sclerotinia Sclerotiorum em Tomate MT

library(agricolae)
library(readxl)
library(agricolae)
library(dplyr)
## 
## Attaching package: 'dplyr'
## The following objects are masked from 'package:stats':
## 
##     filter, lag
## The following objects are masked from 'package:base':
## 
##     intersect, setdiff, setequal, union
library(PerformanceAnalytics)
## Loading required package: xts
## Loading required package: zoo
## 
## Attaching package: 'zoo'
## The following objects are masked from 'package:base':
## 
##     as.Date, as.Date.numeric
## 
## Attaching package: 'xts'
## The following objects are masked from 'package:dplyr':
## 
##     first, last
## 
## Attaching package: 'PerformanceAnalytics'
## The following objects are masked from 'package:agricolae':
## 
##     kurtosis, skewness
## The following object is masked from 'package:graphics':
## 
##     legend
library(plotly)
## Loading required package: ggplot2
## 
## Attaching package: 'plotly'
## The following object is masked from 'package:ggplot2':
## 
##     last_plot
## The following object is masked from 'package:stats':
## 
##     filter
## The following object is masked from 'package:graphics':
## 
##     layout
library(tidyverse)
## -- Attaching packages --------------------------------------- tidyverse 1.3.0 --
## v tibble  3.0.4     v purrr   0.3.4
## v tidyr   1.1.2     v stringr 1.4.0
## v readr   1.4.0     v forcats 0.5.0
## -- Conflicts ------------------------------------------ tidyverse_conflicts() --
## x plotly::filter() masks dplyr::filter(), stats::filter()
## x xts::first()     masks dplyr::first()
## x dplyr::lag()     masks stats::lag()
## x xts::last()      masks dplyr::last()
library(reshape2)
## 
## Attaching package: 'reshape2'
## The following object is masked from 'package:tidyr':
## 
##     smiths
library(ggrepel)
library(rgl)
library(car)
## Loading required package: carData
## 
## Attaching package: 'car'
## The following object is masked from 'package:purrr':
## 
##     some
## The following object is masked from 'package:dplyr':
## 
##     recode
library(sf)
## Linking to GEOS 3.8.0, GDAL 3.0.4, PROJ 6.3.1
library(tmap)
library(rgdal)
