
|
|
|
0.018*
|
0.016*
|
0.016*
|
|
|
|
|
(0.002, 0.035)
|
(0.0002, 0.032)
|
(0.001, 0.032)
|
|
|
|
|
|
|
|
|
trustworthiness
|
|
|
0.004
|
0.004
|
0.002
|
|
|
|
|
(-0.016, 0.025)
|
(-0.015, 0.024)
|
(-0.018, 0.021)
|
|
|
|
|
|
|
|
|
p_hat_covariates
|
|
|
|
0.892***
|
0.880***
|
|
|
|
|
|
(0.753, 1.031)
|
(0.742, 1.018)
|
|
|
|
|
|
|
|
|
p_hat_cnn
|
|
|
|
|
0.553***
|
|
|
|
|
|
|
(0.381, 0.724)
|
|
|
|
|
|
|
|
|
Constant
|
1.131***
|
1.084***
|
1.059***
|
0.261**
|
-0.211
|
|
|
(1.048, 1.213)
|
(0.977, 1.190)
|
(0.906, 1.211)
|
(0.068, 0.454)
|
(-0.452, 0.030)
|
|
|
|
|
|
|
|
|
|
|
Observations
|
1,593
|
1,593
|
1,593
|
1,593
|
1,593
|
|
Adjusted R2
|
0.020
|
0.022
|
0.026
|
0.089
|
0.105
|
|
F Statistic
|
33.263*** (df = 1; 1591)
|
3.024*** (df = 18; 1574)
|
2.819*** (df = 23; 1569)
|
7.518*** (df = 24; 1568)
|
8.465*** (df = 25; 1567)
|
|
|
|
Note:
|
p<0.1; p<0.05; p<0.01
|
Table _05 - Including p_hat_cnn first
Multihead(ResNet50)
|
|
|
|
Dependent variable:
|
|
|
|
|
|
Release Outcome
|
|
|
(1)
|
(2)
|
(3)
|
(4)
|
(5)
|
|
|
|
risk_pred_prob
|
-1.074***
|
-0.929***
|
-0.942***
|
-0.944***
|
-0.682***
|
|
|
(-1.188, -0.960)
|
(-1.043, -0.815)
|
(-1.056, -0.827)
|
(-1.059, -0.829)
|
(-0.794, -0.569)
|
|
|
|
|
|
|
|
|
p_hat_cnn
|
|
0.608***
|
0.613***
|
0.621***
|
0.415***
|
|
|
|
(0.536, 0.679)
|
(0.541, 0.685)
|
(0.548, 0.694)
|
(0.343, 0.487)
|
|
|
|
|
|
|
|
|
skin_tonenumber_f7ddc4
|
|
|
-0.021
|
-0.022
|
-0.037
|
|
|
|
|
(-0.060, 0.018)
|
(-0.061, 0.018)
|
(-0.075, 0.001)
|
|
|
|
|
|
|
|
|
age
|
|
|
|
0.001
|
0.001*
|
|
|
|
|
|
(-0.0003, 0.002)
|
(0.00002, 0.002)
|
|
|
|
|
|
|
|
|
attractiveness
|
|
|
|
-0.001
|
0.002
|
|
|
|
|
|
(-0.011, 0.010)
|
(-0.008, 0.013)
|
|
|
|
|
|
|
|
|
competence
|
|
|
|
0.0005
|
-0.003
|
|
|
|
|
|
(-0.012, 0.013)
|
(-0.015, 0.009)
|
|
|
|
|
|
|
|
|
dominance
|
|
|
|
0.001
|
0.005
|
|
|
|
|
|
(-0.007, 0.010)
|
(-0.004, 0.013)
|
|
|
|
|
|
|
|
|
trustworthiness
|
|
|
|
0.0002
|
0.001
|
|
|
|
|
|
(-0.011, 0.011)
|
(-0.010, 0.012)
|
|
|
|
|
|
|
|
|
p_hat_covariates
|
|
|
|
|
1.003***
|
|
|
|
|
|
|
(0.932, 1.074)
|
|
|
|
|
|
|
|
|
Constant
|
1.095***
|
0.596***
|
0.605***
|
0.564***
|
-0.171***
|
|
|
(1.059, 1.131)
|
(0.528, 0.665)
|
(0.530, 0.679)
|
(0.467, 0.662)
|
(-0.279, -0.063)
|
|
|
|
|
|
|
|
|
|
|
Observations
|
7,318
|
7,318
|
7,318
|
7,318
|
7,318
|
|
Adjusted R2
|
0.032
|
0.057
|
0.057
|
0.056
|
0.122
|
|
F Statistic
|
239.132*** (df = 1; 7316)
|
220.280*** (df = 2; 7315)
|
24.137*** (df = 19; 7298)
|
19.172*** (df = 24; 7293)
|
41.532*** (df = 25; 7292)
|
|
|
|
Note:
|
p<0.1; p<0.05; p<0.01
|
Per-Decile Regressions
Notes:
- Signficant changes in R squared for the extrema of
risk_pred_prob
p_hat_cnn is adding significant information in all three
- The higher the base
risk_pred_prob the less important p_hat_cnn becomes. This indicates that:
- When judges are quite certain of the re-arrest risk based on past record they make less of their decision based on the information from the face
- However, even at the highest risk levels this trend is not zero !
