Aplicações continuas de mesmos fungicidas exercem presão de seleção sob as populações fúngicas presentes. A frequencias dos isolados integrantes da população vem sendo modificadas. Isolados com caracteristicas que permite sobreviver e se reproduzir nessa condição (“resistentes”) aumentam sua proporção.
O objetivo de este trabalho é verficar se retirando a pressão de seleção (uso continuo de um mesmo fungicida) a frequencia de isolados original da populaçao pode ser reestabelecida.
Para isso foram feitos tres experimentos (por duplicado) inoculando (concentração padrao )frutos de pessegos com um isolado resistente (SP09) e um isolado sensivel (PR09) ao longo de 5 transferencias.
Experimento 1 e 2: as unidades experimentales foram frutos de pessego frescos (variedade dorado). No exp1 foi avaliado unidades formadoras de colonia e no exp2 foi medida a germinação dos esporos dos conidios em meio de cultura com BDA com ou sem fungicida.
Experimento 3: as unidades experimentales foram pedaços de pessego enlatados. A variavel medida foi germinação dos esporos dos conidios em meio de cultura com BDA com ou sem fungicida.
Um objetivo secundario do trabalho foi testar se as diferentes metodologias conduzem a conclusões semelhantes.
## exp rep subrep bda0 f0 bda1 f1 bda2 f2 bda3 f3 bda4 f4 bda5 f5
## 1 1 1 1 NA 42 65 22 NA 50 43 NA 28 11 47 NA
## 2 1 1 2 NA 46 58 23 77 75 42 NA 42 6 45 26
## 3 1 1 3 14 60 78 28 81 59 34 35 42 NA 45 29
## 4 1 1 4 14 39 123 27 82 62 50 38 NA 22 32 35
## 5 1 1 5 24 46 104 21 83 23 55 45 42 29 37 26
## 6 1 2 1 15 30 44 NA 48 31 42 NA 59 28 NA 25
## exp rep subrep transf uf_bda uf_f
## 3 1 1 3 0 14 60
## 4 1 1 4 0 14 39
## 5 1 1 5 0 24 46
## 6 1 2 1 0 15 30
## 8 1 2 3 0 20 81
## 13 1 3 3 0 23 45
## exp rep transf uf_bda uf_f
## 1 1 1 0 17.33333 48.33333
## 2 2 1 0 32.00000 6.00000
## 3 1 2 0 17.50000 55.50000
## 4 1 3 0 43.66667 34.00000
## 5 2 3 0 38.00000 15.25000
## 6 1 4 0 67.00000 44.00000
## transf N resp1 sd se ci
## 1 0 11 0.5574234 0.2493662 0.07518674 0.16752651
## 2 1 10 0.5462725 0.3119032 0.09863247 0.22312214
## 3 2 12 0.8533258 0.1132283 0.03268619 0.07194181
## 4 3 11 0.7932263 0.1865618 0.05625051 0.12533394
## 5 4 12 0.6765476 0.2578486 0.07443447 0.16382916
## 6 5 10 0.7932357 0.1396430 0.04415899 0.09989457
## geom_path: Each group consist of only one observation. Do you need to adjust the group aesthetic?
