\(\newcommand{\eq}[1]{\begin{align*}#1\end{align*}}\)
Physionet data set, 6000 rows, 9 columns (Time, Fx, Fy, Fz, Mx, My, Mz, COPx, COPy). 163 subjects, 116 female, 47 males. 16 with severe disability, eight hearing and vestibular deficits, two with visual deficits. Sampling frequency 1/0.01 = 100Hz. Link to article https://peerj.com/articles/2648.pdf
\[\begin{align} COP_x &= - \frac{M_y}{F_z} \\ COP_y &= \frac{M_x}{F_z} \\ \end{align}\]
Time.s. | Fx.N. | Fy.N. | Fz.N. | Mx.Nm. | My.Nm. | Mz.Nm. | COPx.cm. | COPy.cm. |
---|---|---|---|---|---|---|---|---|
0.01 | 1.504028 | 0.123810 | 446.1493 | 3.595200 | 17.77963 | -0.751617 | -3.985130 | 0.805829 |
0.02 | 1.386111 | -0.003157 | 446.2276 | 3.457270 | 17.99393 | -0.756481 | -4.032455 | 0.774777 |
0.03 | 1.266321 | -0.122046 | 446.3541 | 3.318239 | 18.20646 | -0.761518 | -4.078928 | 0.743409 |
0.04 | 1.142307 | -0.225587 | 446.5613 | 3.177267 | 18.41523 | -0.766670 | -4.123785 | 0.711496 |
0.05 | 1.011086 | -0.309218 | 446.8543 | 3.034027 | 18.61742 | -0.771594 | -4.166329 | 0.678975 |
The data provided are filtered using low pass Butterworth filter. The specifications are:
The COP is a bivariate distribution, jointly defined by anterior-posterior “AP” and medio-lateral “ML” coordinates. The COPx and COPy time series define the COP path relative to the origin of the force platform coordinate system. These time series were computed using the digitized output signals of the force platform amplifiers
The CoP displacement was decomposed into two components, rambling and trembling in AP and ML direction, using the method described by Zatsiorsky and Duarte [xx]. The method assumes two contributing components of CoP; the sum of which equals the total CoP. Rambling quantifies the migration of a moving reference point in relation to the body’s equilibrium, and has been suggested to represent the supra-spinal component of the CoP trajectory. Trembling quantifies the oscillations around the reference point, and has been suggested to represent the spinal and peripheral component of the CoP trajectory.
To estimate the rambling trajectory the instant equilibrium positions were identified as the CoP positions when the horizontal force Fhor = 0, and interpolated using a cubic spline function. To obtain the trembling trajectory, the deviations of the CoP trajectory from the interpolated instant equilibrium positions trajectory were determined. R
For each IEP point in time the COPx is identified. At those positions postural equilibrium is assumed, since horizontal forces are zero. The rambling trajectory provides likely the equilibrium path.
R basic offers fmm, periodic, natural cubic splining methods. No visual difference between those three methods. See below:
Rambling is the motion of a moving reference point with respect to which the body’s equilibrium is instantly maintained \(F_{hor} = 0, \ (F_x, F_y)\). Anterior - posterior
The oscillation around that moving equilibrium trajectory (rambling) is termed trembling.