Deciles 1 - 3
Multihead(ResNet50)
|
|
|
|
Dependent variable:
|
|
|
|
|
|
Release Outcome
|
|
|
(1)
|
(2)
|
(3)
|
(4)
|
|
|
|
risk_pred_prob
|
2.107**
|
1.867*
|
1.796*
|
1.690*
|
|
|
(0.528, 3.686)
|
(0.260, 3.474)
|
(0.269, 3.322)
|
(0.168, 3.211)
|
|
|
|
|
|
|
|
skin_tonenumber_f7ddc4
|
|
0.024
|
0.007
|
-0.005
|
|
|
|
(-0.048, 0.096)
|
(-0.061, 0.076)
|
(-0.073, 0.064)
|
|
|
|
|
|
|
|
age
|
|
-0.001
|
-0.001
|
-0.0004
|
|
|
|
(-0.003, 0.001)
|
(-0.003, 0.001)
|
(-0.002, 0.001)
|
|
|
|
|
|
|
|
attractiveness
|
|
0.003
|
0.003
|
0.003
|
|
|
|
(-0.015, 0.021)
|
(-0.014, 0.020)
|
(-0.014, 0.020)
|
|
|
|
|
|
|
|
competence
|
|
0.012
|
0.008
|
0.008
|
|
|
|
(-0.009, 0.034)
|
(-0.013, 0.028)
|
(-0.012, 0.028)
|
|
|
|
|
|
|
|
dominance
|
|
0.003
|
0.007
|
0.009
|
|
|
|
(-0.012, 0.018)
|
(-0.007, 0.022)
|
(-0.006, 0.023)
|
|
|
|
|
|
|
|
trustworthiness
|
|
-0.004
|
-0.005
|
-0.007
|
|
|
|
(-0.023, 0.014)
|
(-0.022, 0.013)
|
(-0.025, 0.010)
|
|
|
|
|
|
|
|
p_hat_covariates
|
|
|
1.163***
|
1.088***
|
|
|
|
|
(1.038, 1.288)
|
(0.959, 1.216)
|
|
|
|
|
|
|
|
p_hat_cnn
|
|
|
|
0.317***
|
|
|
|
|
|
(0.192, 0.442)
|
|
|
|
|
|
|
|
Constant
|
0.265
|
0.296
|
-0.621**
|
-0.782***
|
|
|
(-0.143, 0.674)
|
(-0.147, 0.738)
|
(-1.053, -0.189)
|
(-1.217, -0.347)
|
|
|
|
|
|
|
|
|
|
Observations
|
2,196
|
2,196
|
2,196
|
2,196
|
|
Adjusted R2
|
0.002
|
0.006
|
0.103
|
0.109
|
|
F Statistic
|
4.819** (df = 1; 2194)
|
1.617** (df = 23; 2172)
|
11.474*** (df = 24; 2171)
|
11.795*** (df = 25; 2170)
|
|
|
|
Note:
|
p<0.1; p<0.05; p<0.01
|
Deciles 4 - 6
Multihead(ResNet50)
|
|
|
|
Dependent variable:
|
|
|
|
|
|
Release Outcome
|
|
|
(1)
|
(2)
|
(3)
|
(4)
|
|
|
|
risk_pred_prob
|
-3.844**
|
-3.943**
|
-1.701
|
-1.517
|
|
|
(-6.843, -0.846)
|
(-7.007, -0.879)
|
(-4.640, 1.238)
|
(-4.441, 1.406)
|
|
|
|
|
|
|
|
skin_tonenumber_f7ddc4
|
|
0.028
|
0.004
|
-0.002
|
|
|
|
(-0.040, 0.095)
|
(-0.060, 0.069)
|
(-0.066, 0.062)
|
|
|
|
|
|
|
|
age
|
|
-0.0004
|
-0.0004
|
0.00003
|
|
|
|
(-0.002, 0.001)
|
(-0.002, 0.001)
|
(-0.002, 0.002)
|
|
|
|
|
|
|
|
attractiveness
|
|
-0.012
|
-0.010
|
-0.010
|
|
|
|
(-0.030, 0.005)
|
(-0.027, 0.007)
|
(-0.026, 0.007)