## Loading required package: sp
## rgdal: version: 1.5-18, (SVN revision 1082)
## Geospatial Data Abstraction Library extensions to R successfully loaded
## Loaded GDAL runtime: GDAL 3.0.4, released 2020/01/28
## Path to GDAL shared files: C:/Users/User/Documents/R/win-library/4.0/rgdal/gdal
## GDAL binary built with GEOS: TRUE 
## Loaded PROJ runtime: Rel. 6.3.1, February 10th, 2020, [PJ_VERSION: 631]
## Path to PROJ shared files: C:/Users/User/Documents/R/win-library/4.0/rgdal/proj
## Linking to sp version:1.4-4
## To mute warnings of possible GDAL/OSR exportToProj4() degradation,
## use options("rgdal_show_exportToProj4_warnings"="none") before loading rgdal.
library(esquisse)
library(ggplot2)
library(gridExtra)
## 
## Attaching package: 'gridExtra'
## The following object is masked from 'package:dplyr':
## 
##     combine
dt <- read_excel("C:/Users/User/Desktop/Sclerotinia_Sclerotiorum.xlsx", 
                 sheet = "re2")
attach(dt)
names(dt)
## [1] "vector"  "trat"    "folha"   "talof"   "folhsec" "talosec" "raizsec"
a <- as.factor(vector)
b <- as.factor(trat)
inter<-as.factor(a:b)
############ 1.1 anova folha fresca ###########################
summary(aov(folha ~ a+b+inter, data = dt))
##             Df Sum Sq Mean Sq F value   Pr(>F)    
## a            4   2.45    0.61   9.174 5.77e-05 ***
## b            1  39.36   39.36 588.573  < 2e-16 ***
## inter        4   0.91    0.23   3.405   0.0207 *  
## Residuals   30   2.01    0.07                     
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
LSD.test(aov(folha ~ a + b + inter, data = dt),
         "a", alpha = 0.05)["groups"]
## $groups
##         folha groups
## MT   1.936750      a
## VF.1 1.527500      b
## VF   1.428500     bc
## VG   1.286750     bc
## VA   1.243375      c
LSD.test(aov(folha ~ a + b + inter, data = dt),
         "b", alpha = 0.05)["groups"]
## $groups
##            folha groups
## controle 2.47655      a
## inocu    0.49260      b
LSD.test(aov(folha ~ a + b + inter, data = dt),
         "inter", alpha = 0.05)["groups"]
## $groups
##                 folha groups
## MT:controle   3.21850      a
## VF.1:controle 2.48150      b
## VF:controle   2.27200      b
## VG:controle   2.25000      b
## VA:controle   2.16075      b
## MT:inocu      0.65500      c
## VF:inocu      0.58500      c
## VF.1:inocu    0.57350      c
## VA:inocu      0.32600      c
## VG:inocu      0.32350      c
shapiro.test(unlist(aov(folha ~ a + b + inter, 
                        data = dt)["residuals"]))
## 
##  Shapiro-Wilk normality test
## 
## data:  unlist(aov(folha ~ a + b + inter, data = dt)["residuals"])
## W = 0.98327, p-value = 0.808
res <-sort(unlist(aov( folha ~ a + b + inter, 
                       data = dt)["residuals"]),decreasing = TRUE)
ks.test(res,  "pnorm" ,mean(res),sd(res))
## 
##  One-sample Kolmogorov-Smirnov test
## 
## data:  res
## D = 0.095912, p-value = 0.8214
## alternative hypothesis: two-sided
kruskal(folha, inter)["groups"]
## $groups
##                folha groups
## MT:controle   38.500      a
## VF.1:controle 32.000     ab
## VF:controle   28.500      b
## VG:controle   27.000      b
## VA:controle   26.500      b
## MT:inocu      14.750      c
## VF:inocu      12.500     cd
## VF.1:inocu    12.250     cd
## VA:inocu       7.125      d
## VG:inocu       5.875      d
##### 1.2 anova talo fresco #####################################################

summary(aov(talof ~ a+b+inter, data = dt))
##             Df Sum Sq Mean Sq F value   Pr(>F)    
## a            4  1.878   0.470   6.897 0.000462 ***
## b            1 12.508  12.508 183.732 2.51e-14 ***
## inter        4  0.247   0.062   0.905 0.473333    
## Residuals   30  2.042   0.068                     
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
LSD.test(aov(talof ~ a + b + inter, data = dt),
         "a", alpha = 0.05)["groups"]
## $groups
##       talof groups
## MT   1.4205      a
## VF   1.3925     ab
## VF.1 1.1470     bc
## VA   0.9725      c
## VG   0.8815      c
LSD.test(aov(folha ~ a + b + inter, data = dt),
         "b", alpha = 0.05)["groups"]
