Female Avoidance behaviour vs Aggressive males
In the bulb mite, Rhizoglyphus echinopus, two male morphs are present: a fighter and a scrambler male. The females are typically polyamorous, and hte more mates she has the higher her fecundity. To potentially control this, the fighter morph male, if given the chance, will try to eliminate rival males by using his fighter legs to pierce and kill them. There is some evidence that suggests that if a female is mated with a scrambler male this boosts her fecundity, and on the contrary if she is mated with a fighter male. However, recent evidence suggests that in lines selected for fighters, if a female of the fighter lines is mated with a fighter male this boosts her fecundity, and her fecundity is decreased if she is mated with a scrambler male from the scrambler selected lines.
Question 1: Are females more resistance to mate with a specific male morph?
Females prefer to mate with scrambler males over fighter males in terms of behavioural sexual conflict
Females prefer to mate with fighters due to post-copulatory lower fecundity boost
Females have no preference
Question 2: Are fighter males harmful to females, than scrambler males?
Fighters present a higher sexual conflict scenario for females post-copulatory by boosting fecundity earlier, higher in total fecundity, and decreasing longevity
Scramblers present a higher sexual conflict scenario for females post-copulatory by boosting fecundity earlier, higher in total fecundity, and decreasing longevity
There is no difference in peak fecundity or longevity between the two morphs
#Brief Methods Females were presented with either two males of the same morph, or two males of a different morph in opposite order, with 5 replicate mating vials for each treatment. Mating latency, lifetime fecundity, and female longevity were all observed.
Fecundity per female (egg laying and non-egg laying) in each treatment group over time until female death and most models are for for females who mated twice (i.e completed the behavioural trial).
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: log(egg_count + 1) ~ day + I(day^2) * mate_order + (1 | indv)
## Data: two.time.fert
##
## REML criterion at convergence: 4585.6
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -2.2610 -0.7177 0.1891 0.7493 3.1515
##
## Random effects:
## Groups Name Variance Std.Dev.
## indv (Intercept) 0.7599 0.8717
## Residual 2.1935 1.4810
## Number of obs: 1200, groups: indv, 125
##
## Fixed effects:
## Estimate Std. Error df t value Pr(>|t|)
## (Intercept) 2.363e+00 2.176e-01 2.221e+02 10.863 < 2e-16 ***
## day -2.222e-03 1.131e-02 1.146e+03 -0.196 0.844267
## I(day^2) -2.593e-04 1.545e-04 1.121e+03 -1.679 0.093460 .
## mate_orderFS 1.903e-01 2.712e-01 1.456e+02 0.702 0.483940
## mate_orderSF 3.698e-01 2.734e-01 1.365e+02 1.352 0.178501
## mate_orderSS 2.189e-01 2.671e-01 1.422e+02 0.820 0.413678
## I(day^2):mate_orderFS -3.449e-04 3.879e-04 1.180e+03 -0.889 0.374132
## I(day^2):mate_orderSF -1.201e-03 3.168e-04 1.184e+03 -3.789 0.000159 ***
## I(day^2):mate_orderSS -1.137e-03 3.277e-04 1.184e+03 -3.469 0.000540 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Correlation of Fixed Effects:
## (Intr) day I(d^2) mt_rFS mt_rSF mt_rSS I(^2):_F I(^2):_SF
## day -0.533
## I(day^2) 0.411 -0.893
## mate_ordrFS -0.668 0.176 -0.104
## mate_ordrSF -0.646 0.144 -0.076 0.482
## mate_ordrSS -0.671 0.164 -0.093 0.497 0.487
## I(dy^2):_FS 0.272 -0.461 0.331 -0.318 -0.087 -0.097
## I(dy^2):_SF 0.254 -0.417 0.274 -0.099 -0.276 -0.095 0.231
## I(dy^2):_SS 0.271 -0.450 0.307 -0.104 -0.089 -0.288 0.245 0.234
## Type III Analysis of Variance Table with Satterthwaite's method
## Sum Sq Mean Sq NumDF DenDF F value Pr(>F)
## day 0.085 0.0847 1 1146.35 0.0386 0.844267
## I(day^2) 23.381 23.3812 1 1146.84 10.6594 0.001128 **
## mate_order 4.086 1.3619 3 147.42 0.6209 0.602549
## I(day^2):mate_order 47.608 15.8694 3 1183.34 7.2348 8.222e-05 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## $emtrends
## mate_order (day)^2.trend SE df lower.CL upper.CL
## FF -0.000330 0.000232 1171 -0.000784 1.25e-04
## FS -0.000675 0.000340 1184 -0.001342 -7.24e-06
## SF -0.001530 0.000294 1185 -0.002107 -9.54e-04
## SS -0.001467 0.000294 1187 -0.002044 -8.90e-04
##
## Degrees-of-freedom method: kenward-roger
## Confidence level used: 0.95
##
## $contrasts
## contrast estimate SE df t.ratio p.value
## FF - FS 3.45e-04 0.000388 1180 0.888 0.8111
## FF - SF 1.20e-03 0.000317 1184 3.784 0.0009
## FF - SS 1.14e-03 0.000328 1184 3.464 0.0031
## FS - SF 8.56e-04 0.000441 1184 1.940 0.2119
## FS - SS 7.92e-04 0.000443 1185 1.789 0.2791
## SF - SS -6.36e-05 0.000400 1187 -0.159 0.9986
##
## Note: contrasts are still on the 1(mu + 1) scale
## Degrees-of-freedom method: kenward-roger
## P value adjustment: tukey method for comparing a family of 4 estimates
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: log(egg_count + 1) ~ day + I(day^2) * mate_order + (1 | indv)
## Data: allfert_nooutliers
##
## REML criterion at convergence: 4461.4
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -2.2387 -0.7670 0.2121 0.7421 3.0859
