This Document consists of the following parts in the context of Data Mining:

1. data collection and cleaning

2. visualization

3. missing value imputation

4. feature engineering

5. classification (SVM)+ (Tree)+(Random Forest) and model comparison

6. conclusion

7. limitations.

We will select the best model that is able to predict the number of installments of Apps most accurately and figure out what characters that will influence the installments of a certain App.


#1.Loading Data

gg = read.csv("googleplaystore.csv")
review = read.csv("googleplaystore_user_reviews.csv")
library(e1071)
library(tidyverse)
Registered S3 methods overwritten by 'dbplyr':
  method         from
  print.tbl_lazy     
  print.tbl_sql      
── Attaching packages ───────────────────────────────────────────── tidyverse 1.3.0 ──
✓ ggplot2 3.3.3     ✓ purrr   0.3.4
✓ tibble  3.0.4     ✓ dplyr   1.0.2
✓ tidyr   1.1.2     ✓ stringr 1.4.0
✓ readr   1.4.0     ✓ forcats 0.5.0
── Conflicts ──────────────────────────────────────────────── tidyverse_conflicts() ──
x dplyr::filter() masks stats::filter()
x dplyr::lag()    masks stats::lag()
review1 = review %>% select(App, Translated_Review)
head(review1)
knitr::kable(head(review1))
Registered S3 methods overwritten by 'htmltools':
  method               from         
  print.html           tools:rstudio
  print.shiny.tag      tools:rstudio
  print.shiny.tag.list tools:rstudio

App Translated_Review
10 Best Foods for You I like eat delicious food. That’s I’m cooking food myself, case “10 Best Foods” helps lot, also “Best Before (Shelf Life)”
10 Best Foods for You This help eating healthy exercise regular basis
10 Best Foods for You nan
10 Best Foods for You Works great especially going grocery store
10 Best Foods for You Best idea us
10 Best Foods for You Best way

head(review)
head(gg)

#2.Data Preprocessing

str(gg)
'data.frame':   10841 obs. of  13 variables:
 $ App           : Factor w/ 9660 levels "- Free Comics - Comic Apps",..: 7206 2551 8970 8089 7272 7103 8149 5568 4926 5806 ...
 $ Category      : Factor w/ 34 levels "1.9","ART_AND_DESIGN",..: 2 2 2 2 2 2 2 2 2 2 ...
 $ Rating        : num  4.1 3.9 4.7 4.5 4.3 4.4 3.8 4.1 4.4 4.7 ...
 $ Reviews       : Factor w/ 6002 levels "0","1","10","100",..: 1183 5924 5681 1947 5924 1310 1464 3385 816 485 ...
 $ Size          : Factor w/ 462 levels "1,000+","1.0M",..: 55 30 368 102 64 222 55 118 146 120 ...
 $ Installs      : Factor w/ 22 levels "0","0+","1,000,000,000+",..: 8 20 13 16 11 17 17 4 4 8 ...
 $ Type          : Factor w/ 4 levels "0","Free","NaN",..: 2 2 2 2 2 2 2 2 2 2 ...
 $ Price         : Factor w/ 93 levels "$0.99","$1.00",..: 92 92 92 92 92 92 92 92 92 92 ...
 $ Content.Rating: Factor w/ 7 levels "","Adults only 18+",..: 3 3 3 6 3 3 3 3 3 3 ...
 $ Genres        : Factor w/ 120 levels "Action","Action;Action & Adventure",..: 10 13 10 10 12 10 10 10 10 12 ...
 $ Last.Updated  : Factor w/ 1378 levels "1.0.19","April 1, 2016",..: 562 482 117 825 757 901 76 726 1317 670 ...
 $ Current.Ver   : Factor w/ 2834 levels "","0.0.0.2","0.0.1",..: 122 1020 468 2827 280 116 280 2393 1457 1431 ...
 $ Android.Ver   : Factor w/ 35 levels "","1.0 and up",..: 17 17 17 20 22 10 17 20 12 17 ...

There are a lot of factor variables which should actually be converted to numeric variables.

##2.1 Converting variable types(imputation)

library(lubridate)

Attaching package: ‘lubridate’

The following objects are masked from ‘package:base’:

    date, intersect, setdiff, union
library(tidyverse)
library(dplyr)
gg.new <- gg %>%
  mutate(
    # Eliminate "+" to transform Installs to numeric variable
   # Installs = gsub("\\+", "", as.character(Installs)),
   # Installs = as.numeric(gsub(",", "", Installs)),
    # Eliminate "M" to transform Size to numeric variable
    Size = gsub("M", "", Size),
    # For cells with k, divide it by 1024, since 1024kB = 1MB, the unit for size is MB
    Size = ifelse(grepl("k", Size),as.numeric(gsub("k", "", Size))/1024, as.numeric(Size)),
    # Transform reviews to numeric
    Reviews = as.numeric(Reviews),
    # Remove "$" from Price to transform it to numeric
    Price = as.numeric(gsub("\\$", "", as.character(Price))),
    # Convert Last Updated to date format
    Last.Updated = mdy(Last.Updated),
    # Replace "Varies with device" to NA since it is unknown
    Min.Android.Ver = gsub("Varies with device", NA, Android.Ver),
    # Keep only version number to 1 decimal as it's most representative
    Min.Android.Ver = as.numeric(substr(Min.Android.Ver, start = 1, stop = 3)),
    # Drop old Android version column
    Android.Ver = NULL
  ) %>% 
  filter(
    # Two apps had type as 0 or NA, they will be removed 
    Type %in% c("Free", "Paid")
 )
Problem with `mutate()` input `Size`.
ℹ NAs introduced by coercion
ℹ Input `Size` is `ifelse(...)`.NAs introduced by coercionProblem with `mutate()` input `Size`.
ℹ NAs introduced by coercion
ℹ Input `Size` is `ifelse(...)`.NAs introduced by coercionProblem with `mutate()` input `Price`.
ℹ NAs introduced by coercion
ℹ Input `Price` is `as.numeric(gsub("\\$", "", as.character(Price)))`.NAs introduced by coercionProblem with `mutate()` input `Last.Updated`.
ℹ  1 failed to parse.
ℹ Input `Last.Updated` is `mdy(Last.Updated)`. 1 failed to parse.
str(gg.new)
'data.frame':   10839 obs. of  13 variables:
 $ App            : Factor w/ 9660 levels "- Free Comics - Comic Apps",..: 7206 2551 8970 8089 7272 7103 8149 5568 4926 5806 ...
 $ Category       : Factor w/ 34 levels "1.9","ART_AND_DESIGN",..: 2 2 2 2 2 2 2 2 2 2 ...
 $ Rating         : num  4.1 3.9 4.7 4.5 4.3 4.4 3.8 4.1 4.4 4.7 ...
 $ Reviews        : num  1183 5924 5681 1947 5924 ...
 $ Size           : num  19 14 8.7 25 2.8 5.6 19 29 33 3.1 ...
 $ Installs       : Factor w/ 22 levels "0","0+","1,000,000,000+",..: 8 20 13 16 11 17 17 4 4 8 ...
 $ Type           : Factor w/ 4 levels "0","Free","NaN",..: 2 2 2 2 2 2 2 2 2 2 ...
 $ Price          : num  0 0 0 0 0 0 0 0 0 0 ...
 $ Content.Rating : Factor w/ 7 levels "","Adults only 18+",..: 3 3 3 6 3 3 3 3 3 3 ...
 $ Genres         : Factor w/ 120 levels "Action","Action;Action & Adventure",..: 10 13 10 10 12 10 10 10 10 12 ...
 $ Last.Updated   : Date, format: "2018-01-07" "2018-01-15" ...
 $ Current.Ver    : Factor w/ 2834 levels "","0.0.0.2","0.0.1",..: 122 1020 468 2827 280 116 280 2393 1457 1431 ...
 $ Min.Android.Ver: num  4 4 4 4.2 4.4 2.3 4 4.2 3 4 ...
options(scipen=999)
table(gg.new$Installs)

             0             0+ 1,000,000,000+     1,000,000+         1,000+ 
             0             14             58           1579            907 
            1+    10,000,000+        10,000+            10+   100,000,000+ 
            67           1252           1054            386            409 
      100,000+           100+     5,000,000+         5,000+             5+ 
          1169            719            752            477             82 
   50,000,000+        50,000+            50+   500,000,000+       500,000+ 
           289            479            205             72            539 
          500+           Free 
           330              0 
gg.new$Installs%>%str()%>% print
 Factor w/ 22 levels "0","0+","1,000,000,000+",..: 8 20 13 16 11 17 17 4 4 8 ...
NULL
gg.new %>% filter(Installs == "500,000") %>% print
library(highcharter)
Registered S3 method overwritten by 'htmlwidgets':
  method           from         
  print.htmlwidget tools:rstudio
Registered S3 method overwritten by 'quantmod':
  method            from
  as.zoo.data.frame zoo 
Registered S3 method overwritten by 'data.table':
  method           from
  print.data.table     
gg.new %>% select(-Min.Android.Ver) %>% 
    summarise_all(
        funs(sum(is.na(.)))
    ) %>%
  gather() %>%
  # Only show columns with NA
  filter(value> 1) %>%
  arrange(-value) %>%
    hchart('column', hcaes(x = 'key', y = 'value', color = 'key')) %>%
  hc_add_theme(hc_theme_elementary()) %>%
  hc_title(text = "Columns with Missing Value")
`funs()` is deprecated as of dplyr 0.8.0.
Please use a list of either functions or lambdas: 