|
|
|
|
|
|
|
|
competence
|
|
0.003
|
-0.007
|
-0.008
|
|
|
|
(-0.018, 0.024)
|
(-0.027, 0.013)
|
(-0.028, 0.012)
|
|
|
|
|
|
|
|
dominance
|
|
-0.004
|
0.003
|
0.005
|
|
|
|
(-0.019, 0.010)
|
(-0.011, 0.017)
|
(-0.009, 0.019)
|
|
|
|
|
|
|
|
trustworthiness
|
|
0.010
|
0.014
|
0.011
|
|
|
|
(-0.009, 0.029)
|
(-0.004, 0.031)
|
(-0.007, 0.029)
|
|
|
|
|
|
|
|
p_hat_covariates
|
|
|
1.029***
|
0.951***
|
|
|
|
|
(0.912, 1.147)
|
(0.831, 1.070)
|
|
|
|
|
|
|
|
p_hat_cnn
|
|
|
|
0.367***
|
|
|
|
|
|
(0.248, 0.485)
|
|
|
|
|
|
|
|
Constant
|
1.835***
|
1.884***
|
0.465
|
0.195
|
|
|
(1.049, 2.621)
|
(1.082, 2.685)
|
(-0.318, 1.248)
|
(-0.588, 0.978)
|
|
|
|
|
|
|
|
|
|
Observations
|
2,196
|
2,196
|
2,196
|
2,196
|
|
Adjusted R2
|
0.002
|
-0.001
|
0.086
|
0.096
|
|
F Statistic
|
4.447** (df = 1; 2194)
|
0.902 (df = 23; 2172)
|
9.582*** (df = 24; 2171)
|
10.341*** (df = 25; 2170)
|
|
|
|
Note:
|
p<0.1; p<0.05; p<0.01
|
Deciles 7 - 10
Multihead(ResNet50)
|
|
|
|
Dependent variable:
|
|
|
|
|
|
Release Outcome
|
|
|
(1)
|
(2)
|
(3)
|
(4)
|
|
|
|
risk_pred_prob
|
-0.953***
|
-0.919***
|
-0.569***
|
-0.504***
|
|
|
(-1.182, -0.723)
|
(-1.153, -0.685)
|
(-0.797, -0.340)
|
(-0.731, -0.276)
|
|
|
|
|
|
|
|
skin_tonenumber_f7ddc4
|
|
-0.032
|
-0.066*
|
-0.094**
|
|
|
|
(-0.099, 0.035)
|
(-0.131, -0.001)
|
(-0.159, -0.029)
|
|
|
|
|
|
|
|
age
|
|
0.001
|
0.002**
|
0.004***
|
|
|
|
(-0.001, 0.003)
|
(0.0005, 0.004)
|
(0.002, 0.005)
|
|
|
|
|
|
|
|
attractiveness
|
|
-0.001
|
0.007
|
0.010
|
|
|
|
(-0.021, 0.018)
|
(-0.012, 0.026)
|
(-0.009, 0.029)
|
|
|
|
|
|
|
|
competence
|
|
-0.004
|
-0.005
|
-0.007
|
|
|
|
(-0.026, 0.018)
|
(-0.026, 0.016)
|
(-0.028, 0.014)
|
|
|
|
|
|
|
|
dominance
|
|
-0.001
|
0.002
|
0.003
|
|
|
|
(-0.016, 0.015)
|
(-0.014, 0.017)
|
(-0.012, 0.018)
|
|
|
|
|
|
|
|
trustworthiness
|
|
0.006
|
0.002
|
0.001
|
|
|
|
(-0.014, 0.027)
|
(-0.017, 0.022)
|
(-0.018, 0.020)
|
|
|
|
|
|
|
|
p_hat_covariates
|
|
|
1.069***
|
0.989***
|
|
|
|
|
(0.952, 1.186)
|
(0.871, 1.107)
|
|
|
|
|
|
|
|
p_hat_cnn
|
|
|
|
0.514***
|
|
|
|
|
|
(0.388, 0.640)
|
|
|
|
|
|
|
|
Constant
|
1.044***
|
0.995***
|
-0.019
|
-0.388***
|
|
|