## $`Analysis of variance`
## df type III SS mean square F value p>F
## treatments 5 0.9312 0.1862 5.1934 <0.001
## blocks 1 0.1973 0.1973 5.5026 0.0224
## Residuals 58 2.0799 0.0359 - -
##
## $`Adjusted means`
## treatment adjusted.mean standard.error tukey snk duncan t scott_knott
## 1 2 0.8533 0.0547 a a a a a
## 2 5 0.7932 0.0599 ab a ab ab a
## 3 3 0.7882 0.0571 ab a ab ab a
## 4 4 0.6765 0.0547 ac ab bc bc b
## 5 1 0.5574 0.0601 bc b c c b
## 6 0 0.5336 0.0601 c b c c b
##
## $`Multiple comparison test`
## pair contrast p(tukey) p(snk) p(duncan) p(t)
## 1 2 - 5 0.0601 0.9759 0.4617 0.4617 0.4617
## 2 2 - 3 0.0651 0.9620 0.6902 0.4434 0.4137
## 3 2 - 4 0.1768 0.2166 0.1133 0.0393 0.0260
## 4 2 - 1 0.2959 0.0073 0.0051 0.0013 0.0006
## 5 2 - 0 0.3197 0.0030 0.0030 0.0006 0.0002
## 6 5 - 3 0.0050 1.0000 0.9520 0.9520 0.9520
## 7 5 - 4 0.1167 0.7036 0.3281 0.1803 0.1556
## 8 5 - 1 0.2358 0.0754 0.0359 0.0121 0.0073
## 9 5 - 0 0.2596 0.0375 0.0267 0.0067 0.0034
## 10 3 - 4 0.1117 0.7193 0.1631 0.1631 0.1631
## 11 3 - 1 0.2308 0.0745 0.0195 0.0098 0.0072
## 12 3 - 0 0.2546 0.0364 0.0166 0.0056 0.0032
## 13 4 - 1 0.1191 0.6871 0.1482 0.1482 0.1482
## 14 4 - 0 0.1429 0.5000 0.1927 0.1015 0.0839
## 15 1 - 0 0.0238 0.9998 0.7805 0.7805 0.7805
##
## $`Residual analysis`
## values
## p.value Shapiro-Wilk test 0.2749
## p.value Bartlett test 0.0264
## coefficient of variation (%) 26.9300
## first value most discrepant 2.0000
## second value most discrepant 15.0000
## third value most discrepant 52.0000
## transf let me se
## 1 0 c 0.5336 0.0601
## 2 1 bc 0.5574 0.0601
## 3 2 a 0.8533 0.0547
## 4 3 ab 0.7882 0.0571
## 5 4 ac 0.6765 0.0547
## 6 5 ab 0.7932 0.0599
## geom_path: Each group consist of only one observation. Do you need to adjust the group aesthetic?
## exp rep subrep transf ger_bda ger_f
## 1 1 1 1 0 84 45
## 3 1 1 3 0 91 40
## 4 1 2 1 0 87 25
## 5 1 2 2 0 74 43
## 6 1 2 3 0 84 35
## 7 1 3 1 0 80 32
## $`Analysis of variance`
## df type III SS mean square F value p>F
## treatments 5 0.8072 0.1614 12.0712 <0.001
## blocks 1 0.0505 0.0505 3.7728 0.057
## Residuals 57 0.7623 0.0134 - -
##
## $`Adjusted means`
## treatment adjusted.mean standard.error tukey snk duncan t scott_knott
## 1 1 0.9018 0.0334 a a a a a
## 2 2 0.8232 0.0367 ab a a a a
## 3 3 0.8173 0.0334 ab a a a a
## 4 5 0.6862 0.0334 bc b b b b
## 5 4 0.6264 0.0334 c b b b b
## 6 0 0.5715 0.0472 c b b b b
##
## $`Multiple comparison test`
## pair contrast p(tukey) p(snk) p(duncan) p(t)
## 1 1 - 2 0.0786 0.6123 0.1187 0.1187 0.1187
## 2 1 - 3 0.0845 0.4809 0.1824 0.0958 0.0789
## 3 1 - 5 0.2156 0.0004 0.0002 0.0001 0.0000
## 4 1 - 4 0.2754 0.0000 0.0000 0.0000 0.0000
## 5 1 - 0 0.3303 0.0000 0.0000 0.0000 0.0000
## 6 2 - 3 0.0059 1.0000 0.9058 0.9058 0.9058
## 7 2 - 5 0.1370 0.0790 0.0208 0.0105 0.0077
## 8 2 - 4 0.1968 0.0027 0.0012 0.0004 0.0002
## 9 2 - 0 0.2517 0.0012 0.0008 0.0002 0.0001
## 10 3 - 5 0.1311 0.0763 0.0074 0.0074 0.0074
## 11 3 - 4 0.1909 