n = amount of IEPs
mean.max = mean max distance ? (AP, ML)
mean.min = mean min distance ? (AP, ML)
mean CPO = arithmetic means of AP, and ML time series
\[\eq{
\bar{AP} &= \frac{1}{N}\sum{AP_O[n]}, \ \ \ \bar{ML} = \frac{1}{N}\sum{ML_O[n]} &(1) \\
AP[n] &= AP_O[n] - \bar{AP} , \ \ ML[n] = ML_O[n[- \bar{ML}]] &(2) \\
RD[n] &= \sqrt{AP[n]^2 + ML[n]^2 } &(3) \\
MDIST &= \frac{1}{N} \sum {RD[n]} &(4) \\
MDIST_{AP} &= \frac{1}{N} \sum{|AP[n]|} &(5) \\
RDIST &= \sqrt{\frac{1}{N}\sum{RD[n]^2}} &(6) \\
RDIST_{AP} &= s_{AP} = \sqrt{\frac{1}{N}\sum{AP[n]^2}} &(7) \\
TOTEX &= \sum^{N-1}_{n=1} = \Bigg(AP[n+1] - AP[n]\Bigg)^2 + \Bigg(ML[n+1] - ML[n]\Bigg)^2 &(8) \\
TOTEX_{AP} &= \sum^{N-1}_{n=1} \Bigg|AP[n+1] - AP[n] \Bigg| &(9) \\
MVELO &= \frac{TOTEX}{T} &(10) \\
MVELO_{AP} &= \frac{TOTEX_{AP}}{T} &(11) \\
AREA - CC &= \pi(MDIST + Z_{0.05} \ S_{RD}) &(12) \\
s_{RD} &= \sqrt{\frac{1}{N}\sum{RD^2[n] - MDIST^2}} &(13) \\
a &= \sqrt{F_{.05[2, n-2]}(s^2_{AP} + s^2_{ML} + D)} &(14) \\
b &= \sqrt{F_{.05[2, n-2]}(s^2_{AP} + s^2_{ML} - D)} &(15) \\
D &= \sqrt{(s^2_{AP} + s^2_{ML}) - 4(s^2_{AP} \ s^2_{ML} - s^2_{AP,ML})} &(16) \\
S_{APML} &= \frac{1}{N}\sum{AP[n] \ ML[n]} &(17) \\
AREA - CE &= \ \pi ab = 2\pi \ F_{.05[2,n-2]}\sqrt{s^2_{AP} \ s^2 {ML} - s^2_{APML}} &(18) \\
AREA - SW &= \frac{1}{2T} \sum^{N-1}_{n=1}|AP[n+1] \ ML[n] - AP[n] \ ML[n+1]| &(19) \\
MFREQ &= \frac{TOTEX}{2\pi \ MDIST \ T} = \frac{MVELO}{2\pi \ MDIST} &(20) \\
MFREQ_{AP} &= \frac{TOTEX_{AP}}{4 \sqrt2 \ MDIST_{AP} \ T} = \frac{MVELO_{AP}}{4 \sqrt2\ MDIST_{AP}} &(21) \\
FD &= \frac{log(N)}{log(\frac{Nd}{TOTEX})} &(22) \\
d_{FD-CC} &= 2(MDIST + Z_{.05} \ S_{RD}) &(23) \\
d_{FD - CE} &= \sqrt{(2a \ 2b} = \sqrt{8F_{0.05[2 ,ne-2]}\sqrt{(s^2_{AP} \ s^2_{ML} - s^2_{AP, ML})}} &(24) \\
\mu_k &= \sum^j_{m=i}{(m\Delta \ f)^k \ G[m]} &(25) \\
POWER &= \mu_0 &(26) \\
\sum^u_{m=i} G[m] &\geq 0.05 \ \mu_0 &(27) \\
\sum^v_{m=i} G[m] &\geq 0.95 \ \mu_0 &(28) \\
CFREQ &= \sqrt\frac{\mu_2}{\mu_0} &(29) \\
FREQD &= \sqrt{1 - \frac{\mu_1^2}{\mu_0 \ mu_2}} &(30) \\
}\] (2) AP and ML time services are referenced tot he mean COP
Trajectory RMS
Reference:
1. Perperoglou, A., Sauerbrei, W., Abrahamowicz, M. et al. A review of spline function procedures in R. BMC Med Res Methodol 19, 46 (2019). https://doi.org/10.1186/s12874-019-0666-3