(0.956, 1.132)
|
(0.841, 1.149)
|
(-0.204, 0.167)
|
(-0.593, -0.183)
|
|
|
|
|
|
|
|
|
|
Observations
|
2,926
|
2,926
|
2,926
|
2,926
|
|
Adjusted R2
|
0.015
|
0.016
|
0.087
|
0.100
|
|
F Statistic
|
46.531*** (df = 1; 2924)
|
3.076*** (df = 23; 2902)
|
12.556*** (df = 24; 2901)
|
14.034*** (df = 25; 2900)
|
|
|
|
Note:
|
p<0.1; p<0.05; p<0.01
|
Non-Linearity in p_hat_cnn
We consider three approaches to deal with the non-linearity in p_hat_cnn;
- Replace p_hat_cnn with the decile value
- Collapse bottom three deciles into one average
- Simple float for 1-10 instead of decide averages
Average decile value for p_hat_cnn
Multihead(ResNet50)
|
|
|
|
Dependent variable:
|
|
|
|
|
|
Release Outcome
|
|
|
(1)
|
(2)
|
(3)
|
(4)
|
|
|
|
risk_pred_prob
|
-1.074***
|
-1.072***
|
-0.742***
|
-0.699***
|
|
|
(-1.188, -0.960)
|
(-1.187, -0.956)
|
(-0.855, -0.629)
|
(-0.922, -0.477)
|
|
|
|
|
|
|
|
skin_tonenumber_f7ddc4
|
|
0.006
|
-0.021
|
-0.021
|
|
|
|
(-0.034, 0.045)
|
(-0.059, 0.017)
|
(-0.059, 0.017)
|
|
|
|
|
|
|
|
age
|
|
-0.0004
|
0.0003
|
0.0003
|
|
|
|
(-0.002, 0.001)
|
(-0.001, 0.001)
|
(-0.001, 0.001)
|
|
|
|
|
|
|
|
attractiveness
|
|
-0.002
|
0.002
|
0.001
|
|
|
|
(-0.013, 0.009)
|
(-0.009, 0.012)
|
(-0.009, 0.012)
|
|
|
|
|
|
|
|
competence
|
|
0.002
|
-0.002
|
-0.002
|
|
|
|
(-0.010, 0.015)
|
(-0.014, 0.010)
|
(-0.014, 0.010)
|
|
|
|
|
|
|
|
dominance
|
|
-0.002
|
0.003
|
0.003
|
|
|
|
(-0.011, 0.007)
|
(-0.006, 0.011)
|
(-0.006, 0.011)
|
|
|
|
|
|
|
|
trustworthiness
|
|
0.004
|
0.004
|
0.004
|
|
|
|
(-0.007, 0.015)
|
(-0.007, 0.014)
|
(-0.007, 0.014)
|
|
|
|
|
|
|
|
p_hat_covariates
|
|
|
1.085***
|
1.085***
|
|
|
|
|
(1.015, 1.155)
|
(1.015, 1.155)
|
|
|
|
|
|
|
|
p_hat_cnn_decile_avr
|
|
|
|
0.191
|
|
|
|
|
|
(-0.675, 1.057)
|
|
|
|
|
|
|
|
Constant
|
1.095***
|
1.095***
|
0.109*
|
-0.048
|
|
|
(1.059, 1.131)
|
(1.018, 1.171)
|
(0.012, 0.205)
|
(-0.765, 0.668)
|
|
|
|
|
|
|
|
|
|
Observations
|
7,318
|
7,318
|
7,318
|
7,318
|
|
Adjusted R2
|
0.032
|
0.031
|
0.111
|
0.111
|
|
F Statistic
|
239.132*** (df = 1; 7316)
|
11.215*** (df = 23; 7294)
|
39.038*** (df = 24; 7293)
|
37.477*** (df = 25; 7292)
|
|
|
|
Note:
|