##
## Random effects:
## Groups Name Variance Std.Dev.
## indv (Intercept) 0.651 0.8069
## Residual 2.244 1.4978
## Number of obs: 1164, groups: indv, 122
##
## Fixed effects:
## Estimate Std. Error df t value Pr(>|t|)
## (Intercept) 2.549e+00 2.168e-01 2.260e+02 11.758 < 2e-16 ***
## day -5.427e-03 1.170e-02 1.120e+03 -0.464 0.642888
## I(day^2) -2.350e-04 1.583e-04 1.091e+03 -1.485 0.137952
## mate_orderFS 2.687e-02 2.633e-01 1.433e+02 0.102 0.918865
## mate_orderSF 2.059e-01 2.649e-01 1.335e+02 0.777 0.438268
## mate_orderSS 1.373e-01 2.613e-01 1.397e+02 0.526 0.599965
## I(day^2):mate_orderFS -3.149e-04 3.932e-04 1.150e+03 -0.801 0.423450
## I(day^2):mate_orderSF -1.128e-03 3.207e-04 1.154e+03 -3.515 0.000456 ***
## I(day^2):mate_orderSS -1.122e-03 3.322e-04 1.153e+03 -3.376 0.000759 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Correlation of Fixed Effects:
## (Intr) day I(d^2) mt_rFS mt_rSF mt_rSS I(^2):_F I(^2):_SF
## day -0.551
## I(day^2) 0.426 -0.897
## mate_ordrFS -0.675 0.185 -0.110
## mate_ordrSF -0.653 0.151 -0.079 0.497
## mate_ordrSS -0.671 0.170 -0.096 0.507 0.498
## I(dy^2):_FS 0.288 -0.473 0.345 -0.334 -0.094 -0.103
## I(dy^2):_SF 0.270 -0.429 0.288 -0.107 -0.291 -0.101 0.242
## I(dy^2):_SS 0.285 -0.459 0.318 -0.112 -0.096 -0.303 0.255 0.243
## Type III Analysis of Variance Table with Satterthwaite's method
## Sum Sq Mean Sq NumDF DenDF F value Pr(>F)
## day 0.483 0.4826 1 1120.03 0.2151 0.6428885
## I(day^2) 20.097 20.0965 1 1120.30 8.9575 0.0028239 **
## mate_order 1.786 0.5952 3 145.64 0.2653 0.8503290
## I(day^2):mate_order 43.717 14.5723 3 1152.63 6.4952 0.0002335 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## $emtrends
## mate_order (day)^2.trend SE df lower.CL upper.CL
## FF -0.000407 0.000240 1144 -0.000877 6.32e-05
## FS -0.000722 0.000342 1153 -0.001394 -4.99e-05
## SF -0.001534 0.000296 1154 -0.002115 -9.53e-04
## SS -0.001528 0.000297 1155 -0.002112 -9.45e-04
##
## Degrees-of-freedom method: kenward-roger
## Confidence level used: 0.95
##
## $contrasts
## contrast estimate SE df t.ratio p.value
## FF - FS 3.15e-04 0.000394 1150 0.799 0.8547
## FF - SF 1.13e-03 0.000321 1154 3.509 0.0026
## FF - SS 1.12e-03 0.000333 1153 3.370 0.0043
## FS - SF 8.13e-04 0.000444 1153 1.830 0.2596
## FS - SS 8.07e-04 0.000446 1154 1.808 0.2700
## SF - SS -5.96e-06 0.000403 1155 -0.015 1.0000
##
## Note: contrasts are still on the 1(mu + 1) scale
## Degrees-of-freedom method: kenward-roger
## P value adjustment: tukey method for comparing a family of 4 estimates
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: egg_count ~ mate_order + day + (1 | trial)
## Data: first.fecund.double
##
## REML criterion at convergence: 1074
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -1.2383 -0.5515 -0.1894 0.2515 5.5747
##
## Random effects:
## Groups Name Variance Std.Dev.
## trial (Intercept) 33.39 5.779
## Residual 228.88 15.129
## Number of obs: 131, groups: trial, 8
##
## Fixed effects:
## Estimate Std. Error df t value Pr(>|t|)
## (Intercept) 20.0307 4.0232 32.9014 4.979 1.98e-05 ***
## mate_orderFS 2.3158 3.7826 119.0484 0.612 0.542
## mate_orderSF 4.1471 3.8688 118.4843 1.072 0.286
## mate_orderSS -0.1895 3.7444 118.4498 -0.051 0.960
## day -0.5472 0.1279 124.1422 -4.278 3.74e-05 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Correlation of Fixed Effects:
## (Intr) mt_rFS mt_rSF mt_rSS
## mate_ordrFS -0.538
## mate_ordrSF -0.524 0.497
## mate_ordrSS -0.527 0.513 0.500
## day -0.565 0.153 0.148 0.131
## $emmeans
## mate_order emmean SE df lower.CL upper.CL
## FF 12.2 3.35 22.7 5.28 19.2
## FS 14.5 3.36 22.7 7.58 21.5
## SF 16.4 3.47 25.4 9.23 23.5
## SS 12.0 3.35 22.1 5.10 19.0
##
## Degrees-of-freedom method: kenward-roger
## Confidence level used: 0.95
##
## $contrasts
## contrast estimate SE df t.ratio p.value
## FF - FS -2.32 3.79 121 -0.611 0.9284
## FF - SF -4.15 3.87 120 -1.070 0.7082
## FF - SS 0.19 3.75 120 0.051 1.0000
## FS - SF -1.83 3.85 120 -0.476 0.9642
## FS - SS 2.51 3.72 120 0.674 0.9068
## SF - SS 4.34 3.82 120 1.137 0.6676
##
## Degrees-of-freedom method: kenward-roger
## P value adjustment: tukey method for comparing a family of 4 estimates
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: day ~ mate_order + egg_count + (1 | trial)
## Data: first.fecund.double
##
## REML criterion at convergence: 963.6
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -1.49564 -0.75966 -0.08461 0.52654 2.59896
