Abstract
Las Casen publicadas oficialmente poseen anomalías en sus factores de expansión comunal, ir al link de descarga los cuales son ausencias (Casen 2015) o errores (comuna de Primavera en el 2006). Asimismo, los códigos comunales no están homologados a los actuales. Éste documento presenta los códigos para la generación de bases de datos Casen corregidas, para la posterior construcción de tablas de contingencia que se presentan en el Rpubs: generador_ttcc-casen.
casen_2013 <- read_sav("Casen2013.sav")
casen_2013_labeled <- as_factor(casen_2013, only_labelled = TRUE)
data_code <- stack(attr(casen_2013$comuna, 'labels'))
data_code <- data_code[c(2,1)]
names(data_code)[1] <- "comuna"
names(data_code)[2] <- "codigo"
#data_code
data_code[171,2]<-16101
data_code[172,2]<-16102
data_code[173,2]<-16202
data_code[174,2]<-16203
data_code[175,2]<-16302
data_code[176,2]<-16103
data_code[177,2]<-16104
data_code[178,2]<-16204
data_code[179,2]<-16303
data_code[180,2]<-16105
data_code[181,2]<-16106
data_code[182,2]<-16205
data_code[183,2]<-16107
data_code[184,2]<-16201
data_code[185,2]<-16206
data_code[186,2]<-16301
data_code[187,2]<-16304
data_code[188,2]<-16108
data_code[189,2]<-16305
data_code[190,2]<-16207
data_code[191,2]<-16109
df_final = merge( x = casen_2013_labeled, y = data_code, by = "comuna", all.x = TRUE)
#saveRDS(df_final, file = "casen_2013_c.rds")
dataset2015 <- read_sav("casen2015.sav")
dataset2015_fexc = read_sav("Casen 2015_FE todasComunas.sav")
Acá hay que tener cuidado porque las observaciones quedan individualizadas por la unión de dos columnas, folio y o, por lo que hay que construir nuevas columnas en ambos datasets para poder hacer el join adecuado.
dataset2015$identificador <- paste(dataset2015$folio,dataset2015$o)
dataset2015_fexc$identificador <- paste(dataset2015_fexc$folio,dataset2015_fexc$o)
Hacemos la unión con los factores de expansión correctos:
df_2015_final = merge( x = dataset2015, y = dataset2015_fexc, by = "identificador", all.x = TRUE)
casen_2015_labeled <- as_factor(df_2015_final, only_labelled = TRUE)
data_code <- stack(attr(df_2015_final$comuna, 'labels'))
names(data_code)[2] <- "comuna"
data_code <- data_code[c(2,1)]
names(data_code)[1] <- "comuna"
names(data_code)[2] <- "codigo"
#data_code
data_code[171,2]<-16101
data_code[172,2]<-16102
data_code[173,2]<-16202
data_code[174,2]<-16203
data_code[175,2]<-16302
data_code[176,2]<-16103
data_code[177,2]<-16104
data_code[178,2]<-16204
data_code[179,2]<-16303
data_code[180,2]<-16105
data_code[181,2]<-16106
data_code[182,2]<-16205
data_code[183,2]<-16107
data_code[184,2]<-16201
data_code[185,2]<-16206
data_code[186,2]<-16301
data_code[187,2]<-16304
data_code[188,2]<-16108
data_code[189,2]<-16305
data_code[190,2]<-16207
data_code[191,2]<-16109
df_final = merge( x = casen_2015_labeled, y = data_code, by = "comuna", all.x = TRUE)
#saveRDS(df_final, file = "casen_2015_c.rds")
dataset2017 <- read_sav("casen2017.sav")
casen_2017_labeled <- as_factor(dataset2017, only_labelled = TRUE)
data_code <- stack(attr(dataset2017$comuna, 'labels'))
data_code <- data_code[c(2,1)]
names(data_code)[1] <- "comuna"
names(data_code)[2] <- "codigo"
#data_code
data_code[172,2]<-16102
data_code[171,2]<-16101
data_code[176,2]<-16103
data_code[173,2]<-16202
data_code[174,2]<-16203
data_code[175,2]<-16302
data_code[177,2]<-16104
data_code[178,2]<-16204
data_code[179,2]<-16303
data_code[180,2]<-16105
data_code[181,2]<-16106
data_code[182,2]<-16205
data_code[183,2]<-16107
data_code[184,2]<-16201
data_code[185,2]<-16206
data_code[186,2]<-16301
data_code[187,2]<-16304
data_code[188,2]<-16108
data_code[189,2]<-16305
data_code[190,2]<-16207
data_code[191,2]<-16109
df_final = merge( x = casen_2017_labeled, y = data_code, by = "comuna", all.x = TRUE)
#saveRDS(df_final, file = "casen_2017_c.rds")