p<0.1; p<0.05; p<0.01
|
Collapsing bottom three deciles
Multihead(ResNet50)
|
|
|
|
Dependent variable:
|
|
|
|
|
|
Release Outcome
|
|
|
(1)
|
(2)
|
(3)
|
(4)
|
|
|
|
risk_pred_prob
|
-1.074***
|
-1.072***
|
-0.742***
|
-0.698***
|
|
|
(-1.188, -0.960)
|
(-1.187, -0.956)
|
(-0.855, -0.629)
|
(-0.939, -0.457)
|
|
|
|
|
|
|
|
skin_tonenumber_f7ddc4
|
|
0.006
|
-0.021
|
-0.021
|
|
|
|
(-0.034, 0.045)
|
(-0.059, 0.017)
|
(-0.059, 0.017)
|
|
|
|
|
|
|
|
age
|
|
-0.0004
|
0.0003
|
0.0003
|
|
|
|
(-0.002, 0.001)
|
(-0.001, 0.001)
|
(-0.001, 0.001)
|
|
|
|
|
|
|
|
attractiveness
|
|
-0.002
|
0.002
|
0.001
|
|
|
|
(-0.013, 0.009)
|
(-0.009, 0.012)
|
(-0.009, 0.012)
|
|
|
|
|
|
|
|
competence
|
|
0.002
|
-0.002
|
-0.002
|
|
|
|
(-0.010, 0.015)
|
(-0.014, 0.010)
|
(-0.014, 0.010)
|
|
|
|
|
|
|
|
dominance
|
|
-0.002
|
0.003
|
0.003
|
|
|
|
(-0.011, 0.007)
|
(-0.006, 0.011)
|
(-0.006, 0.011)
|
|
|
|
|
|
|
|
trustworthiness
|
|
0.004
|
0.004
|
0.004
|
|
|
|
(-0.007, 0.015)
|
(-0.007, 0.014)
|
(-0.007, 0.014)
|
|
|
|
|
|
|
|
p_hat_covariates
|
|
|
1.085***
|
1.085***
|
|
|
|
|
(1.015, 1.155)
|
(1.015, 1.155)
|
|
|
|
|
|
|
|
p_hat_cnn_decile_avr
|
|
|
|
0.195
|
|
|
|
|
|
(-0.760, 1.150)
|
|
|
|
|
|
|
|
Constant
|
1.095***
|
1.095***
|
0.109*
|
-0.051
|
|
|
(1.059, 1.131)
|
(1.018, 1.171)
|
(0.012, 0.205)
|
(-0.840, 0.737)
|
|
|
|
|
|
|
|
|
|
Observations
|
7,318
|
7,318
|
7,318
|
7,318
|
|
Adjusted R2
|
0.032
|
0.031
|
0.111
|
0.111
|
|
F Statistic
|
239.132*** (df = 1; 7316)
|
11.215*** (df = 23; 7294)
|
39.038*** (df = 24; 7293)
|
37.476*** (df = 25; 7292)
|
|
|
|
Note:
|
p<0.1; p<0.05; p<0.01
|
Brute force 1-10 as float
Multihead(ResNet50)
|
|
|
|
Dependent variable:
|
|
|
|
|
|
Release Outcome
|
|
|
(1)
|
(2)
|
(3)
|
(4)
|
|
|
|
risk_pred_prob
|
-1.074***
|
-1.072***
|
-0.742***
|
-0.856***
|
|
|
(-1.188, -0.960)
|
(-1.187, -0.956)
|
(-0.855, -0.629)
|
(-1.065, -0.648)
|
|
|
|
|
|
|
|
skin_tonenumber_f7ddc4
|
|
0.006
|
-0.021
|
-0.020
|
|
|
|
(-0.034, 0.045)
|
(-0.059, 0.017)
|
(-0.058, 0.018)
|
|
|
|
|
|
|
|
age
|
|
-0.0004
|
0.0003
|
0.0003
|
|
|
|
(-0.002, 0.001)
|
(-0.001, 0.001)
|
(-0.001, 0.001)
|
|
|
|
|
|
|
|
attractiveness