##
## Random effects:
## Groups Name Variance Std.Dev.
## trial (Intercept) 39.87 6.314
## Residual 90.14 9.494
## Number of obs: 131, groups: trial, 8
##
## Fixed effects:
## Estimate Std. Error df t value Pr(>|t|)
## (Intercept) 20.09149 2.82445 12.75540 7.113 8.77e-06 ***
## mate_orderFS -3.01598 2.36751 119.86055 -1.274 0.205
## mate_orderSF -2.53128 2.43284 119.63083 -1.040 0.300
## mate_orderSS -2.91140 2.33878 119.67369 -1.245 0.216
## egg_count -0.24507 0.05254 120.56949 -4.664 8.08e-06 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Correlation of Fixed Effects:
## (Intr) mt_rFS mt_rSF mt_rSS
## mate_ordrFS -0.386
## mate_ordrSF -0.366 0.494
## mate_ordrSS -0.400 0.507 0.492
## egg_count -0.190 -0.110 -0.146 -0.047
## $emmeans
## mate_order emmean SE df lower.CL upper.CL
## FF 16.8 2.78 12.6 10.79 22.8
## FS 13.8 2.79 12.8 7.75 19.8
## SF 14.3 2.85 13.8 8.16 20.4
## SS 13.9 2.79 12.7 7.86 19.9
##
## Degrees-of-freedom method: kenward-roger
## Confidence level used: 0.95
##
## $contrasts
## contrast estimate SE df t.ratio p.value
## FF - FS 3.016 2.37 120 1.272 0.5825
## FF - SF 2.531 2.44 120 1.039 0.7268
## FF - SS 2.911 2.34 120 1.243 0.6007
## FS - SF -0.485 2.42 120 -0.200 0.9971
## FS - SS -0.105 2.34 119 -0.045 1.0000
## SF - SS 0.380 2.41 119 0.158 0.9986
##
## Degrees-of-freedom method: kenward-roger
## P value adjustment: tukey method for comparing a family of 4 estimates
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: egg_count ~ mate_order + day + (1 | trial)
## Data: first.fecund.double.noout
##
## REML criterion at convergence: 1048.3
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -1.2695 -0.5721 -0.1610 0.2974 5.6131
##
## Random effects:
## Groups Name Variance Std.Dev.
## trial (Intercept) 58.18 7.628
## Residual 222.13 14.904
## Number of obs: 128, groups: trial, 8
##
## Fixed effects:
## Estimate Std. Error df t value Pr(>|t|)
## (Intercept) 21.0939 4.4049 22.2219 4.789 8.58e-05 ***
## mate_orderFS 2.5138 3.7771 115.3476 0.666 0.507
## mate_orderSF 4.2060 3.8589 114.8850 1.090 0.278
## mate_orderSS 0.7357 3.7759 115.4873 0.195 0.846
## day -0.6218 0.1297 122.6746 -4.793 4.65e-06 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Correlation of Fixed Effects:
## (Intr) mt_rFS mt_rSF mt_rSS
## mate_ordrFS -0.495
## mate_ordrSF -0.483 0.508
## mate_ordrSS -0.474 0.522 0.507
## day -0.511 0.136 0.134 0.098
## $emmeans
## mate_order emmean SE df lower.CL upper.CL
## FF 12.3 3.81 17.0 4.29 20.4
## FS 14.8 3.77 16.2 6.86 22.8
## SF 16.5 3.86 17.7 8.42 24.7
## SS 13.1 3.80 16.4 5.04 21.1
##
## Degrees-of-freedom method: kenward-roger
## Confidence level used: 0.95
##
## $contrasts
## contrast estimate SE df t.ratio p.value
## FF - FS -2.514 3.78 117 -0.665 0.9102
## FF - SF -4.206 3.86 117 -1.089 0.6970
## FF - SS -0.736 3.78 117 -0.195 0.9974
## FS - SF -1.692 3.79 117 -0.446 0.9702
## FS - SS 1.778 3.70 117 0.481 0.9631
## SF - SS 3.470 3.80 117 0.914 0.7976
##
## Degrees-of-freedom method: kenward-roger
## P value adjustment: tukey method for comparing a family of 4 estimates
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: day ~ mate_order + egg_count + (1 | trial)
## Data: first.fecund.double.noout
##
## REML criterion at convergence: 936.5
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -1.70863 -0.77925 -0.06761 0.50305 2.64984
##
## Random effects:
## Groups Name Variance Std.Dev.
## trial (Intercept) 54.36 7.373
## Residual 85.09 9.224
## Number of obs: 128, groups: trial, 8
##
## Fixed effects:
## Estimate Std. Error df t value Pr(>|t|)
## (Intercept) 19.98050 3.12763 11.00892 6.388 5.14e-05 ***
## mate_orderFS -2.40480 2.33518 116.44862 -1.030 0.305
## mate_orderSF -2.02548 2.39523 116.19041 -0.846 0.399
## mate_orderSS -1.79851 2.33533 116.60670 -0.770 0.443
## egg_count -0.26458 0.05146 117.44462 -5.141 1.10e-06 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Correlation of Fixed Effects:
## (Intr) mt_rFS mt_rSF mt_rSS
## mate_ordrFS -0.353
## mate_ordrSF -0.336 0.507
## mate_ordrSS -0.361 0.520 0.504
## egg_count -0.169 -0.112 -0.146 -0.059
## $emmeans
## mate_order emmean SE df lower.CL upper.CL
## FF 16.4 3.09 11.2 9.64 23.2
## FS 14.0 3.08 11.0 7.24 20.8
## SF 14.4 3.12 11.7 7.57 21.2
## SS 14.6 3.09 11.1 7.84 21.4
##
## Degrees-of-freedom method: kenward-roger
## Confidence level used: 0.95
##
## $contrasts
## contrast estimate SE df t.ratio p.value
## FF - FS 2.405 2.34 117 1.029 0.7330
## FF - SF 2.025 2.40 117 0.845 0.8329
## FF - SS 1.799 2.34 117 0.769 0.8682
## FS - SF -0.379 2.35 116 -0.161 0.9985
## FS - SS -0.606 2.29 116 -0.265 0.9935
## SF - SS -0.227 2.36 116 -0.096 0.9997
##
## Degrees-of-freedom method: kenward-roger
## P value adjustment: tukey method for comparing a family of 4 estimates
#Model
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: egg_count ~ mate_order + day + (1 | trial)
## Data: peak.fecund
##
## REML criterion at convergence: 1302
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -1.8725 -0.7008 -0.0182 0.5083 3.3114