  # Simple named list: 
  list(mean = mean, median = median)

  # Auto named with `tibble::lst()`: 
  tibble::lst(mean, median)

  # Using lambdas
  list(~ mean(., trim = .2), ~ median(., na.rm = TRUE))
This warning is displayed once every 8 hours.
Call `lifecycle::last_warnings()` to see where this warning was generated.

boxplot of different Installment categories

ggplot(data = gg.new) +
  geom_boxplot(aes(x = reorder(Installs.cat, -Rating), y = Rating)) + 
  labs(x = "Installment Categories",y = "Rating")

##2.3 Delete duplicated rows

# number of observations before deleting duplicated rows
(original_num_rows = nrow(gg.new))
[1] 10839
gg.new.uniq = gg.new %>% distinct
# number of rows after delete duplicated rows
(uniq_num_rows = nrow(gg.new.uniq))
[1] 10356
# number of duplicated rows
(dup_rows = original_num_rows - uniq_num_rows)
[1] 483

##2.4 Merge Category into 6

# gg.new.uniq %>% filter (!is.na(Category)) %>% print
levels(gg.new.uniq$Category)
 [1] "1.9"                 "ART_AND_DESIGN"      "AUTO_AND_VEHICLES"  
 [4] "BEAUTY"              "BOOKS_AND_REFERENCE" "BUSINESS"           
 [7] "COMICS"              "COMMUNICATION"       "DATING"             
[10] "EDUCATION"           "ENTERTAINMENT"       "EVENTS"             
[13] "FAMILY"              "FINANCE"             "FOOD_AND_DRINK"     
[16] "GAME"                "HEALTH_AND_FITNESS"  "HOUSE_AND_HOME"     
[19] "LIBRARIES_AND_DEMO"  "LIFESTYLE"           "MAPS_AND_NAVIGATION"
[22] "MEDICAL"             "NEWS_AND_MAGAZINES"  "PARENTING"          
[25] "PERSONALIZATION"     "PHOTOGRAPHY"         "PRODUCTIVITY"       
[28] "SHOPPING"            "SOCIAL"              "SPORTS"             
[31] "TOOLS"               "TRAVEL_AND_LOCAL"    "VIDEO_PLAYERS"      
[34] "WEATHER"            
mydata1 = gg.new.uniq %>% filter(Category != 1.9) %>% mutate(Cat.cat = fct_collapse(Category,
                                                        Education = c("EDUCATION", "BOOKS_AND_REFERENCE", "LIBRARIES_AND_DEMO", "ART_AND_DESIGN"),
                                                        Personalization = c("PERSONALIZATION", "BEAUTY", "SHOPPING", "DATING", "PHOTOGRAPHY"),
                                                        Lifestyle = c("HEALTH_AND_FITNESS", "MEDICAL", "LIFESTYLE", "SPORTS", "FOOD_AND_DRINK"),
                                                        Family = c("FAMILY", "PARENTING", "HOUSE_AND_HOME", "1.9"),
                                                        Entertainment = c("ENTERTAINMENT", "GAME", "COMICS", "VIDEO_PLAYERS"), 
                                                        Business = c("BUSINESS", "FINANCE", "PRODUCTIVITY", "TOOLS", "NEWS_AND_MAGAZINES", "EVENTS", "SOCIAL", "COMMUNICATION"),
                                                        Travel = c("MAPS_AND_NAVIGATION", "AUTO_AND_VEHICLES", "TRAVEL_AND_LOCAL", "WEATHER")))
mydata2 = mydata1 %>% mutate(Interval = difftime(time1 = today(), time2 = Last.Updated))
str(mydata2)
'data.frame':   10356 obs. of  16 variables:
 $ App            : Factor w/ 9660 levels "- Free Comics - Comic Apps",..: 7206 2551 8970 8089 7272 7103 8149 5568 4926 5806 ...
 $ Category       : Factor w/ 34 levels "1.9","ART_AND_DESIGN",..: 2 2 2 2 2 2 2 2 2 2 ...
 $ Rating         : num  4.1 3.9 4.7 4.5 4.3 4.4 3.8 4.1 4.4 4.7 ...
 $ Reviews        : num  1183 5924 5681 1947 5924 ...
 $ Size           : num  19 14 8.7 25 2.8 5.6 19 29 33 3.1 ...
 $ Installs       : Factor w/ 22 levels "0","0+","1,000,000,000+",..: 8 20 13 16 11 17 17 4 4 8 ...
 $ Type           : Factor w/ 4 levels "0","Free","NaN",..: 2 2 2 2 2 2 2 2 2 2 ...
 $ Price          : num  0 0 0 0 0 0 0 0 0 0 ...
 $ Content.Rating : Factor w/ 7 levels "","Adults only 18+",..: 3 3 3 6 3 3 3 3 3 3 ...
 $ Genres         : Factor w/ 120 levels "Action","Action;Action & Adventure",..: 10 13 10 10 12 10 10 10 10 12 ...
 $ Last.Updated   : Date, format: "2018-01-07" "2018-01-15" ...
 $ Current.Ver    : Factor w/ 2834 levels "","0.0.0.2","0.0.1",..: 122 1020 468 2827 280 116 280 2393 1457 1431 ...
 $ Min.Android.Ver: num  4 4 4 4.2 4.4 2.3 4 4.2 3 4 ...
 $ Installs.cat   : Factor w/ 3 levels "low","high","medium": 3 3 2 2 3 3 3 2 2 3 ...
 $ Cat.cat        : Factor w/ 7 levels "Family","Education",..: 2 2 2 2 2 2 2 2 2 2 ...
 $ Interval       : 'difftime' num  1094 1086 888 942 ...
  ..- attr(*, "units")= chr "days"
mydata2 %>% filter(Installs.cat == "low") %>% print

Impute missing values

#missForest
library(missForest)
Loading required package: randomForest
randomForest 4.6-14
Type rfNews() to see new features/changes/bug fixes.

Attaching package: ‘randomForest’

The following object is masked from ‘package:dplyr’:

    combine

The following object is masked from ‘package:ggplot2’:

    margin

Loading required package: foreach

Attaching package: ‘foreach’

The following objects are masked from ‘package:purrr’:

    accumulate, when

Loading required package: itertools
Loading required package: iterators
#impute missing values, using all parameters as default values
gg.new.imp <- missForest(data.matrix(mydata2), maxiter = 5, ntree = 10)
  missForest iteration 1 in progress...done!
  missForest iteration 2 in progress...done!
  missForest iteration 3 in progress...done!
  missForest iteration 4 in progress...done!
#check imputed values
# gg.new.imp$ximp
#check imputation error
gg.new.imp$OOBerror
    NRMSE 
0.0010914 

get the semantic score

# install.packages("stringr")
# install.packages("tidytext")
library(stringr)
library(tidytext)
# read in user reviews
user_review = read.csv("googleplaystore_user_reviews.csv")
str(user_review)
'data.frame':   64295 obs. of  5 variables:
 $ App                   : Factor w/ 1074 levels "10 Best Foods for You",..: 1 1 1 1 1 1 1 1 1 1 ...
 $ Translated_Review     : Factor w/ 27996 levels "","___ ___ ___ ___ ___ 0",..: 9279 23853 17229 27355 2076 2168 1032 17229 15968 13280 ...
 $ Sentiment             : Factor w/ 4 levels "nan","Negative",..: 4 4 1 4 4 4 4 1 3 3 ...
 $ Sentiment_Polarity    : num  1 0.25 NaN 0.4 1 1 0.6 NaN 0 0 ...
 $ Sentiment_Subjectivity: num  0.533 0.288 NaN 0.875 0.3 ...
user_review %>% print
head(user_review)
# get sentiment data frame
sents = get_sentiments("afinn") %>% print
range(sents$score)
Unknown or uninitialised column: `score`.no non-missing arguments to min; returning Infno non-missing arguments to max; returning -Inf
[1]  Inf -Inf
# left join the sentiment chart and the user reviews to get score
t1 = user_review %>% mutate(review = as.character(Translated_Review)) %>% unnest_tokens(word, review)
# t2 = user_review[1:500, ]
user_score = left_join(t1, sents) %>% group_by(App) %>% summarise(n = n(), score=sum(t1$score, na.rm=T)) %>% mutate(avg.score = score / n) %>% print
Joining, by = "word"
`summarise()` ungrouping output (override with `.groups` argument)
# range(user_score $ avg.score)
user_review %>% group_by(App) %>% count
t11 = user_score %>% inner_join(gg.new) %>% filter(Installs != 5000) %>% filter(Installs != 1000000000)
Joining, by = "App"
ggplot(t11) + geom_line(aes(x = Installs, y = avg.score))

ggplot(t11) + geom_boxplot(aes(x = reorder(as.factor(Installs), -avg.score), y = avg.score)) + labs(x = "Installments", y = "Average Score") + coord_flip()

# recover app name after data imputation
# add num_row to gg.new
mydata2 = mydata2 %>% mutate(r = row_number()) 
# split data into training and test data
# change the list to data frame 
gg.df = gg.new.imp[[1]] %>% unlist()
gg.data = data.frame(gg.df) %>% mutate(r = row_number()) 
t1 = left_join(gg.data, mydata2, by = "r") %>% 
  select(Rating.x, Reviews.y, Size.x, Installs.cat.y, Price.y, Content.Rating.y, Cat.cat.y, Interval.y) %>% print
# split data
(total_row = nrow(t1))
[1] 10356
ins.l= which(t1$Installs.cat.y == "low")
ins.m= which(t1$Installs.cat.y == "medium")
ins.h= which(t1$Installs.cat.y == "high")
train.id = c(sample(ins.l, size = trunc(0.8 *length(ins.l))),
             sample(ins.m, size = trunc(0.8 *length(ins.m))), 
             sample(ins.h, size = trunc(0.8 *length(ins.h))))
train.gg = t1[train.id, ]
test.gg = t1[-train.id, ]
levels(train.gg$`Installs`)
[1] "low"    "high"   "medium"
table(train.gg$`Installs`)

   low   high medium 
  2519   3243   2522 
# random forest
set.seed(415)
library(randomForest)
table(factor(train.gg$Installs.cat.y))

   low   high medium 
  2519   3243   2522 
bag.gg=randomForest(Installs.cat.y~., data=train.gg, mtry = ncol(train.gg) - 1,importance=TRUE)
bag.gg