## $groups
##            folha groups
## controle 2.47655      a
## inocu    0.49260      b
LSD.test(aov(talof ~ a + b + inter, data = dt),
         "inter", alpha = 0.05)["groups"]
## $groups
##                talof groups
## MT:controle   2.0990      a
## VF:controle   1.8785     ab
## VF.1:controle 1.7030     bc
## VA:controle   1.5820     bc
## VG:controle   1.3475      c
## VF:inocu      0.9065      d
## MT:inocu      0.7420     de
## VF.1:inocu    0.5910    def
## VG:inocu      0.4155     ef
## VA:inocu      0.3630      f
shapiro.test(unlist(aov(talof ~ a + b + inter, 
                        data = dt)["residuals"]))
## 
##  Shapiro-Wilk normality test
## 
## data:  unlist(aov(talof ~ a + b + inter, data = dt)["residuals"])
## W = 0.97042, p-value = 0.3711
res <-sort(unlist(aov( talof ~ a + b + inter, 
                       data = dt)["residuals"]),decreasing = TRUE)
ks.test(res,  "pnorm" ,mean(res),sd(res))
## 
##  One-sample Kolmogorov-Smirnov test
## 
## data:  res
## D = 0.1125, p-value = 0.6508
## alternative hypothesis: two-sided
kruskal(talof, inter)["groups"]
## $groups
##               talof groups
## MT:controle   36.00      a
## VF:controle   33.75     ab
## VF.1:controle 30.25    abc
## VA:controle   27.50     bc
## VG:controle   23.50     cd
## VF:inocu      17.00     de
## MT:inocu      15.50      e
## VF.1:inocu    10.25     ef
## VG:inocu       7.00      f
## VA:inocu       4.25      f
#######1.3 anova folhas secas #################################

summary(aov(folhsec ~ a+b+inter, data = dt))
##             Df  Sum Sq  Mean Sq F value Pr(>F)  
## a            4 0.01025 0.002562   0.583  0.677  
## b            1 0.02448 0.024478   5.572  0.025 *
## inter        4 0.00175 0.000437   0.100  0.982  
## Residuals   30 0.13180 0.004393                 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
LSD.test(aov(folhsec ~ a + b + inter, data = dt),
         "a", alpha = 0.05)["groups"]
## $groups
##        folhsec groups
## MT   0.1775000      a
## VF   0.1622500      a
## VF.1 0.1577500      a
## VG   0.1397500      a
## VA   0.1329375      a
LSD.test(aov(folhsec ~ a + b + inter, data = dt),
         "b", alpha = 0.05)["groups"]
## $groups
##           folhsec groups
## inocu    0.178775      a
## controle 0.129300      b
LSD.test(aov(folhsec ~ a + b + inter, data = dt),
         "inter", alpha = 0.05)["groups"]
## $groups
##                folhsec groups
## MT:inocu      0.201500      a
## VF:inocu      0.181500     ab
## VF.1:inocu    0.175500     ab
## VA:inocu      0.169375     ab
## VG:inocu      0.166000     ab
## MT:controle   0.153500     ab
## VF:controle   0.143000     ab
## VF.1:controle 0.140000     ab
## VG:controle   0.113500     ab
## VA:controle   0.096500      b
shapiro.test(unlist(aov(folhsec ~ a + b + inter, 
                        data = dt)["residuals"]))
## 
##  Shapiro-Wilk normality test
## 
## data:  unlist(aov(folhsec ~ a + b + inter, data = dt)["residuals"])
## W = 0.96814, p-value = 0.3137
res <-sort(unlist(aov( folhsec ~ a + b + inter, 
                       data = dt)["residuals"]),decreasing = TRUE)
ks.test(res,  "pnorm" ,mean(res),sd(res))
## Warning in ks.test(res, "pnorm", mean(res), sd(res)): ties should not be present
## for the Kolmogorov-Smirnov test
## 
##  One-sample Kolmogorov-Smirnov test
## 
## data:  res
## D = 0.087688, p-value = 0.9181
## alternative hypothesis: two-sided
kruskal(talof, inter)["groups"]
## $groups
##               talof groups
## MT:controle   36.00      a
## VF:controle   33.75     ab
## VF.1:controle 30.25    abc
## VA:controle   27.50     bc
## VG:controle   23.50     cd
## VF:inocu      17.00     de
## MT:inocu      15.50      e
## VF.1:inocu    10.25     ef
## VG:inocu       7.00      f
## VA:inocu       4.25      f
#######1.4 anova talo seco #################################

summary(aov(talosec ~ a+b+inter, data = dt))
##             Df  Sum Sq  Mean Sq F value  Pr(>F)   
## a            4 0.01627 0.004068   1.194 0.33363   
## b            1 0.02670 0.026703   7.839 0.00886 **
## inter        4 0.00246 0.000614   0.180 0.94686   
## Residuals   30 0.10219 0.003406                   
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