##
## Random effects:
## Groups Name Variance Std.Dev.
## trial (Intercept) 214.4 14.64
## Residual 1985.7 44.56
## Number of obs: 127, groups: trial, 8
##
## Fixed effects:
## Estimate Std. Error df t value Pr(>|t|)
## (Intercept) 83.15060 12.09753 48.88226 6.873 1.05e-08 ***
## mate_orderFS -10.53468 11.28118 117.42014 -0.934 0.352
## mate_orderSF -1.76243 11.77411 117.17883 -0.150 0.881
## mate_orderSS -7.49749 11.39385 117.12031 -0.658 0.512
## day 0.05351 0.59676 101.40722 0.090 0.929
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Correlation of Fixed Effects:
## (Intr) mt_rFS mt_rSF mt_rSS
## mate_ordrFS -0.539
## mate_ordrSF -0.550 0.515
## mate_ordrSS -0.582 0.538 0.525
## day -0.602 0.086 0.139 0.167
## $emmeans
## mate_order emmean SE df lower.CL upper.CL
## FF 83.7 9.76 29.7 63.8 103.6
## FS 73.2 9.34 24.7 53.9 92.4
## SF 81.9 9.84 30.4 61.8 102.0
## SS 76.2 9.36 25.3 56.9 95.5
##
## Degrees-of-freedom method: kenward-roger
## Confidence level used: 0.95
##
## $contrasts
## contrast estimate SE df t.ratio p.value
## FF - FS 10.53 11.3 117 0.932 0.7879
## FF - SF 1.76 11.8 117 0.149 0.9988
## FF - SS 7.50 11.4 116 0.657 0.9130
## FS - SF -8.77 11.4 117 -0.770 0.8678
## FS - SS -3.04 10.9 116 -0.278 0.9924
## SF - SS 5.74 11.3 116 0.508 0.9571
##
## Degrees-of-freedom method: kenward-roger
## P value adjustment: tukey method for comparing a family of 4 estimates
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: day ~ mate_order + egg_count + (1 | trial)
## Data: peak.fecund
##
## REML criterion at convergence: 837.4
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -2.5072 -0.5979 -0.2236 0.5531 3.4743
##
## Random effects:
## Groups Name Variance Std.Dev.
## trial (Intercept) 24.98 4.998
## Residual 39.47 6.282
## Number of obs: 127, groups: trial, 8
##
## Fixed effects:
## Estimate Std. Error df t value Pr(>|t|)
## (Intercept) 11.787536 2.374435 17.070714 4.964 0.000117 ***
## mate_orderFS -1.333779 1.597477 115.326964 -0.835 0.405485
## mate_orderSF -2.619141 1.647382 114.914542 -1.590 0.114609
## mate_orderSS -2.868894 1.592677 115.183383 -1.801 0.074271 .
## egg_count 0.004597 0.013025 117.495852 0.353 0.724755
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Correlation of Fixed Effects:
## (Intr) mt_rFS mt_rSF mt_rSS
## mate_ordrFS -0.393
## mate_ordrSF -0.350 0.509
## mate_ordrSS -0.384 0.538 0.516
## egg_count -0.459 0.095 0.024 0.075
## $emmeans
## mate_order emmean SE df lower.CL upper.CL
## FF 12.16 2.11 11.5 7.54 16.8
## FS 10.83 2.08 10.9 6.24 15.4
## SF 9.54 2.12 11.8 4.90 14.2
## SS 9.29 2.08 10.9 4.70 13.9
##
## Degrees-of-freedom method: kenward-roger
## Confidence level used: 0.95
##
## $contrasts
## contrast estimate SE df t.ratio p.value
## FF - FS 1.33 1.60 116 0.834 0.8381
## FF - SF 2.62 1.65 115 1.589 0.3888
## FF - SS 2.87 1.59 116 1.800 0.2786
## FS - SF 1.29 1.61 116 0.799 0.8548
## FS - SS 1.54 1.53 115 1.001 0.7492
## SF - SS 0.25 1.60 115 0.157 0.9986
##
## Degrees-of-freedom method: kenward-roger
## P value adjustment: tukey method for comparing a family of 4 estimates
#Model - no outliers
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: egg_count ~ mate_order + day + (1 | trial)
## Data: peak.fecund.noout
##
## REML criterion at convergence: 1266.7
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -1.9289 -0.6261 -0.0221 0.5394 3.3198
##
## Random effects:
## Groups Name Variance Std.Dev.
## trial (Intercept) 175.9 13.26
## Residual 1937.0 44.01
## Number of obs: 124, groups: trial, 8
##
## Fixed effects:
## Estimate Std. Error df t value Pr(>|t|)
## (Intercept) 84.7371 11.7802 50.9394 7.193 2.71e-09 ***
## mate_orderFS -14.4892 11.3044 114.8016 -1.282 0.203
## mate_orderSF -5.5542 11.7621 114.6067 -0.472 0.638
## mate_orderSS -9.0038 11.4704 114.6410 -0.785 0.434
## day 0.3275 0.6065 95.1701 0.540 0.590
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Correlation of Fixed Effects:
## (Intr) mt_rFS mt_rSF mt_rSS
## mate_ordrFS -0.545
## mate_ordrSF -0.558 0.528
## mate_ordrSS -0.583 0.547 0.532
## day -0.583 0.041 0.098 0.122
## $emmeans
## mate_order emmean SE df lower.CL upper.CL
## FF 87.9 9.63 34.2 68.4 107.5
## FS 73.4 9.01 26.2 54.9 92.0
## SF 82.4 9.50 32.6 63.0 101.7
## SS 78.9 9.14 27.6 60.2 97.7
##
## Degrees-of-freedom method: kenward-roger
## Confidence level used: 0.95
##
## $contrasts
## contrast estimate SE df t.ratio p.value
## FF - FS 14.49 11.3 114 1.278 0.5785
## FF - SF 5.55 11.8 114 0.471 0.9652
## FF - SS 9.00 11.5 114 0.783 0.8620
## FS - SF -8.93 11.3 115 -0.794 0.8570
## FS - SS -5.49 10.9 113 -0.505 0.9577
## SF - SS 3.45 11.3 113 0.306 0.9900
##
## Degrees-of-freedom method: kenward-roger
## P value adjustment: tukey method for comparing a family of 4 estimates
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: day ~ mate_order + egg_count + (1 | trial)
## Data: peak.fecund.noout
##
## REML criterion at convergence: 808.9
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -2.7884 -0.6237 -0.2433 0.5555 3.7344