|
|
-0.002
|
0.002
|
0.002
|
|
|
|
(-0.013, 0.009)
|
(-0.009, 0.012)
|
(-0.009, 0.012)
|
|
|
|
|
|
|
|
competence
|
|
0.002
|
-0.002
|
-0.002
|
|
|
|
(-0.010, 0.015)
|
(-0.014, 0.010)
|
(-0.014, 0.010)
|
|
|
|
|
|
|
|
dominance
|
|
-0.002
|
0.003
|
0.003
|
|
|
|
(-0.011, 0.007)
|
(-0.006, 0.011)
|
(-0.006, 0.011)
|
|
|
|
|
|
|
|
trustworthiness
|
|
0.004
|
0.004
|
0.004
|
|
|
|
(-0.007, 0.015)
|
(-0.007, 0.014)
|
(-0.007, 0.014)
|
|
|
|
|
|
|
|
p_hat_covariates
|
|
|
1.085***
|
1.085***
|
|
|
|
|
(1.015, 1.155)
|
(1.016, 1.155)
|
|
|
|
|
|
|
|
decile
|
|
|
|
0.003
|
|
|
|
|
|
(-0.002, 0.008)
|
|
|
|
|
|
|
|
Constant
|
1.095***
|
1.095***
|
0.109*
|
0.126**
|
|
|
(1.059, 1.131)
|
(1.018, 1.171)
|
(0.012, 0.205)
|
(0.025, 0.226)
|
|
|
|
|
|
|
|
|
|
Observations
|
7,318
|
7,318
|
7,318
|
7,318
|
|
Adjusted R2
|
0.032
|
0.031
|
0.111
|
0.111
|
|
F Statistic
|
239.132*** (df = 1; 7316)
|
11.215*** (df = 23; 7294)
|
39.038*** (df = 24; 7293)
|
37.523*** (df = 25; 7292)
|
|
|
|
Note:
|
p<0.1; p<0.05; p<0.01
|
Repeating Main Regression on subset of detailed labels
Here I am including all those images for which our MTurk labels had more than 3 workers. The number of workers per image now ranges from 6 - 9 and we are left with 558 validation observations.
Table _03 - SUB SAMPLE - Combined Male & Female
Multihead(ResNet50)
|
|
|
|
Dependent variable:
|
|
|
|
|
|
Release Outcome
|
|
|
(1)
|
(2)
|
(3)
|
(4)
|
(5)
|
|
|
|
risk_pred_prob
|
-1.319***
|
-1.369***
|
-1.304***
|
-1.009***
|
-0.934***
|
|
|
(-1.784, -0.854)
|
(-1.846, -0.891)
|
(-1.791, -0.816)
|
(-1.483, -0.534)
|
(-1.414, -0.454)
|
|
|
|
|
|
|
|
|
skin_tonenumber_f7ddc4
|
|
0.057
|
0.072
|
0.090
|
0.072
|
|
|
|
(-0.110, 0.224)
|
(-0.098, 0.242)
|
(-0.073, 0.253)
|
(-0.092, 0.236)
|
|
|
|
|
|
|
|
|
age
|
|
|
0.0004
|
0.001
|
0.002
|
|
|
|
|
(-0.005, 0.006)
|
(-0.004, 0.006)
|
(-0.003, 0.007)
|
|
|
|
|
|
|
|
|
attractiveness
|
|
|
-0.015
|
-0.021
|
-0.017
|
|
|
|
|
(-0.071, 0.041)
|
(-0.075, 0.033)
|
(-0.070, 0.037)
|
|
|
|
|
|
|
|
|
competence
|
|
|
0.013
|
0.024
|
0.020
|
|
|
|
|
(-0.059, 0.086)
|
(-0.046, 0.094)
|
(-0.049, 0.090)
|
|
|
|
|
|
|
|
|
dominance
|
|
|
0.003