Call:
 randomForest(formula = Installs.cat.y ~ ., data = train.gg, mtry = ncol(train.gg) -      1, importance = TRUE) 
               Type of random forest: classification
                     Number of trees: 500
No. of variables tried at each split: 7

        OOB estimate of  error rate: 33.9%
Confusion matrix:
        low high medium class.error
low    1675  259    585   0.3350536
high    130 2501    612   0.2288005
medium  409  813   1300   0.4845361
# plot
yhat.bag = predict(bag.gg, newdata=test.gg) 
# test error
(forest.test.err = mean(yhat.bag != test.gg$Installs.cat.y))
[1] 0.359556
# get the importance
importance(bag.gg)
                       low      high   medium MeanDecreaseAccuracy MeanDecreaseGini
Rating.x          82.58887 143.36552 36.52999            152.14778         892.6160
Reviews.y        165.44337 132.80628 56.34013            198.64125        1634.3904
Size.x            40.85667 145.63664 23.41362            137.53552        1078.9575
Price.y           59.52072 126.01800 29.53226            115.29368         158.7036
Content.Rating.y  14.39674  12.01644 15.28103             22.98796         131.2132
Cat.cat.y         20.08711  90.17230 28.56530             88.02326         365.6191
Interval.y        45.08460 150.29478 18.44381            136.68670        1219.0267
varImpPlot(bag.gg)

# tree
set.seed(415)
library(tree)
Registered S3 method overwritten by 'tree':
  method     from
  print.tree cli 
#train.gg
#colnames(train.gg)[1] = "Rating"
#colnames(train.gg)[2] = "Reviews"
#colnames(train.gg)[3] = "Size"
#colnames(train.gg)[5] = "Price"
#colnames(train.gg)[6] = "Content Rating"
#colnames(train.gg)[7] = "Category"
#colnames(train.gg)[1] = "Time Since Last Update"
#train.gg
train.gg
tree.gg = tree(Installs.cat.y~., data = train.gg)
NAs introduced by coercion
summary(tree.gg)

Classification tree:
tree(formula = Installs.cat.y ~ ., data = train.gg)
Variables actually used in tree construction:
[1] "Reviews.y" "Size.x"    "Rating.x"  "Price.y"  
Number of terminal nodes:  8 
Residual mean deviance:  1.684 = 13940 / 8276 
Misclassification error rate: 0.4067 = 3369 / 8284 
plot(tree.gg)
text(tree.gg, pretty = 1, cex = 1)

yhat.tree = predict(tree.gg, newdata=test.gg) 
NAs introduced by coercion
# test error
(tree.test.err = mean(yhat.tree != test.gg$Installs.cat.y))
[1] 1
# prune the tree
cv.gg.tree=cv.tree(tree.gg,FUN=prune.misclass)
NAs introduced by coercionNAs introduced by coercionNAs introduced by coercionNAs introduced by coercionNAs introduced by coercionNAs introduced by coercionNAs introduced by coercionNAs introduced by coercionNAs introduced by coercionNAs introduced by coercionNAs introduced by coercionNAs introduced by coercionNAs introduced by coercionNAs introduced by coercionNAs introduced by coercionNAs introduced by coercionNAs introduced by coercionNAs introduced by coercionNAs introduced by coercionNAs introduced by coercion
cv.gg.tree
$size
[1] 8 7 6 5 4 3 2 1

$dev
[1] 3385 3454 3550 3608 3670 3797 4289 5041

$k
[1] -Inf   58   70   82   94  127  489  752

$method
[1] "misclass"

attr(,"class")
[1] "prune"         "tree.sequence"
# par(mfrow=c(1,2))
# plot(cv.gg.tree$size,cv.gg.tree$dev / length(train.gg),ylab="cv error", xlab="size",type="b")
# plot(cv.gg.tree$k, cv.gg.tree$dev / length(train.gg),ylab="cv error", xlab="k",type="b")
# predict using pruning tree
prune.tree=prune.misclass(tree.gg,best=8)
tree.pred=predict(prune.tree, test.gg,type="class")
NAs introduced by coercion
table(tree.pred, test.gg$Installs.cat.y)
         
tree.pred low high medium
   low    270    6     57
   high    60  493    138
   medium 300  312    436
(test.tree.err = mean(tree.pred != test.gg$Installs.cat.y)) 
[1] 0.421332
# plot the tree
plot(prune.tree)
text(prune.tree, pretty = 0, cex = 1)

As we can see in both single tree and random forest, reviews is the most important predictor. When we dig into the reviews, we figure out that approxiamtely 1000 apps have more than 100 relevant text reviews / comments.

SVM on traning set

set.seed(415)
# get data frame ready to use
train.gg
table(factor(train.gg$Installs.cat.y))

   low   high medium 
  2519   3243   2522 
costVals = c(1, 5, 10, 50)
# linear kernel
# running too slow, be careful to change predictors
svm1 <- tune(svm, as.factor(Installs.cat.y) ~ ., data = train.gg,
             kernel = "linear",
             ranges = list("cost" = costVals)) 
summary(svm1)

Parameter tuning of ‘svm’:

- sampling method: 10-fold cross validation 

- best parameters:

- best performance: 0.4482075 

- Detailed performance results:
# find the best cost under linear kernel
best_mod_linear = svm1$best.model
summary(best_mod_linear)

Call:
best.tune(method = svm, train.x = as.factor(Installs.cat.y) ~ ., data = train.gg, 
    ranges = list(cost = costVals), kernel = "linear")


Parameters:
   SVM-Type:  C-classification 
 SVM-Kernel:  linear 
       cost:  5 

Number of Support Vectors:  6862

 ( 2194 2442 2226 )


Number of Classes:  3 

Levels: 
 low high medium
# thus the cost of the best model si 50.
# get the test error of the best model of the linear kernel
test.gg %>% str()
'data.frame':   2072 obs. of  8 variables:
 $ Rating.x        : num  4.5 4.4 4.4 4.7 4.8 4.2 4.1 4.2 4.7 4.1 ...
 $ Reviews.y       : num  1947 834 1057 3353 1655 ...
 $ Size.x          : num  25 28 37 5.5 6 9.2 5.2 11 24 36.7 ...
 $ Installs.cat.y  : Factor w/ 3 levels "low","high","medium": 2 2 3 3 3 3 3 3 3 2 ...
 $ Price.y         : num  0 0 0 0 0 0 0 0 0 0 ...
 $ Content.Rating.y: Factor w/ 7 levels "","Adults only 18+",..: 6 3 3 3 3 3 3 3 3 3 ...
 $ Cat.cat.y       : Factor w/ 7 levels "Family","Education",..: 2 2 2 2 2 2 2 2 2 2 ...
 $ Interval.y      : 'difftime' num  942 1166 886 889 ...
  ..- attr(*, "units")= chr "days"
pred_test_linear = predict(best_mod_linear, newdata = test.gg)
table(predict = pred_test_linear, truth = test.gg$Installs.cat.y)
        truth
predict  low high medium
  low    349  132    217
  high   164  607    235
  medium 117   72    179
(test_err_linear = mean(pred_test_linear != test.gg$Installs.cat.y))
[1] 0.4522201
set.seed(415)
# kernel radial
gammaVals = c(1, 2, 3, 4)
svm_radial <-tune(svm, as.factor(Installs.cat.y) ~ ., data = train.gg, 
                  kernel = "radial",
                  cost = 100,
                               gamma =gammaVals)
summary(svm_radial)

Error estimation of ‘svm’ using 10-fold cross validation: 0.4356596
best_mod_radial = svm_radial$best.model
summary(best_mod_radial)

Call:
best.tune(method = svm, train.x = as.factor(Installs.cat.y) ~ ., data = train.gg, 
    kernel = "radial", cost = 100, gamma = gammaVals)


Parameters:
   SVM-Type:  C-classification 
 SVM-Kernel:  radial 
       cost:  100 

Number of Support Vectors:  5903

 ( 1732 2164 2007 )


Number of Classes:  3 

Levels: 
 low high medium
# get test error of kernel of the radial
pred_test_radial = predict(best_mod_radial, newdata = test.gg)
(test_err_radial = mean(pred_test_radial != test.gg$Installs.cat.y))
[1] 0.4382239

Is it true that people tends to give text review when they highly positively review the app?