##
## Random effects:
## Groups Name Variance Std.Dev.
## trial (Intercept) 28.31 5.321
## Residual 36.31 6.026
## Number of obs: 124, groups: trial, 8
##
## Fixed effects:
## Estimate Std. Error df t value Pr(>|t|)
## (Intercept) 10.709681 2.474333 15.916737 4.328 0.000525 ***
## mate_orderFS -0.464275 1.565016 111.972357 -0.297 0.767277
## mate_orderSF -1.869032 1.608618 111.680206 -1.162 0.247759
## mate_orderSS -1.793973 1.572145 112.036123 -1.141 0.256262
## egg_count 0.008685 0.012810 113.567765 0.678 0.499176
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Correlation of Fixed Effects:
## (Intr) mt_rFS mt_rSF mt_rSS
## mate_ordrFS -0.395
## mate_ordrSF -0.354 0.528
## mate_ordrSS -0.375 0.553 0.529
## egg_count -0.456 0.127 0.058 0.091
## $emmeans
## mate_order emmean SE df lower.CL upper.CL
## FF 11.43 2.20 11.0 6.58 16.3
## FS 10.96 2.16 10.2 6.16 15.8
## SF 9.56 2.20 10.8 4.72 14.4
## SS 9.63 2.17 10.3 4.82 14.4
##
## Degrees-of-freedom method: kenward-roger
## Confidence level used: 0.95
##
## $contrasts
## contrast estimate SE df t.ratio p.value
## FF - FS 0.4643 1.57 113 0.296 0.9909
## FF - SF 1.8690 1.61 112 1.161 0.6523
## FF - SS 1.7940 1.57 113 1.140 0.6655
## FS - SF 1.4048 1.54 112 0.910 0.7996
## FS - SS 1.3297 1.48 112 0.896 0.8070
## SF - SS -0.0751 1.55 112 -0.049 1.0000
##
## Degrees-of-freedom method: kenward-roger
## P value adjustment: tukey method for comparing a family of 4 estimates
#to peak outliers - #4,12,101
to_peak_outliers <- two.topeak %>%
group_by(indv) %>%
mutate(rate_of_lay=(max(egg_count)-min(egg_count))/(max(day)-min(day))) %>%
filter(rate_of_lay!="NaN") %>%
filter(row_number(rate_of_lay) == 1)%>%
ungroup() %>%
filter(rate_of_lay<1)
to_peak_nooutliers <- two.topeak %>%
filter(!indv %in% c(4,12,101))
## Type III Analysis of Variance Table with Satterthwaite's method
## Sum Sq Mean Sq NumDF DenDF F value Pr(>F)
## mate_order 3635 1212 3 216.20 1.2217 0.3027
## day 75417 75417 1 516.87 76.0403 < 2.2e-16 ***
## mate_order:day 21393 7131 3 518.10 7.1898 9.786e-05 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## $emtrends
## mate_order day.trend SE df lower.CL upper.CL
## FF 0.808 0.316 521 0.187 1.43
## FS 2.974 0.585 511 1.824 4.12
## SF 2.064 0.505 524 1.072 3.06
## SS 3.787 0.727 512 2.359 5.21
##
## Degrees-of-freedom method: kenward-roger
## Confidence level used: 0.95
##
## $contrasts
## contrast estimate SE df t.ratio p.value
## FF - FS -2.166 0.665 514 -3.258 0.0066
## FF - SF -1.256 0.596 523 -2.109 0.1516
## FF - SS -2.979 0.793 514 -3.759 0.0011
## FS - SF 0.910 0.773 517 1.177 0.6416
## FS - SS -0.813 0.933 512 -0.871 0.8197
## SF - SS -1.723 0.885 516 -1.947 0.2100
##
## Degrees-of-freedom method: kenward-roger
## P value adjustment: tukey method for comparing a family of 4 estimates
## Type III Analysis of Variance Table with Satterthwaite's method
## Sum Sq Mean Sq NumDF DenDF F value Pr(>F)
## mate_order 4790 1597 3 219.46 1.5241 0.2091309
## day 77089 77089 1 492.71 73.5893 < 2.2e-16 ***
## mate_order:day 18279 6093 3 493.92 5.8162 0.0006537 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## $emtrends
## mate_order day.trend SE df lower.CL upper.CL
## FF 0.968 0.354 499 0.271 1.66
## FS 2.915 0.599 485 1.738 4.09
## SF 2.026 0.517 498 1.011 3.04
## SS 4.012 0.770 489 2.499 5.52
##
## Degrees-of-freedom method: kenward-roger
## Confidence level used: 0.95
##
## $contrasts
## contrast estimate SE df t.ratio p.value
## FF - FS -1.947 0.696 489 -2.797 0.0274
## FF - SF -1.058 0.627 498 -1.689 0.3305
## FF - SS -3.044 0.848 491 -3.592 0.0020
## FS - SF 0.889 0.791 491 1.123 0.6752
## FS - SS -1.097 0.975 487 -1.125 0.6743
## SF - SS -1.986 0.927 492 -2.142 0.1414
##
## Degrees-of-freedom method: kenward-roger
## P value adjustment: tukey method for comparing a family of 4 estimates
#to peak outliers removed from peak - #4,12,101
from_peak_outliers <- two.frompeak %>%
group_by(indv) %>%
mutate(rate_of_lay=(min(egg_count)-max(egg_count))/(max(day)-min(day))) %>%
filter(rate_of_lay!="NaN") %>%
filter(row_number(rate_of_lay) == 1)%>%
ungroup()
from_peak_nooutliers <- two.frompeak %>%
filter(!indv %in% c(4,12,101))