2. Zatsiorsky, V. M., & Duarte, M. (1999). Instant equilibrium point and its migration in standing tasks: rambling and trembling components of the stabilogram. In Motor control (Vol. 3, Issue 1, pp. 28–38). https://doi.org/10.1123/mcj.3.1.28
3. Zatsiorsky, V. M., & Duarte, M. (2000). Rambling and trembling in quiet standing. Motor Control, 4(2), 185–200. https://doi.org/10.1123/mcj.4.2.185
4. Santos, D. A., & Duarte, M. (2016). A public data set of human balance evaluations. PeerJ, 2016(11). https://doi.org/10.7717/peerj.2648
5. Prieto, T. E., Myklebust, J. B., Hoffmann, R. G., Lovett, E. G., & Myklebust, B. M. (1996). Measures of postural steadiness: Differences between healthy young and elderly adults. IEEE Transactions on Biomedical Engineering, 43(9), 956–966. https://doi.org/10.1109/10.532130
\[\begin{align} d(\omega_j = \sqrt{\frac{1}{n}}\sum_{t=1}^{n}x_td^{-2\pi\omega_jt}\\ for \ j &= 0, 1, ..., n-1\\ \omega_j &= \frac{j}{n} \end{align}\]
\[\begin{aligned} |d(j/n)^2 &= \frac{1}{n}\bigg({\sum_{t=1}^n x_t cos(2\pi t j/n)\bigg)^2} + \frac{1}{n}\bigg({\sum_{t=1}^n x_t sin(2\pi t j/n)\bigg)^2} \\ P(j/n) &= \frac{4}{n}|d(j/n)|^2 \\ \end{aligned}\]
\[\begin{align} Central\:Difference\:Method:&\\ \hat{v} = \frac{ds}{dt} &= \frac{s_{i+1}-s_{i-1}}{2\varDelta t} \\ \hat{a} = \frac{dv}{dt} &= \frac{v_{i+1}-v_{i-1}}{2\varDelta t} = \frac{s_{i+2}-2s_i + s_{i-2}}{4(\varDelta t)^2} \end{align}\]
time | dx | vx | std.vx |
---|---|---|---|
0.01 | 0.051654 | 2.58270 | 1,2 |
0.02 | 0.059505 | 2.97525 | 1,2 |
0.03 | 0.069383 | 3.46915 | 1,2 |
0.04 | 0.078617 | 3.93085 | 1,2 |
0.05 | 0.085044 | 4.25220 | 2,3 |
0.06 | 0.087564 | 4.37820 | 2,3 |
Var1 | <-4 | -3,-4 | -2,-3 | -1,-2 | -1, mu | mu,1 | 1,2 | 2,3 | 3,4 | >4 |
Freq | 7 | 46 | 126 | 552 | 2134 | 2402 | 590 | 94 | 35 | 12 |
\[\begin{align} Central\:Difference\:Method:&\\ \hat{v} = \frac{ds}{dt} &= \frac{s_{i+1}-s_{i-1}}{2\varDelta t} \\ \hat{a} = \frac{dv}{dt} &= \frac{v_{i+1}-v_{i-1}}{2\varDelta t} = \frac{s_{i+2}-2s_i + s_{i-2}}{4(\varDelta t)^2} \end{align}\]
time | dy | vy | std.vy |
---|---|---|---|
0.01 | -0.028381 | -1.41905 | -1,-2 |
0.02 | -0.036877 | -1.84385 | -1,-2 |
0.03 | -0.047589 | -2.37945 | -1,-2 |
0.04 | -0.057375 | -2.86875 | -2,-3 |
0.05 | -0.063738 | -3.18690 | -2,-3 |
0.06 | -0.065552 | -3.27760 | -2,-3 |
<-4 | -3,-4 | -2,-3 | -1,-2 | -1, mu | mu,1 | 1,2 | 2,3 | 3,4 | >4 |
---|---|---|---|---|---|---|---|---|---|
14 | 49 | 114 | 534 | 2312 | 2255 | 540 | 158 | 22 | 0 |
IEP given when \(F_{hor} = 0\), marked by red dots. 0.