# left join the user_score table and t3
mydata2 = mydata2 %>% mutate(r = row_number()) %>% print 
gg.df = gg.new.imp[[1]] %>% unlist()
gg.data = data.frame(gg.df) %>% mutate(r = row_number()) %>% print
t3 = left_join(gg.data, mydata2, by = "r") %>% 
  select(Rating.x, Reviews.y, App.y, Installs.cat.y) %>% print
colnames(t3)[3] = "App"
t2 = inner_join(user_score, t3, by = "App") %>% print
# raing and avg score
# add main title manually, which is "rating vs aaverage sentimental score"
ggplot(data = t2, aes(x = Rating.x, y = avg.score)) + geom_bar(stat = "identity") + labs(x = "Rating", y = "Average Sentimental Score", title = "Rating vs Average sentimental Score") 

ggplot(data = t2, aes(x = as.factor(Installs.cat.y), y = avg.score)) + geom_boxplot() + labs(x = "Installment Category", y = "Average Sentimental Score")

#boxplot(t2$Installs.cat.y ~ t2$avg.score)
# rating vs reviews
ggplot(data = t2, aes(x = Reviews.y, y = avg.score)) + geom_bar(stat = "identity") + labs(x = "Number of #Reviews", y = "Average Sentimental Score", title = "Number of Reviews vs Average sentimental Score") 

High avg score tends to concentrated at rating above and including 4.0

data frame that might not be used

final1 = left_join(gg.data, mydata2, by = "r") %>% select(App.y, Reviews.y, Rating.x, Interval.y, Size.x, Price.y, Cat.cat.y, Content.Rating.y) %>% print
colnames(final1)[1] = "App"
colnames(final1)[2] = "Reviews"
colnames(final1)[3] = "Rating"
colnames(final1)[4] = "Interval"
colnames(final1)[5] = "Size"
colnames(final1)[6] = "Price"
colnames(final1)[7] = "Category"
colnames(final1)[8] = "Content"
show((final1))
plot(final1)