|
0.021
|
0.021
|
|
|
|
|
(-0.044, 0.049)
|
(-0.024, 0.066)
|
(-0.023, 0.066)
|
|
|
|
|
|
|
|
|
trustworthiness
|
|
|
0.034
|
0.028
|
0.027
|
|
|
|
|
(-0.034, 0.102)
|
(-0.038, 0.093)
|
(-0.039, 0.092)
|
|
|
|
|
|
|
|
|
p_hat_covariates
|
|
|
|
1.091***
|
1.036***
|
|
|
|
|
|
(0.796, 1.386)
|
(0.736, 1.336)
|
|
|
|
|
|
|
|
|
p_hat_cnn
|
|
|
|
|
0.308
|
|
|
|
|
|
|
(-0.005, 0.621)
|
|
|
|
|
|
|
|
|
Constant
|
1.167***
|
1.105***
|
0.900***
|
-0.151
|
-0.393
|
|
|
(1.019, 1.315)
|
(0.906, 1.303)
|
(0.524, 1.276)
|
(-0.610, 0.308)
|
(-0.914, 0.127)
|
|
|
|
|
|
|
|
|
|
|
Observations
|
449
|
449
|
449
|
449
|
449
|
|
Adjusted R2
|
0.044
|
0.040
|
0.033
|
0.109
|
0.112
|
|
F Statistic
|
21.745*** (df = 1; 447)
|
2.028*** (df = 18; 430)
|
1.672** (df = 23; 425)
|
3.282*** (df = 24; 424)
|
3.268*** (df = 25; 423)
|
|
|
|
Note:
|
p<0.1; p<0.05; p<0.01
|
Table _04 - SUB SAMPLE - Male
Multihead(ResNet50)
|
|
|
|
Dependent variable:
|
|
|
|
|
|
Release Outcome
|
|
|
(1)
|
(2)
|
(3)
|
(4)
|
(5)
|
|
|
|
risk_pred_prob
|
-1.104***
|
-1.185***
|
-1.140***
|
-0.936***
|
-0.885***
|
|
|
(-1.625, -0.583)
|
(-1.723, -0.647)
|
(-1.687, -0.593)
|
(-1.467, -0.405)
|
(-1.418, -0.353)
|
|
|
|
|
|
|
|
|
skin_tonenumber_f7ddc4
|
|
-0.014
|
0.016
|
0.045
|
0.019
|
|
|
|
(-0.210, 0.183)
|
(-0.185, 0.217)
|
(-0.149, 0.238)
|
(-0.176, 0.214)
|
|
|
|
|
|
|
|
|
age
|
|
|
-0.0002
|
0.0003
|
0.002
|
|
|
|
|
(-0.006, 0.006)
|
(-0.006, 0.006)
|
(-0.004, 0.008)
|
|
|
|
|
|
|
|
|
attractiveness
|
|
|
-0.053
|
-0.058
|
-0.053
|
|
|
|
|
(-0.122, 0.016)
|
(-0.124, 0.009)
|
(-0.120, 0.014)
|
|
|
|
|
|
|
|
|
competence
|
|
|
0.005
|
0.024
|
0.020
|
|
|
|
|
(-0.080, 0.091)
|
(-0.059, 0.106)
|
(-0.063, 0.102)
|
|
|
|
|
|
|
|
|
dominance
|
|
|
0.014
|
0.028
|
0.027
|
|
|
|
|
(-0.045, 0.073)
|
(-0.029, 0.085)
|
(-0.030, 0.084)
|
|
|
|
|
|
|
|
|
trustworthiness
|
|
|
0.068
|
0.060
|
0.064
|
|
|
|
|
(-0.014, 0.150)
|
(-0.019, 0.139)
|
(-0.015, 0.143)
|
|
|
|
|
|
|
|
|
p_hat_covariates
|
|
|
|
1.054***
|
1.006***
|
|
|
|
|
|
(0.714, 1.395)
|
(0.662, 1.350)
|
|
|
|
|
|
|
|
|
p_hat_cnn
|
|
|
|
|
0.382
|
|
|
|
|
|
|
(-0.024, 0.788)
|
|
|
|
|
|
|
|
|
Constant
|
1.087***