0.0021 0.0005 0.0002 0.0002
## 12 3 - 0 0.2458 0.0011 0.0005 0.0002 0.0001
## 13 5 - 4 0.0598 0.8019 0.2107 0.2107 0.2107
## 14 5 - 0 0.1147 0.3643 0.1255 0.0648 0.0521
## 15 4 - 0 0.0549 0.9316 0.3464 0.3464 0.3464
##
## $`Residual analysis`
## values
## p.value Shapiro-Wilk test 0.0279
## p.value Bartlett test 0.0193
## coefficient of variation (%) 15.4200
## first value most discrepant 30.0000
## second value most discrepant 48.0000
## third value most discrepant 10.0000
## transf let me se
## 1 0 c 0.5715 0.0472
## 2 1 a 0.9018 0.0334
## 3 2 ab 0.8232 0.0367
## 4 3 ab 0.8173 0.0334
## 5 4 c 0.6264 0.0334
## 6 5 bc 0.6862 0.0334
## exp rep subrep transf ger_bda ger_f
## 1 1 1 1 0 98 53
## 2 1 1 2 0 96 48
## 3 1 1 3 0 92 42
## 4 1 2 1 0 100 35
## 5 1 2 2 0 96 41
## 6 1 2 3 0 95 52
## $`Analysis of variance`
## df type III SS mean square F value p>F
## treatments 5 0.4321 0.0864 17.3223 <0.001
## blocks 1 0.0030 0.0030 0.5957 0.4433
## Residuals 58 0.2893 0.0050 - -
##
## $`Adjusted means`
## treatment adjusted.mean standard.error tukey snk duncan t scott_knott
## 1 3 0.7592 0.0204 a a a a a
## 2 4 0.7384 0.0204 a a a ab a
## 3 5 0.6990 0.0204 ab a a b a
## 4 2 0.6311 0.0204 bc b b c b
## 5 1 0.6102 0.0213 c b b c b
## 6 0 0.4816 0.0288 d c c d c
##
## $`Multiple comparison test`
## pair contrast p(tukey) p(snk) p(duncan) p(t)
## 1 3 - 4 0.0208 0.9786 0.4738 0.4738 0.4738
## 2 3 - 5 0.0602 0.3086 0.1015 0.0521 0.0413
## 3 3 - 2 0.1281 0.0006 0.0002 0.0001 0.0000
## 4 3 - 1 0.1490 0.0001 0.0000 0.0000 0.0000
## 5 3 - 0 0.2776 0.0000 0.0000 0.0000 0.0000
## 6 4 - 5 0.0394 0.7470 0.1773 0.1773 0.1773
## 7 4 - 2 0.1073 0.0058 0.0013 0.0006 0.0005
## 8 4 - 1 0.1282 0.0008 0.0003 0.0001 0.0001
## 9 4 - 0 0.2568 0.0000 0.0000 0.0000 0.0000
## 10 5 - 2 0.0679 0.1900 0.0220 0.0220 0.0220
## 11 5 - 1 0.0888 0.0425 0.0106 0.0053 0.0039
## 12 5 - 0 0.2174 0.0000 0.0000 0.0000 0.0000
## 13 2 - 1 0.0209 0.9802 0.4814 0.4814 0.4814
## 14 2 - 0 0.1495 0.0011 0.0002 0.0001 0.0001
## 15 1 - 0 0.1286 0.0085 0.0007 0.0007 0.0007
##
## $`Residual analysis`
## values
## p.value Shapiro-Wilk test 0.6371
## p.value Bartlett test 0.0618
## coefficient of variation (%) 10.5500
## first value most discrepant 40.0000
## second value most discrepant 59.0000
## third value most discrepant 63.0000
## transf let me se
## 1 0 d 0.4816 0.0288
## 2 1 c 0.6102 0.0213
## 3 2 bc 0.6311 0.0204
## 4 3 a 0.7592 0.0204
## 5 4 a 0.7384 0.0204
## 6 5 ab 0.6990 0.0204
## y.ufc y.ger5 y.ger6
## y.ufc 1.00 0.19 0.63
## y.ger5 0.19 1.00 0.19
## y.ger6 0.63 0.19 1.00
##
## n= 6
##
##
## P
## y.ufc y.ger5 y.ger6
## y.ufc 0.7177 0.1770
## y.ger5 0.7177 0.7183
## y.ger6 0.1770 0.7183