## Type III Analysis of Variance Table with Satterthwaite's method
## Sum Sq Mean Sq NumDF DenDF F value Pr(>F)
## day 174073 174073 1 447.68 183.5810 < 2.2e-16 ***
## mate_order 6858 2286 3 246.42 2.4109 0.06748 .
## day:mate_order 25126 8375 3 402.17 8.8330 1.105e-05 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## $emtrends
## mate_order day.trend SE df lower.CL upper.CL
## FF -1.04 0.158 186 -1.35 -0.731
## FS -2.47 0.366 394 -3.20 -1.754
## SF -2.19 0.316 640 -2.81 -1.573
## SS -2.23 0.298 628 -2.82 -1.647
##
## Degrees-of-freedom method: kenward-roger
## Confidence level used: 0.95
##
## $contrasts
## contrast estimate SE df t.ratio p.value
## FF - FS 1.4322 0.399 349 3.590 0.0021
## FF - SF 1.1510 0.353 516 3.261 0.0065
## FF - SS 1.1893 0.337 494 3.530 0.0026
## FS - SF -0.2811 0.484 494 -0.581 0.9377
## FS - SS -0.2428 0.472 482 -0.514 0.9557
## SF - SS 0.0383 0.434 634 0.088 0.9998
##
## Degrees-of-freedom method: kenward-roger
## P value adjustment: tukey method for comparing a family of 4 estimates
## Type III Analysis of Variance Table with Satterthwaite's method
## Sum Sq Mean Sq NumDF DenDF F value Pr(>F)
## day 173333 173333 1 435.25 181.2764 < 2.2e-16 ***
## mate_order 6963 2321 3 240.30 2.4273 0.06612 .
## day:mate_order 25525 8508 3 389.50 8.8983 1.024e-05 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## $emtrends
## mate_order day.trend SE df lower.CL upper.CL
## FF -1.03 0.158 178 -1.34 -0.715
## FS -2.47 0.367 386 -3.19 -1.746
## SF -2.19 0.317 628 -2.81 -1.564
## SS -2.23 0.299 616 -2.81 -1.641
##
## Degrees-of-freedom method: kenward-roger
## Confidence level used: 0.95
##
## $contrasts
## contrast estimate SE df t.ratio p.value
## FF - FS 1.4397 0.400 340 3.602 0.0020
## FF - SF 1.1580 0.354 502 3.271 0.0063
## FF - SS 1.1995 0.338 480 3.548 0.0024
## FS - SF -0.2817 0.485 484 -0.581 0.9377
## FS - SS -0.2401 0.473 472 -0.508 0.9573
## SF - SS 0.0416 0.435 623 0.096 0.9997
##
## Degrees-of-freedom method: kenward-roger
## P value adjustment: tukey method for comparing a family of 4 estimates
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: total ~ mate_order + (1 | trial)
## Data: double.mated
##
## REML criterion at convergence: 1595.7
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -1.8037 -0.8392 -0.1028 0.7295 2.1807
##
## Random effects:
## Groups Name Variance Std.Dev.
## trial (Intercept) 3501 59.17
## Residual 26154 161.72
## Number of obs: 125, groups: trial, 8
##
## Fixed effects:
## Estimate Std. Error df t value Pr(>|t|)
## (Intercept) 283.10 36.25 24.28 7.810 4.45e-08 ***
## mate_orderFS -47.25 41.32 114.73 -1.143 0.255
## mate_orderSF -19.59 42.33 114.47 -0.463 0.644
## mate_orderSS -60.85 40.79 114.91 -1.492 0.139
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Correlation of Fixed Effects:
## (Intr) mt_rFS mt_rSF
## mate_ordrFS -0.584
## mate_ordrSF -0.571 0.505
## mate_ordrSS -0.592 0.528 0.515
## $emmeans
## mate_order emmean SE df lower.CL upper.CL
## FF 283 36.3 26.3 209 358
## FS 236 35.7 24.3 162 310
## SF 264 36.9 27.4 188 339
## SS 222 35.1 22.8 150 295
##
## Degrees-of-freedom method: kenward-roger
## Confidence level used: 0.95
##
## $contrasts
## contrast estimate SE df t.ratio p.value
## FF - FS 47.3 41.4 115 1.142 0.6646
## FF - SF 19.6 42.4 115 0.462 0.9671
## FF - SS 60.8 40.9 115 1.489 0.4476
## FS - SF -27.7 41.7 115 -0.664 0.9104
## FS - SS 13.6 39.9 114 0.341 0.9863
## SF - SS 41.3 41.0 115 1.006 0.7460
##
## Degrees-of-freedom method: kenward-roger
## P value adjustment: tukey method for comparing a family of 4 estimates
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: total ~ mate_order + (1 | trial)
## Data: double.mated.noout
##
## REML criterion at convergence: 1554.7
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -1.7484 -0.8031 -0.1381 0.7314 2.2482
##
## Random effects:
## Groups Name Variance Std.Dev.
## trial (Intercept) 2200 46.91
## Residual 26208 161.89
## Number of obs: 122, groups: trial, 8
##
## Fixed effects:
## Estimate Std. Error df t value Pr(>|t|)
## (Intercept) 299.49 34.87 31.63 8.588 8.99e-10 ***
## mate_orderFS -61.11 42.06 111.41 -1.453 0.1491
## mate_orderSF -34.31 43.05 111.13 -0.797 0.4272
## mate_orderSS -69.75 41.87 112.32 -1.666 0.0985 .
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Correlation of Fixed Effects:
## (Intr) mt_rFS mt_rSF
## mate_ordrFS -0.640
## mate_ordrSF -0.625 0.522
## mate_ordrSS -0.642 0.540 0.526
## $emmeans
## mate_order emmean SE df lower.CL upper.CL
## FF 299 34.9 36.3 229 370
## FS 238 33.4 30.2 170 307
## SF 265 34.6 34.5 195 335
## SS 230 33.3 28.8 162 298
##
## Degrees-of-freedom method: kenward-roger
## Confidence level used: 0.95
##
## $contrasts
## contrast estimate SE df t.ratio p.value
## FF - FS 61.11 42.1 113 1.450 0.4712
## FF - SF 34.31 43.1 112 0.796 0.8563
## FF - SS 69.75 42.0 113 1.661 0.3493
## FS - SF -26.80 41.7 112 -0.642 0.9180
## FS - SS 8.64 40.3 112 0.215 0.9965
## SF - SS 35.44 41.4 112 0.856 0.8275
##
## Degrees-of-freedom method: kenward-roger
## P value adjustment: tukey method for comparing a family of 4 estimates
## Cox mixed-effects model fit by maximum likelihood
## Data: longevity.fert
## events, n = 145, 145
## Iterations= 2 16
## NULL Integrated Fitted
## Log-likelihood -580.0343 -569.9017 -569.8478
##
## Chisq df p AIC BIC
## Integrated loglik 20.27 8.00 0.0093785 4.27 -19.55
## Penalized loglik 20.37 7.05 0.0049846 6.27 -14.72
##
## Model: Surv(day) ~ mate_order * egg_count + (1 | indv)
## Fixed coefficients
## coef exp(coef) se(coef) z p
## mate_orderFS 0.386942692 1.4724721 0.26738043 1.45 0.150
## mate_orderSF 0.545855553 1.7260845 0.26727810 2.04 0.041
## mate_orderSS 0.342274684 1.4081470 0.26163686 1.31 0.190
## egg_count 0.023533489 1.0238126 0.01408043 1.67 0.095
## mate_orderFS:egg_count -0.012326383 0.9877493 0.01512498 -0.81 0.420
## mate_orderSF:egg_count -0.030741473 0.9697262 0.01604497 -1.92 0.055
## mate_orderSS:egg_count 0.006051695 1.0060700 0.01551183 0.39 0.700
##
## Random effects
## Group Variable Std Dev Variance
## indv Intercept 0.019981891 0.000399276
## $emtrends
## mate_order egg_count.trend SE df asymp.LCL asymp.UCL
## FF 0.02353 0.01408 Inf -0.004064 0.05113
## FS 0.01121 0.00578 Inf -0.000112 0.02253
## SF -0.00721 0.00764 Inf -0.022190 0.00777
## SS 0.02959 0.00692 Inf 0.016018 0.04315
##
## Confidence level used: 0.95
##
## $contrasts
## contrast estimate SE df z.ratio p.value
## FF - FS 0.01233 0.01512 Inf 0.815 0.8474
## FF - SF 0.03074 0.01604 Inf 1.916 0.2212
## FF - SS -0.00605 0.01551 Inf -0.390 0.9798
## FS - SF 0.01842 0.00962 Inf 1.913 0.2223
## FS - SS -0.01838 0.00876 Inf -2.099 0.1534
## SF - SS -0.03679 0.01038 Inf -3.545 0.0022
##
## P value adjustment: tukey method for comparing a family of 4 estimates
## chisq df p
## mate_order 0.75 3 0.861
## egg_count 3.43 1 0.064
## mate_order:egg_count 5.40 3 0.145
## GLOBAL 6.94 7 0.435
## Cox mixed-effects model fit by maximum likelihood
## Data: longevity.fert
## events, n = 145, 145
## Iterations= 2 16
## NULL Integrated Fitted
## Log-likelihood -580.0343 -569.9017 -569.8478
##
## Chisq df p AIC BIC
## Integrated loglik 20.27 8.00 0.0093785 4.27 -19.55
## Penalized loglik 20.37 7.05 0.0049846 6.27 -14.72
##
## Model: Surv(day) ~ mate_order * egg_count + (1 | indv)
## Fixed coefficients
## coef exp(coef) se(coef) z p
## mate_orderFS 0.386942692 1.4724721 0.26738043 1.45 0.150
## mate_orderSF 0.545855553 1.7260845 0.26727810 2.04 0.041
## mate_orderSS 0.342274684 1.4081470 0.26163686 1.31 0.190
## egg_count 0.023533489 1.0238126 0.01408043 1.67 0.095
## mate_orderFS:egg_count -0.012326383 0.9877493 0.01512498 -0.81 0.420
## mate_orderSF:egg_count -0.030741473 0.9697262 0.01604497 -1.92 0.055
## mate_orderSS:egg_count 0.006051695 1.0060700 0.01551183 0.39 0.700
##
## Random effects
## Group Variable Std Dev Variance
## indv Intercept 0.019981891 0.000399276
## $emtrends
## mate_order egg_count.trend SE df asymp.LCL asymp.UCL
## FF 0.02353 0.01408 Inf -0.004064 0.05113
## FS 0.01121 0.00578 Inf -0.000112 0.02253
## SF -0.00721 0.00764 Inf -0.022190 0.00777
## SS 0.02959 0.00692 Inf 0.016018 0.04315
##
## Confidence level used: 0.95
##
## $contrasts
## contrast estimate SE df z.ratio p.value
## FF - FS 0.01233 0.01512 Inf 0.815 0.8474
## FF - SF 0.03074 0.01604 Inf 1.916 0.2212
## FF - SS -0.00605 0.01551 Inf -0.390 0.9798
## FS - SF 0.01842 0.00962 Inf 1.913 0.2223
## FS - SS -0.01838 0.00876 Inf -2.099 0.1534
## SF - SS -0.03679 0.01038 Inf -3.545 0.0022
##
## P value adjustment: tukey method for comparing a family of 4 estimates
## chisq df p
## mate_order 0.75 3 0.861
## egg_count 3.43 1 0.064
## mate_order:egg_count 5.40 3 0.145
## GLOBAL 6.94 7 0.435
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: n ~ morph * as.factor(mate.order) + (1 | trial)
## Data: rej.count
##
## REML criterion at convergence: 33
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -0.9720 -0.8585 -0.4294 1.0452 1.5011
##
## Random effects:
## Groups Name Variance Std.Dev.
## trial (Intercept) 0.0009791 0.03129
## Residual 0.2646200 0.51441
## Number of obs: 22, groups: trial, 8
##
## Fixed effects:
## Estimate Std. Error df t value
## (Intercept) 1.500399 0.365076 12.147494 4.110
## morphScrambler -0.001628 0.516295 12.148026 -0.003
## as.factor(mate.order)2 -0.056724 0.403026 17.156366 -0.141
## morphScrambler:as.factor(mate.order)2 -0.220322 0.570282 15.454700 -0.386
## Pr(>|t|)
## (Intercept) 0.00141 **
## morphScrambler 0.99754
## as.factor(mate.order)2 0.88971
## morphScrambler:as.factor(mate.order)2 0.70451
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Correlation of Fixed Effects:
## (Intr) mrphSc a.(.)2
## mrphScrmblr -0.707
## as.fctr(.)2 -0.904 0.640
## mrphS:.(.)2 0.640 -0.905 -0.707
## Type III Analysis of Variance Table with Satterthwaite's method
## Sum Sq Mean Sq NumDF DenDF F value Pr(>F)
## morph 0.040619 0.040619 1 12.977 0.1535 0.7016
## as.factor(mate.order) 0.090738 0.090738 1 17.053 0.3429 0.5658
## morph:as.factor(mate.order) 0.039497 0.039497 1 15.455 0.1493 0.7045
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: log(time) ~ morph * as.factor(mate.order) + (1 | female)
## Data: all.late
##
## REML criterion at convergence: 609.5
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -2.9308 -0.7153 0.0734 0.8069 2.2503