LS0tCnRpdGxlOiAiR29vZ2xlUGxheVN0b3JlLUFuYWx5c2lzIgphdXRob3I6ICJLaGF3bGEtQmFueURvbWkiCm91dHB1dDogaHRtbF9ub3RlYm9vawotLS0KIyBUaGlzIERvY3VtZW50IGNvbnNpc3RzIG9mIHRoZSBmb2xsb3dpbmcgcGFydHMgaW4gdGhlIGNvbnRleHQgb2YgRGF0YSBNaW5pbmc6CgojIDEuIGRhdGEgY29sbGVjdGlvbiBhbmQgY2xlYW5pbmcKIyAyLiB2aXN1YWxpemF0aW9uCiMgMy4gbWlzc2luZyB2YWx1ZSBpbXB1dGF0aW9uCiMgNC4gZmVhdHVyZSBlbmdpbmVlcmluZwojIDUuIGNsYXNzaWZpY2F0aW9uIChTVk0pKyAoVHJlZSkrKFJhbmRvbSBGb3Jlc3QpIGFuZCBtb2RlbCBjb21wYXJpc29uCiMgNi4gY29uY2x1c2lvbgojIDcuIGxpbWl0YXRpb25zLgoKIyBXZSB3aWxsIHNlbGVjdCB0aGUgYmVzdCBtb2RlbCB0aGF0IGlzIGFibGUgdG8gcHJlZGljdCB0aGUgbnVtYmVyIG9mIGluc3RhbGxtZW50cyBvZiBBcHBzIG1vc3QgYWNjdXJhdGVseSBhbmQgZmlndXJlIG91dCB3aGF0IGNoYXJhY3RlcnMgdGhhdCB3aWxsIGluZmx1ZW5jZSB0aGUgaW5zdGFsbG1lbnRzIG9mIGEgY2VydGFpbiBBcHAuCgotLS0KCiMxLkxvYWRpbmcgRGF0YQoKYGBge3IgfQpnZyA9IHJlYWQuY3N2KCJnb29nbGVwbGF5c3RvcmUuY3N2IikKcmV2aWV3ID0gcmVhZC5jc3YoImdvb2dsZXBsYXlzdG9yZV91c2VyX3Jldmlld3MuY3N2IikKbGlicmFyeShlMTA3MSkKbGlicmFyeSh0aWR5dmVyc2UpCnJldmlldzEgPSByZXZpZXcgJT4lIHNlbGVjdChBcHAsIFRyYW5zbGF0ZWRfUmV2aWV3KQpoZWFkKHJldmlldzEpCmtuaXRyOjprYWJsZShoZWFkKHJldmlldzEpKQpoZWFkKHJldmlldykKaGVhZChnZykKYGBgCgojMi5EYXRhIFByZXByb2Nlc3NpbmcKYGBge3J9CnN0cihnZykKYGBgCgpUaGVyZSBhcmUgYSBsb3Qgb2YgZmFjdG9yIHZhcmlhYmxlcyB3aGljaCBzaG91bGQgYWN0dWFsbHkgYmUgY29udmVydGVkIHRvIG51bWVyaWMgdmFyaWFibGVzLgoKIyMyLjEgQ29udmVydGluZyB2YXJpYWJsZSB0eXBlcyhpbXB1dGF0aW9uKQpgYGB7cn0KbGlicmFyeShsdWJyaWRhdGUpCmxpYnJhcnkodGlkeXZlcnNlKQpsaWJyYXJ5KGRwbHlyKQpnZy5uZXcgPC0gZ2cgJT4lCiAgbXV0YXRlKAogICAgIyBFbGltaW5hdGUgIisiIHRvIHRyYW5zZm9ybSBJbnN0YWxscyB0byBudW1lcmljIHZhcmlhYmxlCiAgICMgSW5zdGFsbHMgPSBnc3ViKCJcXCsiLCAiIiwgYXMuY2hhcmFjdGVyKEluc3RhbGxzKSksCiAgICMgSW5zdGFsbHMgPSBhcy5udW1lcmljKGdzdWIoIiwiLCAiIiwgSW5zdGFsbHMpKSwKICAgICMgRWxpbWluYXRlICJNIiB0byB0cmFuc2Zvcm0gU2l6ZSB0byBudW1lcmljIHZhcmlhYmxlCiAgICBTaXplID0gZ3N1YigiTSIsICIiLCBTaXplKSwKICAgICMgRm9yIGNlbGxzIHdpdGggaywgZGl2aWRlIGl0IGJ5IDEwMjQsIHNpbmNlIDEwMjRrQiA9IDFNQiwgdGhlIHVuaXQgZm9yIHNpemUgaXMgTUIKICAgIFNpemUgPSBpZmVsc2UoZ3JlcGwoImsiLCBTaXplKSxhcy5udW1lcmljKGdzdWIoImsiLCAiIiwgU2l6ZSkpLzEwMjQsIGFzLm51bWVyaWMoU2l6ZSkpLAogICAgIyBUcmFuc2Zvcm0gcmV2aWV3cyB0byBudW1lcmljCiAgICBSZXZpZXdzID0gYXMubnVtZXJpYyhSZXZpZXdzKSwKICAgICMgUmVtb3ZlICIkIiBmcm9tIFByaWNlIHRvIHRyYW5zZm9ybSBpdCB0byBudW1lcmljCiAgICBQcmljZSA9IGFzLm51bWVyaWMoZ3N1YigiXFwkIiwgIiIsIGFzLmNoYXJhY3RlcihQcmljZSkpKSwKICAgICMgQ29udmVydCBMYXN0IFVwZGF0ZWQgdG8gZGF0ZSBmb3JtYXQKICAgIExhc3QuVXBkYXRlZCA9IG1keShMYXN0LlVwZGF0ZWQpLAogICAgIyBSZXBsYWNlICJWYXJpZXMgd2l0aCBkZXZpY2UiIHRvIE5BIHNpbmNlIGl0IGlzIHVua25vd24KICAgIE1pbi5BbmRyb2lkLlZlciA9IGdzdWIoIlZhcmllcyB3aXRoIGRldmljZSIsIE5BLCBBbmRyb2lkLlZlciksCiAgICAjIEtlZXAgb25seSB2ZXJzaW9uIG51bWJlciB0byAxIGRlY2ltYWwgYXMgaXQncyBtb3N0IHJlcHJlc2VudGF0aXZlCiAgICBNaW4uQW5kcm9pZC5WZXIgPSBhcy5udW1lcmljKHN1YnN0cihNaW4uQW5kcm9pZC5WZXIsIHN0YXJ0ID0gMSwgc3RvcCA9IDMpKSwKICAgICMgRHJvcCBvbGQgQW5kcm9pZCB2ZXJzaW9uIGNvbHVtbgogICAgQW5kcm9pZC5WZXIgPSBOVUxMCiAgKSAlPiUgCiAgZmlsdGVyKAogICAgIyBUd28gYXBwcyBoYWQgdHlwZSBhcyAwIG9yIE5BLCB0aGV5IHdpbGwgYmUgcmVtb3ZlZCAKICAgIFR5cGUgJWluJSBjKCJGcmVlIiwgIlBhaWQiKQogKQpgYGAKCgpgYGB7cn0Kc3RyKGdnLm5ldykKYGBgCmBgYHtyfQpvcHRpb25zKHNjaXBlbj05OTkpCnRhYmxlKGdnLm5ldyRJbnN0YWxscykKZ2cubmV3JEluc3RhbGxzJT4lc3RyKCklPiUgcHJpbnQKZ2cubmV3ICU+JSBmaWx0ZXIoSW5zdGFsbHMgPT0gIjUwMCwwMDAiKSAlPiUgcHJpbnQKYGBgCgpgYGB7cn0KbGlicmFyeShoaWdoY2hhcnRlcikKZ2cubmV3ICU+JSBzZWxlY3QoLU1pbi5BbmRyb2lkLlZlcikgJT4lIAogICAgc3VtbWFyaXNlX2FsbCgKICAgICAgICBmdW5zKHN1bShpcy5uYSguKSkpCiAgICApICU+JQogIGdhdGhlcigpICU+JQogICMgT25seSBzaG93IGNvbHVtbnMgd2l0aCBOQQogIGZpbHRlcih2YWx1ZT4gMSkgJT4lCiAgYXJyYW5nZSgtdmFsdWUpICU+JQogICAgaGNoYXJ0KCdjb2x1bW4nLCBoY2Flcyh4ID0gJ2tleScsIHkgPSAndmFsdWUnLCBjb2xvciA9ICdrZXknKSkgJT4lCiAgaGNfYWRkX3RoZW1lKGhjX3RoZW1lX2VsZW1lbnRhcnkoKSkgJT4lCiAgaGNfdGl0bGUodGV4dCA9ICJDb2x1bW5zIHdpdGggTWlzc2luZyBWYWx1ZSIpCmBgYAoKCiMjIyBNb3N0IHBvcHVsYXIgY2F0ZWdvcnkgCmBgYHtyfQpnZy5uZXcxIDwtIGdnICU+JQogIG11dGF0ZSgKICAgICMgRWxpbWluYXRlICIrIiB0byB0cmFuc2Zvcm0gSW5zdGFsbHMgdG8gbnVtZXJpYyB2YXJpYWJsZQogICAgSW5zdGFsbHMgPSBnc3ViKCJcXCsiLCAiIiwgYXMuY2hhcmFjdGVyKEluc3RhbGxzKSksCiAgICBJbnN0YWxscyA9IGFzLm51bWVyaWMoZ3N1YigiLCIsICIiLCBJbnN0YWxscykpLAogICAgIyBFbGltaW5hdGUgIk0iIHRvIHRyYW5zZm9ybSBTaXplIHRvIG51bWVyaWMgdmFyaWFibGUKICAgIFNpemUgPSBnc3ViKCJNIiwgIiIsIFNpemUpLAogICAgIyBGb3IgY2VsbHMgd2l0aCBrLCBkaXZpZGUgaXQgYnkgMTAyNCwgc2luY2UgMTAyNGtCID0gMU1CLCB0aGUgdW5pdCBmb3Igc2l6ZSBpcyBNQgogICAgU2l6ZSA9IGlmZWxzZShncmVwbCgiayIsIFNpemUpLGFzLm51bWVyaWMoZ3N1YigiayIsICIiLCBTaXplKSkvMTAyNCwgYXMubnVtZXJpYyhTaXplKSksCiAgICAjIFRyYW5zZm9ybSByZXZpZXdzIHRvIG51bWVyaWMKICAgIFJldmlld3MgPSBhcy5udW1lcmljKFJldmlld3MpLAogICAgIyBSZW1vdmUgIiQiIGZyb20gUHJpY2UgdG8gdHJhbnNmb3JtIGl0IHRvIG51bWVyaWMKICAgIFByaWNlID0gYXMubnVtZXJpYyhnc3ViKCJcXCQiLCAiIiwgYXMuY2hhcmFjdGVyKFByaWNlKSkpLAogICAgIyBDb252ZXJ0IExhc3QgVXBkYXRlZCB0byBkYXRlIGZvcm1hdAogICAgTGFzdC5VcGRhdGVkID0gbWR5KExhc3QuVXBkYXRlZCksCiAgICAjIFJlcGxhY2UgIlZhcmllcyB3aXRoIGRldmljZSIgdG8gTkEgc2luY2UgaXQgaXMgdW5rbm93bgogICAgTWluLkFuZHJvaWQuVmVyID0gZ3N1YigiVmFyaWVzIHdpdGggZGV2aWNlIiwgTkEsIEFuZHJvaWQuVmVyKSwKICAgICMgS2VlcCBvbmx5IHZlcnNpb24gbnVtYmVyIHRvIDEgZGVjaW1hbCBhcyBpdCdzIG1vc3QgcmVwcmVzZW50YXRpY2UKICAgIE1pbi5BbmRyb2lkLlZlciA9IGFzLm51bWVyaWMoc3Vic3RyKE1pbi5BbmRyb2lkLlZlciwgc3