LSD.test(aov(talosec ~ a + b + inter, data = dt),
         "a", alpha = 0.05)["groups"]
## $groups
##        talosec groups
## MT   0.1525000      a
## VF   0.1357500      a
## VG   0.1112500      a
## VF.1 0.1087500      a
## VA   0.0969375      a
LSD.test(aov(talosec ~ a + b + inter, data = dt),
         "b", alpha = 0.05)["groups"]
## $groups
##           talosec groups
## inocu    0.146875      a
## controle 0.095200      b
LSD.test(aov(talosec ~ a + b + inter, data = dt),
         "inter", alpha = 0.05)["groups"]
## $groups
##                talosec groups
## MT:inocu      0.182500      a
## VF:inocu      0.153500     ab
## VG:inocu      0.142500    abc
## VA:inocu      0.131875    abc
## VF.1:inocu    0.124000    abc
## MT:controle   0.122500    abc
## VF:controle   0.118000    abc
## VF.1:controle 0.093500     bc
## VG:controle   0.080000     bc
## VA:controle   0.062000      c
shapiro.test(unlist(aov(talosec ~ a + b + inter, 
                        data = dt)["residuals"]))
## 
##  Shapiro-Wilk normality test
## 
## data:  unlist(aov(talosec ~ a + b + inter, data = dt)["residuals"])
## W = 0.91665, p-value = 0.006054
res <-sort(unlist(aov( talosec ~ a + b + inter, 
                       data = dt)["residuals"]),decreasing = TRUE)
ks.test(res,  "pnorm" ,mean(res),sd(res))
## Warning in ks.test(res, "pnorm", mean(res), sd(res)): ties should not be present
## for the Kolmogorov-Smirnov test
## 
##  One-sample Kolmogorov-Smirnov test
## 
## data:  res
## D = 0.17309, p-value = 0.1819
## alternative hypothesis: two-sided
kruskal(talof, inter)["groups"]
## $groups
##               talof groups
## MT:controle   36.00      a
## VF:controle   33.75     ab
## VF.1:controle 30.25    abc
## VA:controle   27.50     bc
## VG:controle   23.50     cd
## VF:inocu      17.00     de
## MT:inocu      15.50      e
## VF.1:inocu    10.25     ef
## VG:inocu       7.00      f
## VA:inocu       4.25      f
#######1.5 anova raiz seca #################################

summary(aov(raizsec ~ a+b+inter, data = dt))
##             Df   Sum Sq   Mean Sq F value Pr(>F)
## a            4 0.001334 0.0003335   1.114  0.368
## b            1 0.000007 0.0000074   0.025  0.876
## inter        4 0.000671 0.0001678   0.560  0.693
## Residuals   30 0.008985 0.0002995
LSD.test(aov(raizsec ~ a + b + inter, data = dt),
         "a", alpha = 0.05)["groups"]
## $groups
##         raizsec groups
## MT   0.04475000      a
## VF   0.04123500      a
## VG   0.03273438      a
## VA   0.03125000      a
## VF.1 0.03055750      a
LSD.test(aov(raizsec ~ a + b + inter, data = dt),
         "b", alpha = 0.05)["groups"]
## $groups
##             raizsec groups
## inocu    0.03653675      a
## controle 0.03567400      a
LSD.test(aov(raizsec ~ a + b + inter, data = dt),
         "inter", alpha = 0.05)["groups"]
## $groups
##                  raizsec groups
## MT:controle   0.04950000      a
## VF:controle   0.04437500      a
## MT:inocu      0.04000000      a
## VF:inocu      0.03809500      a
## VA:inocu      0.03737500      a
## VG:inocu      0.03659375      a
## VF.1:inocu    0.03062000      a
## VF.1:controle 0.03049500      a
## VG:controle   0.02887500      a
## VA:controle   0.02512500      a
shapiro.test(unlist(aov(raizsec ~ a + b + inter, 
                        data = dt)["residuals"]))
## 
##  Shapiro-Wilk normality test
## 
## data:  unlist(aov(raizsec ~ a + b + inter, data = dt)["residuals"])
## W = 0.93972, p-value = 0.03385
res <-sort(unlist(aov( raizsec ~ a + b + inter, 
                       data = dt)["residuals"]),decreasing = TRUE)
ks.test(res,  "pnorm" ,mean(res),sd(res))
## 
##  One-sample Kolmogorov-Smirnov test
## 
## data:  res
## D = 0.11338, p-value = 0.6413
## alternative hypothesis: two-sided
kruskal(talof, inter)["groups"]
## $groups
##               talof groups
## MT:controle   36.00      a
## VF:controle   33.75     ab
## VF.1:controle 30.25    abc
## VA:controle   27.50     bc
## VG:controle   23.50     cd
## VF:inocu      17.00     de
## MT:inocu      15.50      e
## VF.1:inocu    10.25     ef
## VG:inocu       7.00      f
## VA:inocu       4.25      f