##
## Random effects:
## Groups Name Variance Std.Dev.
## female (Intercept) 0.01239 0.1113
## Residual 0.39836 0.6312
## Number of obs: 308, groups: female, 154
##
## Fixed effects:
## Estimate Std. Error df t value
## (Intercept) 3.4162 0.0735 303.9999 46.479
## morphScrambler -0.1021 0.1032 303.7216 -0.989
## as.factor(mate.order)2 0.1325 0.1032 241.7954 1.285
## morphScrambler:as.factor(mate.order)2 0.1516 0.1460 303.4374 1.039
## Pr(>|t|)
## (Intercept) <2e-16 ***
## morphScrambler 0.323
## as.factor(mate.order)2 0.200
## morphScrambler:as.factor(mate.order)2 0.300
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Correlation of Fixed Effects:
## (Intr) mrphSc a.(.)2
## mrphScrmblr -0.712
## as.fctr(.)2 -0.702 0.507
## mrphS:.(.)2 0.503 -0.707 -0.717
## Type III Analysis of Variance Table with Satterthwaite's method
## Sum Sq Mean Sq NumDF DenDF F value Pr(>F)
## morph 0.0518 0.0518 1 303.91 0.1299 0.718747
## as.factor(mate.order) 3.3414 3.3414 1 152.37 8.3881 0.004333 **
## morph:as.factor(mate.order) 0.4297 0.4297 1 303.44 1.0787 0.299810
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## $emmeans
## morph mate.order emmean SE df lower.CL upper.CL
## Fighter 1 3.42 0.0737 304 3.27 3.56
## Scrambler 1 3.31 0.0728 304 3.17 3.46
## Fighter 2 3.55 0.0737 304 3.40 3.69
## Scrambler 2 3.60 0.0728 304 3.45 3.74
##
## Degrees-of-freedom method: kenward-roger
## Results are given on the log (not the response) scale.
## Confidence level used: 0.95
##
## $contrasts
## contrast estimate SE df t.ratio p.value
## Fighter 1 - Scrambler 1 0.1021 0.104 304 0.983 0.7594
## Fighter 1 - Fighter 2 -0.1325 0.104 241 -1.280 0.5764
## Fighter 1 - Scrambler 2 -0.1820 0.103 243 -1.770 0.2905
## Scrambler 1 - Fighter 2 -0.2347 0.103 243 -2.282 0.1052
## Scrambler 1 - Scrambler 2 -0.2841 0.102 239 -2.782 0.0296
## Fighter 2 - Scrambler 2 -0.0495 0.104 304 -0.476 0.9643
##
## Degrees-of-freedom method: kenward-roger
## Results are given on the log (not the response) scale.
## P value adjustment: tukey method for comparing a family of 4 estimates
lay_time_double <- read.csv("C:/Users/z5218946/OneDrive - UNSW/Research/Mites Fecundity/fecundity_time_lay.csv")
str(lay_time_double)
## 'data.frame': 1209 obs. of 7 variables:
## $ ï..trial : int 1 1 1 1 1 1 1 1 1 1 ...
## $ mate_order : chr "FF" "FF" "FF" "FF" ...
## $ day : int 2 3 5 7 9 12 14 17 19 21 ...
## $ egg_count : int 0 0 0 0 0 0 0 0 0 24 ...
## $ times_mated: int 2 2 2 2 2 2 2 2 2 2 ...
## $ replicate : int 1 1 1 1 1 1 1 1 1 1 ...
## $ indv : int 1 1 1 1 1 1 1 1 1 1 ...
colnames(lay_time_double)[1]="trial"
lay_time_double$egg_count <- as.numeric(lay_time_double$egg_count)
lay_time_double$trial <- as.numeric(lay_time_double$trial)
lay_time_double$day <- as.numeric(lay_time_double$day)
lay_time_double$rep <- as.factor(lay_time_double$rep)
lay_time_double$indv <- as.numeric(lay_time_double$indv)
day_of_last_lay_double <- lay_time_double %>%
group_by(indv) %>%
top_n(1, day)
ggplot(day_of_last_lay_double, aes(mate_order,day)) + geom_boxplot()
mod_lay_double <- lmer(day~mate_order + egg_count + (1|trial), day_of_last_lay_double)
summary(mod_lay_double)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: day ~ mate_order + egg_count + (1 | trial)
## Data: day_of_last_lay_double
##
## REML criterion at convergence: 1074.1
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -1.8415 -0.6445 -0.1645 0.4420 4.3314
##
## Random effects:
## Groups Name Variance Std.Dev.
## trial (Intercept) 22.03 4.694
## Residual 101.75 10.087
## Number of obs: 144, groups: trial, 8
##
## Fixed effects:
## Estimate Std. Error df t value Pr(>|t|)
## (Intercept) 24.64750 2.47370 19.43973 9.964 4.46e-09 ***
## mate_orderFS -1.81489 2.40699 132.08498 -0.754 0.452186
## mate_orderSF -2.68077 2.42000 132.50913 -1.108 0.269974
## mate_orderSS -4.10060 2.36397 132.51190 -1.735 0.085132 .
## egg_count -0.10467 0.02816 138.19126 -3.717 0.000292 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Correlation of Fixed Effects:
## (Intr) mt_rFS mt_rSF mt_rSS
## mate_ordrFS -0.457
## mate_ordrSF -0.451 0.497
## mate_ordrSS -0.506 0.497 0.496
## egg_count -0.291 -0.065 -0.084 0.069
hist(resid(mod_lay_double))
emmeans(mod_lay_double, pairwise~mate_order)
## $emmeans
## mate_order emmean SE df lower.CL upper.CL
## FF 21.7 2.37 17.5 16.7 26.7
## FS 19.9 2.39 18.1 14.8 24.9
## SF 19.0 2.40 18.3 14.0 24.0
## SS 17.6 2.35 17.0 12.6 22.5
##
## Degrees-of-freedom method: kenward-roger
## Confidence level used: 0.95
##
## $contrasts
## contrast estimate SE df t.ratio p.value
## FF - FS 1.815 2.41 132 0.754 0.8750
## FF - SF 2.681 2.42 133 1.107 0.6861
## FF - SS 4.101 2.37 133 1.733 0.3109
## FS - SF 0.866 2.42 132 0.358 0.9843
## FS - SS 2.286 2.40 133 0.954 0.7758
## SF - SS 1.420 2.40 133 0.591 0.9348
##
## Degrees-of-freedom method: kenward-roger
## P value adjustment: tukey method for comparing a family of 4 estimates