|
1.048***
|
0.869***
|
-0.130
|
-0.441
|
|
|
(0.917, 1.257)
|
(0.825, 1.271)
|
(0.401, 1.336)
|
(-0.684, 0.425)
|
(-1.085, 0.204)
|
|
|
|
|
|
|
|
|
|
|
Observations
|
348
|
348
|
348
|
348
|
348
|
|
Adjusted R2
|
0.031
|
0.022
|
0.016
|
0.086
|
0.090
|
|
F Statistic
|
12.146*** (df = 1; 346)
|
1.436 (df = 18; 329)
|
1.245 (df = 23; 324)
|
2.363*** (df = 24; 323)
|
2.374*** (df = 25; 322)
|
|
|
|
Note:
|
p<0.1; p<0.05; p<0.01
|
Table _04 - SUB SAMPLE - Female
Multihead(ResNet50)
|
|
|
|
Dependent variable:
|
|
|
|
|
|
Release Outcome
|
|
|
(1)
|
(2)
|
(3)
|
(4)
|
(5)
|
|
|
|
risk_pred_prob
|
-2.440***
|
-2.448***
|
-2.526***
|
-2.006**
|
-1.621*
|
|
|
(-3.641, -1.239)
|
(-3.758, -1.138)
|
(-3.837, -1.216)
|
(-3.331, -0.681)
|
(-2.987, -0.255)
|
|
|
|
|
|
|
|
|
skin_tonenumber_f7ddc4
|
|
0.223
|
0.109
|
0.200
|
0.283
|
|
|
|
(-0.161, 0.607)
|
(-0.277, 0.495)
|
(-0.181, 0.580)
|
(-0.103, 0.668)
|
|
|
|
|
|
|
|
|
age
|
|
|
0.008
|
0.007
|
0.006
|
|
|
|
|
(-0.004, 0.020)
|
(-0.005, 0.018)
|
(-0.005, 0.017)
|
|
|
|
|
|
|
|
|
attractiveness
|
|
|
0.132**
|
0.119**
|
0.124**
|
|
|
|
|
(0.033, 0.230)
|
(0.022, 0.215)
|
(0.029, 0.219)
|
|
|
|
|
|
|
|
|
competence
|
|
|
0.104
|
0.070
|
0.074
|
|
|
|
|
(-0.049, 0.258)
|
(-0.081, 0.221)
|
(-0.075, 0.223)
|
|
|
|
|
|
|
|
|
dominance
|
|
|
0.005
|
0.021
|
0.013
|
|
|
|
|
(-0.081, 0.092)
|
(-0.064, 0.106)
|
(-0.072, 0.097)
|
|
|
|
|
|
|
|
|
trustworthiness
|
|
|
-0.183**
|
-0.157*
|
-0.179**
|
|
|
|
|
(-0.320, -0.046)
|
(-0.292, -0.022)
|
(-0.314, -0.044)
|
|
|
|
|
|
|
|
|
p_hat_covariates
|
|
|
|
0.833**
|
0.869**
|
|
|
|
|
|
(0.250, 1.415)
|
(0.292, 1.447)
|
|
|
|
|
|
|
|
|
p_hat_cnn
|
|
|
|
|
0.739
|
|
|
|
|
|
|
(-0.002, 1.479)
|
|
|
|
|
|
|
|
|
Constant
|
1.530***
|
1.377***
|
0.935**
|
0.137
|
-0.557
|
|
|
(1.182, 1.879)
|
(0.863, 1.891)
|
(0.238, 1.632)
|
(-0.740, 1.015)
|
(-1.670, 0.556)
|
|
|
|
|
|
|
|
|
|
|
Observations
|
101
|
101
|
101
|
101
|
101
|
|
Adjusted R2
|
0.092
|
0.062
|
0.106
|
0.155
|
0.173
|
|
F Statistic
|
11.171*** (df = 1; 99)
|
1.389 (df = 17; 83)
|
1.539* (df = 22; 78)
|
1.798** (df = 23; 77)
|
1.873** (df = 24; 76)
|
|
|
|
Note:
|
p<0.1; p<0.05; p<0.01
|