RhcnQgPSAxLCBzdG9wID0gMykpLAogICAgIyBEcm9wIG9sZCBBbmRyb2lkIHZlcnNpb24gY29sdW1uCiAgICBBbmRyb2lkLlZlciA9IE5VTEwKICApCmdnLm5ldzIgPSBnZy5uZXcxICU+JSBtdXRhdGUoSW50ZXJ2YWwgPSBkaWZmdGltZSh0aW1lMSA9IHRvZGF5KCksIHRpbWUyID0gTGFzdC5VcGRhdGVkKSkgJT4lIHByaW50CmdncGxvdChnZy5uZXcyKSArIGdlb21fbGluZShhZXMoeCA9IEludGVydmFsLCB5ID0gSW5zdGFsbHMpKSArIGxhYnMoeCA9ICJEYXlzIFNpbmNlIExhc3QgVXBkYXRlIiwgeSA9ICJJbnN0YWxsbWVudHMiKQpgYGAKCgpgYGB7cn0KZ2cubmV3MSAlPiUgCiAgZ3JvdXBfYnkoQ2F0ZWdvcnkpICU+JSBmaWx0ZXIoQ2F0ZWdvcnkgIT0gMS45KSAlPiUgCiAgc3VtbWFyaXplKAogICAgVG90YWxJbnN0YWxscyA9IHN1bShhcy5udW1lcmljKEluc3RhbGxzKSkKICApICU+JQogIGFycmFuZ2UoLVRvdGFsSW5zdGFsbHMpICU+JQogIGhjaGFydCgnc2NhdHRlcicsIGhjYWVzKHggPSAiQ2F0ZWdvcnkiLCB5ID0gIlRvdGFsSW5zdGFsbHMiLCBzaXplID0gIlRvdGFsSW5zdGFsbHMiLCBjb2xvciA9ICJDYXRlZ29yeSIpKSAlPiUKICBoY19hZGRfdGhlbWUoaGNfdGhlbWVfNTM4KCkpICU+JQogIGhjX3RpdGxlKHRleHQgPSAiTW9zdCBwb3B1bGFyIGNhdGVnb3JpZXMiKQpgYGAKCiMjI0NvcnJlbGF0aW9uIG1hcApgYGB7cn0KaGVhZChpcmlzKQpsaWJyYXJ5KHJlc2hhcGUyKQpkZl9jb3IgPSBpcmlzWywyOjNdCmNvcm1hdCA8LSByb3VuZChjb3IoZGZfY29yKSwyKSAKbWVsdGVkX2Nvcm1hdCA8LSBtZWx0KGNvcm1hdCkKZ2dwbG90KGRhdGEgPSBtZWx0ZWRfY29ybWF0LCBhZXMoVmFyMiwgVmFyMSwgZmlsbCA9IHZhbHVlKSkrCiBnZW9tX3RpbGUoY29sb3IgPSAid2hpdGUiKSsKIHNjYWxlX2ZpbGxfZ3JhZGllbnQyKGxvdyA9ICJ5ZWxsb3ciLCBoaWdoID0gInB1cnBsZSIsIG1pZCA9ICJyZWQiLAogICBtaWRwb2ludCA9IDAsIGxpbWl0ID0gYygtMSwxKSwgc3BhY2UgPSAiTGFiIiwKICAgbmFtZT0iUGVhcnNvblxuQ29ycmVsYXRpb24iKSArCiAgdGhlbWVfbWluaW1hbCgpKwogdGhlbWUoYXhpcy50ZXh0LnggPSBlbGVtZW50X3RleHQoYW5nbGUgPSA0NSwgdmp1c3QgPSAxLAogICAgc2l6ZSA9IDEyLCBoanVzdCA9IDEpKSsKIGNvb3JkX2ZpeGVkKCkKYGBgCgoKCiMjMi4yRGl2aWRlIEluc3RhbGxzIGludG8gMyBjYXRlZ29yaWVzIApgYGB7cn0KbGlicmFyeSh0aWR5dmVyc2UpCm9wdGlvbnMoc2NpcGVuPTk5OSkKIyB3cml0ZSBmdW5jdGlvbiB0byBjb252ZXJ0IGluc3RhbGxtZW50CmNvbnZlcnRfaW5zdGFsbCA9IGZ1bmN0aW9uKGRhdGEsIGluc3RhbGxtZW50KSB7CiAgI2luc3RhbGwubGV2ZWxzID0gZmFjdG9yKGMoImxvdyIsICJtZWRpdW0iLCAiaGlnaCIpKQogIAogIGlmIChpbnN0YWxsbWVudCAlaW4lIGMoIjAiLCAiMSIsICI1MCIsICIxMDAiLCAiNTAwIiwgIjEsMDAwIiwgIjUsMDAwIiwgIjEwLDAwMCIsICI1MCwwMDAiKSkgewogIEluc3RhbGxzLmNhdCA9ICJsb3ciCiAgfQogIGVsc2UgaWYgKGluc3RhbGxtZW50ICVpbiUgYyAoIjEwMCwwMDAiLCAiNTAwLDAwMCIsICIxLDAwMCwwMDAiLCAiNSwwMDAsMDAwIikpewogICAgSW5zdGFsbHMuY2F0ID0gIm1lZGl1bSIKICB9CiAgZWxzZSB7CiAgICAgIEluc3RhbGxzLmNhdCA9ICJoaWdoIgogIH0KfQojZ2cubmV3ID0gZ2cubmV3ICU+JSBmaWx0ZXIoIWlzLm5hKEluc3RhbGxzKSkgJT4lIG11dGF0ZShJbnN0YWxscy5jYXQgPSBmYWN0b3IoY29udmVydF9pbnN0YWxsKGdnLm5ldywgSW5zdGFsbHMpLCAjIGxldmVscyA9IGMoImxvdyIsICJtZWRpdW0iLCAiaGlnaCIpKSkKc3VtKChnZy5uZXckSW5zdGFsbHMpICVpbiUgIjEwLDAwMCIpCiMgZ2cubmV3ID0gZ2cubmV3ICU+JSBtdXRhdGUoSW5zdGFsbHMuY2F0ID0gIjEiKQpzdHIoZ2cubmV3KQp0YWJsZShnZy5uZXckSW5zdGFsbHMpCnRhYmxlKGdnLm5ldyRJbnN0YWxscy5jYXQpCmdnLm5ldyA9IGdnLm5ldyAlPiUgZmlsdGVyKEluc3RhbGxzICE9ICJGcmVlIikgJT4lIG11dGF0ZSgKICBJbnN0YWxscy5jYXQgPSBmY3RfY29sbGFwc2UoSW5zdGFsbHMsIAogICAgICAgICAgICAgICAgICAgICAgICAgICAgICBsb3cgPSBjKCJGcmVlIiwiMCIsICIwKyIsIjErIiwgIjUrIiwgIjEwKyIsIjEwMCsiLCAiNTArIiwgIjEwMCsiLCAiNTAwKyIsICIxLDAwMCsiLCAiNSwwMDArIiksIAogICAgICAgICAgICAgICAgICAgICAgICAgICAgICBtZWRpdW0gPSBjKCIxMCwwMDArIiwgIjUwLDAwMCsiLCAiMTAwLDAwMCsiLCAiNTAwLDAwMCsiKSwgCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIGhpZ2ggPSBjKCIxLDAwMCwwMDArIiwgIjUsMDAwLDAwMCsiLCAiMSwwMDAsMDAwLDAwMCsiLCAiMTAsMDAwLDAwMCsiLCAiMTAwLDAwMCwwMDArIiwgIjUwLDAwMCwwMDArIiwgIjUwMCwwMDAsMDAwKyIpKSkKdGFibGUoZ2cubmV3JEluc3RhbGxzLmNhdCkKYGBgCgojIyMgYm94cGxvdCBvZiBkaWZmZXJlbnQgSW5zdGFsbG1lbnQgY2F0ZWdvcmllcwpgYGB7cn0KZ2dwbG90KGRhdGEgPSBnZy5uZXcpICsKICBnZW9tX2JveHBsb3QoYWVzKHggPSByZW9yZGVyKEluc3RhbGxzLmNhdCwgLVJhdGluZyksIHkgPSBSYXRpbmcpKSArIAogIGxhYnMoeCA9ICJJbnN0YWxsbWVudCBDYXRlZ29yaWVzIix5ID0gIlJhdGluZyIpCmBgYAoKCgojIzIuMyBEZWxldGUgZHVwbGljYXRlZCByb3dzCmBgYHtyfQojIG51bWJlciBvZiBvYnNlcnZhdGlvbnMgYmVmb3JlIGRlbGV0aW5nIGR1cGxpY2F0ZWQgcm93cwoob3JpZ2luYWxfbnVtX3Jvd3MgPSBucm93KGdnLm5ldykpCmdnLm5ldy51bmlxID0gZ2cubmV3ICU+JSBkaXN0aW5jdAojIG51bWJlciBvZiByb3dzIGFmdGVyIGRlbGV0ZSBkdXBsaWNhdGVkIHJvd3MKKHVuaXFfbnVtX3Jvd3MgPSBucm93KGdnLm5ldy51bmlxKSkKIyBudW1iZXIgb2YgZHVwbGljYXRlZCByb3dzCihkdXBfcm93cyA9IG9yaWdpbmFsX251bV9yb3dzIC0gdW5pcV9udW1fcm93cykKYGBgCgojIzIuNCBNZXJnZSBDYXRlZ29yeSBpbnRvIDYgCmBgYHtyfQojIGdnLm5ldy51bmlxICU+JSBmaWx0ZXIgKCFpcy5uYShDYXRlZ29yeSkpICU+JSBwcmludApsZXZlbHMoZ2cubmV3LnVuaXEkQ2F0ZWdvcnkpCmBgYAoKYGBge3J9Cm15ZGF0YTEgPSBnZy5uZXcudW5pcSAlPiUgZmlsdGVyKENhdGVnb3J5ICE9IDEuOSkgJT4lIG11dGF0ZShDYXQuY2F0ID0gZmN0X2NvbGxhcHNlKENhdGVnb3J5LAogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIEVkdWNhdGlvbiA9IGMoIkVEVUNBVElPTiIsICJCT09LU19BTkRfUkVGRVJFTkNFIiwgIkxJQlJBUklFU19BTkRfREVNTyIsICJBUlRfQU5EX0RFU0lHTiIpLAogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIFBlcnNvbmFsaXphdGlvbiA9IGMoIlBFUlNPTkFMSVpBVElPTiIsICJCRUFVVFkiLCAiU0hPUFBJTkciLCAiREFUSU5HIiwgIlBIT1RPR1JBUEhZIiksCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgTGlmZXN0eWxlID0gYygiSEVBTFRIX0FORF9GSVRORVNTIiwgIk1FRElDQUwiLCAiTElGRVNUWUxFIiwgIlNQT1JUUyIsICJGT09EX0FORF9EUklOSyIpLAogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIEZhbWlseSA9IGMoIkZBTUlMWSIsICJQQVJFTlRJTkciLCAiSE9VU0VfQU5EX0hPTUUiLCAiMS45IiksCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgRW50ZXJ0YWlubWVudCA9IGMoIkVOVEVSVEFJTk1FTlQiLCAiR0FNRSIsICJDT01JQ1MiLCAiVklERU9fUExBWUVSUyIpLCAKICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICBCdXNpbmVzcyA9IGMoIkJVU0lORVNTIiwgIkZJTkFOQ0UiLCAiUFJPRFVDVElWSVRZIiwgIlRPT0xTIiwgIk5FV1NfQU5EX01BR0FaSU5FUyIsICJFVkVOVFMiLCAiU09DSUFMIiwgIkNPTU1VTklDQVRJT04iKSwKICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICBUcmF2ZWwgPSBjKCJNQVBTX0FORF9OQVZJR0FUSU9OIiwgIkFVVE9fQU5EX1ZFSElDTEVTIiwgIlRSQVZFTF9BTkRfTE9DQUwiLCAiV0VBVEhFUiIpKSkKYGBgCgpgYGB7cn0KbXlkYXRhMiA9IG15ZGF0YTEgJT4lIG11dGF0ZShJbnRlcnZhbCA9IGRpZmZ0aW1lKHRpbWUxID0gdG9kYXkoKSwgdGltZTIgPSBMYXN0LlVwZGF0ZWQpKQpzdHIobXlkYXRhMikKbXlkYXRhMiAlPiUgZmlsdGVyKEluc3RhbGxzLmNhdCA9PSAibG93IikgJT4lIHByaW50CmBgYAoKIyMjIyBJbXB1dGUgbWlzc2luZyB2YWx1ZXMKYGBge3J9CiNtaXNzRm9yZXN0CmxpYnJhcnkobWlzc0ZvcmVzdCkKI2ltcHV0ZSBtaXNzaW5nIHZhbHVlcywgdXNpbmcgYWxsIHBhcmFtZXRlcnMgYXMgZGVmYXVsdCB2YWx1ZXMKZ2cubmV3LmltcCA8LSBtaXNzRm9yZXN0KGRhdGEubWF0cml4KG15ZGF0YTIpLCBtYXhpdGVyID0gNSwgbnRyZWUgPSAxMCkKI2NoZWNrIGltcHV0ZWQgdmFsdWVzCiMgZ2cubmV3LmltcCR4aW1wCiNjaGVjayBpbXB1dGF0aW9uIGVycm9yCmdnLm5ldy5pbXAkT09CZXJyb3IKYGBgCgoKIyMjIyBnZXQgdGhlIHNlbWFudGljIHNjb3JlCmBgYHtyfQojIGluc3RhbGwucGFja2FnZXMoInN0cmluZ3IiKQojIGluc3RhbGwucGFja2FnZXMoInRpZHl0ZXh0IikKbGlicmFyeShzdHJpbmdyKQpsaWJyYXJ5KHRpZHl0ZXh0KQpgYGAKCmBgYHtyfQojIHJlYWQgaW4gdXNlciByZXZpZXdzCnVzZXJfcmV2aWV3ID0gcmVhZC5jc3YoImdvb2dsZXBsYXlzdG9yZV91c2VyX3Jldmlld3MuY3N2IikKc3RyKHVzZXJfcmV2aWV3KQp1c2VyX3JldmlldyAlPiUgcHJpbnQKaGVhZCh1c2VyX3JldmlldykKIyBnZXQgc2VudGltZW50IGRhdGEgZnJhbWUKc2VudHMgPSBnZXRfc2VudGltZW50cygiYWZpbm4iKSAlPiUgcHJpbnQKcmFuZ2Uoc2VudHMkc2NvcmUpCmBgYAoKYGBge3J9CiMgbGVmdCBqb2luIHRoZSBzZW50aW1lbnQgY2hhcnQgYW5kIHRoZSB1c2VyIHJldmlld3MgdG8gZ2V0IHNjb3JlCnQxID0gdXNlcl9yZXZpZXcgJT4lIG11dGF0ZShyZXZpZXcgPSBhcy5jaGFyYWN0ZXIoVHJhbnNsYXRlZF9SZXZpZXcpKSAlPiUgdW5uZXN0X3Rva2Vucyh3b3JkLCByZXZpZXcpCiMgdDIgPSB1c2VyX3Jldmlld1sxOjUwMCwgXQp1c2VyX3Njb3JlID0gbGVmdF9qb2luKHQxLCBzZW50cykgJT4lIGdyb3VwX2J5KEFwcCkgJT4lIHN1bW1hcmlzZShuID0gbigpLCBzY29yZT1zdW0odDEkc2NvcmUsIG5hLnJtPVQpKSAlPiUgbXV0YXRlKGF2Zy5zY29yZSA9IHNjb3JlIC8gbikgJT4lIHByaW50CiMgcmFuZ2UodXNlcl9zY29yZSAkIGF2Zy5zY29yZSkKYGBgCgoKYGBge3J9CnVzZXJfcmV2aWV3ICU+JSBncm91cF9ieShBcHApICU+JSBjb3VudAp0MTEgPSB1c2VyX3Njb3JlICU+JSBpbm5lcl9qb2luKGdnLm5ldykgJT4lIGZpbHRlcihJbnN0YWxscyAhPSA1MDAwKSAlPiUgZmlsdGVyKEluc3RhbGxzICE9IDEwMDAwMDAwMDApCmdncGxvdCh0MTEpICsgZ2VvbV9saW5lKGFlcyh4ID0gSW5zdGFsbHMsIHkgPSBhdmcuc2NvcmUpKQpnZ3Bsb3QodDExKSArIGdlb21fYm94cGxvdChhZXMoeCA9IHJlb3JkZXIoYXMuZmFjdG9yKEluc3RhbGxzKSwgLWF2Zy5zY29yZSksIHkgPSBhdmcuc2NvcmUpKSArIGxhYnMoeCA9ICJJbnN0YWxsbWVudHMiLCB5ID0gIkF2ZXJhZ2UgU2NvcmUiKSArIGNvb3JkX2ZsaXAoKQpgYGAKYGBge3J9CiMgcmVjb3ZlciBhcHAgbmFtZSBhZnRlciBkYXRhIGltcHV0YXRpb24KIyBhZGQgbnVtX3JvdyB0byBnZy5uZXcKbXlkYXRhMiA9IG15ZGF0YTIgJT4lIG11dGF0ZShyID0gcm93X251bWJlcigpKSAKIyBzcGxpdCBkYXRhIGludG8gdHJhaW5pbmcgYW5kIHRlc3QgZGF0YQojIGNoYW5nZSB0aGUgbGlzdCB0byBkYXRhIGZyYW1lIApnZy5kZiA9IGdnLm5ldy5pbXBbWzFdXSAlPiUgdW5saXN0KCkKZ2cuZGF0YSA9IGRhdGEuZnJhbWUoZ2cuZGYpICU+JSBtdXRhdGUociA9IHJvd19udW1iZXIoKSkgCnQxID0gbGVmdF9qb2luKGdnLmRhdGEsIG15ZGF0YTIsIGJ5ID0gInIiKSAlPiUgCiAgc2VsZWN0KFJhdGluZy54LCBSZXZpZXdzLnksIFNpemUueCwgSW5zdGFsbHMuY2F0LnksIFByaWNlLnksIENvbnRlbnQuUmF0aW5nLnksIENhdC5jYXQueSwgSW50ZXJ2YWwueSkgJT4lIHByaW50CiMgc3BsaXQgZGF0YQoodG90YWxfcm93ID0gbnJvdyh0MSkpCmlucy5sPSB3aGljaCh0MSRJbnN0YWxscy5jYXQueSA9PSAibG93IikKaW5zLm09IHdoaWNoKHQxJEluc3RhbGxzLmNhdC55ID09ICJtZWRpdW0iKQppbnMuaD0gd2hpY2godDEkSW5zdGFsbHMuY2F0LnkgPT0gImhpZ2giKQp0cmFpbi5pZCA9IGMoc2FtcGxlKGlucy5sLCBzaXplID0gdHJ1bmMoMC44ICpsZW5ndGgoaW5zLmwpKSksCiAgICAgICAgICAgICBzYW1wbGUoaW5zLm0sIHNpemUgPSB0cnVuYygwLjggKmxlbmd0aChpbnMubSkpKSwgCiAgICAgICAgICAgICBzYW1wbGUoaW5zLmgsIHNpemUgPSB0cnVuYygwLjggKmxlbmd0aChpbnMuaCkpKSkKdHJhaW4uZ2cgPSB0MVt0cmFpbi5pZCwgXQp0ZXN0LmdnID0gdDFbLXRyYWluLmlkLCBdCmxldmVscyh0cmFpbi5nZyRgSW5zdGFsbHNgKQp0YWJsZSh0cmFpbi5nZyRgSW5zdGFsbHNgKQpgYGAKCgpgYGB7cn0KIyByYW5kb20gZm9yZXN0CnNldC5zZWVkKDQxNSkKbGlicmFyeShyYW5kb21Gb3Jlc3QpCnRhYmxlKGZhY3Rvcih0cmFpbi5nZyRJbnN0YWxscy5jYXQueSkpCmJhZy5nZz1yYW5kb21Gb3Jlc3QoSW5zdGFsbHMuY2F0Lnl+LiwgZGF0YT10cmFpbi5nZywgbXRyeSA9IG5jb2wodHJhaW4uZ2cpIC0gMSxpbXBvcnRhbmNlPVRSVUUpCmJhZy5nZwojIHBsb3QKeWhhdC5iYWcgPSBwcmVkaWN0KGJhZy5nZywgbmV3ZGF0YT10ZXN0LmdnKSAKIyB0ZXN0IGVycm9yCihmb3Jlc3QudGVzdC5lcnIgPSBtZWFuKHloYXQuYmFnICE9IHRlc3QuZ2ckSW5zdGFsbHMuY2F0LnkpKQojIGdldCB0aGUgaW1wb3J0YW5jZQppbXBvcnRhbmNlKGJhZy5nZykKdmFySW1wUGxvdChiYWcuZ2cpCmBgYAoKYGBge3J9CiMgdHJlZQpzZXQuc2VlZCg0MTUpCmxpYnJhcnkodHJlZSkKI3RyYWluLmdnCiNjb2xuYW1lcyh0cmFpbi5nZylbMV0gPSAiUmF0aW5nIgojY29sbmFtZXModHJhaW4uZ2cpWzJdID0gIlJldmlld3MiCiNjb2xuYW1lcyh0cmFpbi5nZylbM10gPSAiU2l6ZSIKI2NvbG5hbWVzKHRyYWluLmdnKVs1XSA9ICJQcmljZSIKI2NvbG5hbWVzKHRyYWluLmdnKVs2XSA9ICJDb250ZW50IFJhdGluZyIKI2NvbG5hbWVzKHRyYWluLmdnKVs3XSA9ICJDYXRlZ29yeSIKI2NvbG5hbWVzKHRyYWluLmdnKVsxXSA9ICJUaW1lIFNpbmNlIExhc3QgVXBkYXRlIgojdHJhaW4uZ2cKdHJhaW4uZ2cKdHJlZS5nZyA9IHRyZWUoSW5zdGFsbHMuY2F0Lnl+LiwgZGF0YSA9IHRyYWluLmdnKQpzdW1tYXJ5KHRyZWUuZ2cpCnBsb3QodHJlZS5nZykKdGV4dCh0cmVlLmdnLCBwcmV0dHkgPSAxLCBjZXggPSAxKQp5aGF0LnRyZWUgPSBwcmVkaWN0KHRyZWUuZ2csIG5ld2RhdGE9dGVzdC5nZykgCiMgdGVzdCBlcnJvcgoodHJlZS50ZXN0LmVyciA9IG1lYW4oeWhhdC50cmVlICE9IHRlc3QuZ2ckSW5zdGFsbHMuY2F0LnkpKQpgYGAKIAoKCmBgYHtyfQojIHBydW5lIHRoZSB0cmVlCmN2LmdnLnRyZWU9Y3YudHJlZSh0cmVlLmdnLEZVTj1wcnVuZS5taXNjbGFzcykKY3YuZ2cudHJlZQojIHBhcihtZnJvdz1jKDEsMikpCiMgcGxvdChjdi5nZy50cmVlJHNpemUsY3YuZ2cudHJlZSRkZXYgLyBsZW5ndGgodHJhaW4uZ2cpLHlsYWI9ImN2IGVycm9yIiwgeGxhYj0ic2l6ZSIsdHlwZT0iYiIpCiMgcGxvdChjdi5nZy50cmVlJGssIGN2LmdnLnRyZWUkZGV2IC8gbGVuZ3RoKHRyYWluLmdnKSx5bGFiPSJjdiBlcnJvciIsIHhsYWI9ImsiLHR5cGU9ImIiKQojIHByZWRpY3QgdXNpbmcgcHJ1bmluZyB0cmVlCnBydW5lLnRyZWU9cHJ1bmUubWlzY2xhc3ModHJlZS5nZyxiZXN0PTgpCnRyZWUucHJlZD1wcmVkaWN0KHBydW5lLnRyZWUsIHRlc3QuZ2csdHlwZT0iY2xhc3MiKQp0YWJsZSh0cmVlLnByZWQsIHRlc3QuZ2ckSW5zdGFsbHMuY2F0LnkpCih0ZXN0LnRyZWUuZXJyID0gbWVhbih0cmVlLnByZWQgIT0gdGVzdC5nZyRJbnN0YWxscy5jYXQueSkpIAojIHBsb3QgdGhlIHRyZWUKcGxvdChwcnVuZS50cmVlKQp0ZXh0KHBydW5lLnRyZWUsIHByZXR0eSA9IDAsIGNleCA9IDEpCmBgYAoKQXMgd2UgY2FuIHNlZSBpbiBib3RoIHNpbmdsZSB0cmVlIGFuZCByYW5kb20gZm9yZXN0LCByZXZpZXdzIGlzIHRoZSBtb3N0IGltcG9ydGFudCBwcmVkaWN0b3IuIFdoZW4gd2UgZGlnIGludG8gdGhlIHJldmlld3MsIHdlIGZpZ3VyZSBvdXQgdGhhdCBhcHByb3hpYW10ZWx5IDEwMDAgYXBwcyBoYXZlIG1vcmUgdGhhbiAxMDAgcmVsZXZhbnQgdGV4dCByZXZpZXdzIC8gY29tbWVudHMuIAoKIyMjIyBTVk0gb24gdHJhbmluZyBzZXQKYGBge3J9CnNldC5zZWVkKDQxNSkKIyBnZXQgZGF0YSBmcmFtZSByZWFkeSB0byB1c2UKdHJhaW4uZ2cKdGFibGUoZmFjdG9yKHRyYWluLmdnJEluc3RhbGxzLmNhdC55KSkKY29zdFZhbHMgPSBjKDEsIDUsIDEwLCA1MCkKIyBsaW5lYXIga2VybmVsCiMgcnVubmluZyB0b28gc2xvdywgYmUgY2FyZWZ1bCB0byBjaGFuZ2UgcHJlZGljdG9ycwpzdm0xIDwtIHR1bmUoc3ZtLCBhcy5mYWN0b3IoSW5zdGFsbHMuY2F0LnkpIH4gLiwgZGF0YSA9IHRyYWluLmdnLAogICAgICAgICAgICAga2VybmVsID0gImxpbmVhciIsCiAgICAgICAgICAgICByYW5nZXMgPSBsaXN0KCJjb3N0IiA9IGNvc3RWYWxzKSkgCnN1bW1hcnkoc3ZtMSkKIyBmaW5kIHRoZSBiZXN0IGNvc3QgdW5kZXIgbGluZWFyIGtlcm5lbApiZXN0X21vZF9saW5lYXIgPSBzdm0xJGJlc3QubW9kZWwKc3VtbWFyeShiZXN0X21vZF9saW5lYXIpCiMgdGh1cyB0aGUgY29zdCBvZiB0aGUgYmVzdCBtb2RlbCBzaSA1MC4KYGBgCgpgYGB7cn0KIyBnZXQgdGhlIHRlc3QgZXJyb3Igb2YgdGhlIGJlc3QgbW9kZWwgb2YgdGhlIGxpbmVhciBrZXJuZWwKdGVzdC5nZyAlPiUgc3RyKCkKcHJlZF90ZXN0X2xpbmVhciA9IHByZWRpY3QoYmVzdF9tb2RfbGluZWFyLCBuZXdkYXRhID0gdGVzdC5nZykKdGFibGUocHJlZGljdCA9IHByZWRfdGVzdF9saW5lYXIsIHRydXRoID0gdGVzdC5nZyRJbnN0YWxscy5jYXQueSkKKHRlc3RfZXJyX2xpbmVhciA9IG1lYW4ocHJlZF90ZXN0X2xpbmVhciAhPSB0ZXN0LmdnJEluc3RhbGxzLmNhdC55KSkKYGBgCgpgYGB7cn0Kc2V0LnNlZWQoNDE1KQojIGtlcm5lbCByYWRpYWwKZ2FtbWFWYWxzID0gYygxLCAyLCAzLCA0KQpzdm1fcmFkaWFsIDwtdHVuZShzdm0sIGFzLmZhY3RvcihJbnN0YWxscy5jYXQueSkgfiAuLCBkYXRhID0gdHJhaW4uZ2csIAogICAgICAgICAgICAgICAgICBrZXJuZWwgPSAicmFkaWFsIiwKICAgICAgICAgICAgICAgICAgY29zdCA9IDEwMCwKICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIGdhbW1hID1nYW1tYVZhbHMpCnN1bW1hcnkoc3ZtX3JhZGlhbCkKYGBgCgpgYGB7cn0KYmVzdF9tb2RfcmFkaWFsID0gc3ZtX3JhZGlhbCRiZXN0Lm1vZGVsCnN1bW1hcnkoYmVzdF9tb2RfcmFkaWFsKQpgYGAKCmBgYHtyfQojIGdldCB0ZXN0IGVycm9yIG9mIGtlcm5lbCBvZiB0aGUgcmFkaWFsCnByZWRfdGVzdF9yYWRpYWwgPSBwcmVkaWN0KGJlc3RfbW9kX3JhZGlhbCwgbmV3ZGF0YSA9IHRlc3QuZ2cpCih0ZXN0X2Vycl9yYWRpYWwgPSBtZWFuKHByZWRfdGVzdF9yYWRpYWwgIT0gdGVzdC5nZyRJbnN0YWxscy5jYXQueSkpCmBgYAoKCgoKCgoKSXMgaXQgdHJ1ZSB0aGF0IHBlb3BsZSB0ZW5kcyB0byBnaXZlIHRleHQgcmV2aWV3IHdoZW4gdGhleSBoaWdobHkgcG9zaXRpdmVseSByZXZpZXcgdGhlIGFwcD8KYGBge3J9CiMgbGVmdCBqb2luIHRoZSB1c2VyX3Njb3JlIHRhYmxlIGFuZCB0MwpteWRhdGEyID0gbXlkYXRhMiAlPiUgbXV0YXRlKHIgPSByb3dfbnVtYmVyKCkpICU+JSBwcmludCAKZ2cuZGYgPSBnZy5uZXcuaW1wW1sxXV0gJT4lIHVubGlzdCgpCmdnLmRhdGEgPSBkYXRhLmZyYW1lKGdnLmRmKSAlPiUgbXV0YXRlKHIgPSByb3dfbnVtYmVyKCkpICU+JSBwcmludAp0MyA9IGxlZnRfam9pbihnZy5kYXRhLCBteWRhdGEyLCBieSA9ICJyIikgJT4lIAogIHNlbGVjdChSYXRpbmcueCwgUmV2aWV3cy55LCBBcHAueSwgSW5zdGFsbHMuY2F0LnkpICU+JSBwcmludApjb2xuYW1lcyh0MylbM10gPSAiQXBwIgp0MiA9IGlubmVyX2pvaW4odXNlcl9zY29yZSwgdDMsIGJ5ID0gIkFwcCIpICU+JSBwcmludAojIHJhaW5nIGFuZCBhdmcgc2NvcmUKIyBhZGQgbWFpbiB0aXRsZSBtYW51YWxseSwgd2hpY2ggaXMgInJhdGluZyB2cyBhYXZlcmFnZSBzZW50aW1lbnRhbCBzY29yZSIKZ2dwbG90KGRhdGEgPSB0MiwgYWVzKHggPSBSYXRpbmcueCwgeSA9IGF2Zy5zY29yZSkpICsgZ2VvbV9iYXIoc3RhdCA9ICJpZGVudGl0eSIpICsgbGFicyh4ID0gIlJhdGluZyIsIHkgPSAiQXZlcmFnZSBTZW50aW1lbnRhbCBTY29yZSIsIHRpdGxlID0gIlJhdGluZyB2cyBBdmVyYWdlIHNlbnRpbWVudGFsIFNjb3JlIikgCmdncGxvdChkYXRhID0gdDIsIGFlcyh4ID0gYXMuZmFjdG9yKEluc3RhbGxzLmNhdC55KSwgeSA9IGF2Zy5zY29yZSkpICsgZ2VvbV9ib3hwbG90KCkgKyBsYWJzKHggPSAiSW5zdGFsbG1lbnQgQ2F0ZWdvcnkiLCB5ID0gIkF2ZXJhZ2UgU2VudGltZW50YWwgU2NvcmUiKQojYm94cGxvdCh0MiRJbnN0YWxscy5jYXQueSB+IHQyJGF2Zy5zY29yZSkKIyByYXRpbmcgdnMgcmV2aWV3cwpnZ3Bsb3QoZGF0YSA9IHQyLCBhZXMoeCA9IFJldmlld3MueSwgeSA9IGF2Zy5zY29yZSkpICsgZ2VvbV9iYXIoc3RhdCA9ICJpZGVudGl0eSIpICsgbGFicyh4ID0gIk51bWJlciBvZiAjUmV2aWV3cyIsIHkgPSAiQXZlcmFnZSBTZW50aW1lbnRhbCBTY29yZSIsIHRpdGxlID0gIk51bWJlciBvZiBSZXZpZXdzIHZzIEF2ZXJhZ2Ugc2VudGltZW50YWwgU2NvcmUiKSAKYGBgCgpIaWdoIGF2ZyBzY29yZSB0ZW5kcyB0byBjb25jZW50cmF0ZWQgYXQgcmF0aW5nIGFib3ZlIGFuZCBpbmNsdWRpbmcgNC4wCgoKCgoKCgoKCgojIyMjIGRhdGEgZnJhbWUgdGhhdCBtaWdodCBub3QgYmUgdXNlZApgYGB7cn0KZmluYWwxID0gbGVmdF9qb2luKGdnLmRhdGEsIG15ZGF0YTIsIGJ5ID0gInIiKSAlPiUgc2VsZWN0KEFwcC55LCBSZXZpZXdzLnksIFJhdGluZy54LCBJbnRlcnZhbC55LCBTaXplLngsIFByaWNlLnksIENhdC5jYXQueSwgQ29udGVudC5SYXRpbmcueSkgJT4lIHByaW50CmNvbG5hbWVzKGZpbmFsMSlbMV0gPSAiQXBwIgpjb2xuYW1lcyhmaW5hbDEpWzJdID0gIlJldmlld3MiCmNvbG5hbWVzKGZpbmFsMSlbM10gPSAiUmF0aW5nIgpjb2xuYW1lcyhmaW5hbDEpWzRdID0gIkludGVydmFsIgpjb2xuYW1lcyhmaW5hbDEpWzVdID0gIlNpemUiCmNvbG5hbWVzKGZpbmFsMSlbNl0gPSAiUHJpY2UiCmNvbG5hbWVzKGZpbmFsMSlbN10gPSAiQ2F0ZWdvcnkiCmNvbG5hbWVzKGZpbmFsMSlbOF0gPSAiQ29udGVudCIKc2hvdygoZmluYWwxKSkKcGxvdChmaW5hbDEpCmBgYAo=