Experimento - 1 efecto de seca em microton transgénico genes PR

library(agricolae)
library(readxl)
library(agricolae)
library(dplyr)
## 
## Attaching package: 'dplyr'
## The following objects are masked from 'package:stats':
## 
##     filter, lag
## The following objects are masked from 'package:base':
## 
##     intersect, setdiff, setequal, union
library(PerformanceAnalytics)
## Loading required package: xts
## Loading required package: zoo
## 
## Attaching package: 'zoo'
## The following objects are masked from 'package:base':
## 
##     as.Date, as.Date.numeric
## 
## Attaching package: 'xts'
## The following objects are masked from 'package:dplyr':
## 
##     first, last
## 
## Attaching package: 'PerformanceAnalytics'
## The following objects are masked from 'package:agricolae':
## 
##     kurtosis, skewness
## The following object is masked from 'package:graphics':
## 
##     legend
library(plotly)
## Loading required package: ggplot2
## 
## Attaching package: 'plotly'
## The following object is masked from 'package:ggplot2':
## 
##     last_plot
## The following object is masked from 'package:stats':
## 
##     filter
## The following object is masked from 'package:graphics':
## 
##     layout
library(tidyverse)
## -- Attaching packages --------------------------------------- tidyverse 1.3.0 --
## v tibble  3.0.4     v purrr   0.3.4
## v tidyr   1.1.2     v stringr 1.4.0
## v readr   1.4.0     v forcats 0.5.0
## -- Conflicts ------------------------------------------ tidyverse_conflicts() --
## x plotly::filter() masks dplyr::filter(), stats::filter()
## x xts::first()     masks dplyr::first()
## x dplyr::lag()     masks stats::lag()
## x xts::last()      masks dplyr::last()
library(reshape2)
## 
## Attaching package: 'reshape2'
## The following object is masked from 'package:tidyr':
## 
##     smiths
library(ggrepel)
library(rgl)
library(car)
## Loading required package: carData
## 
## Attaching package: 'car'
## The following object is masked from 'package:purrr':
## 
##     some
## The following object is masked from 'package:dplyr':
## 
##     recode
library(sf)
## Linking to GEOS 3.8.0, GDAL 3.0.4, PROJ 6.3.1
library(tmap)
library(rgdal)
## Loading required package: sp
## rgdal: version: 1.5-18, (SVN revision 1082)
## Geospatial Data Abstraction Library extensions to R successfully loaded
## Loaded GDAL runtime: GDAL 3.0.4, released 2020/01/28
## Path to GDAL shared files: C:/Users/User/Documents/R/win-library/4.0/rgdal/gdal
## GDAL binary built with GEOS: TRUE 
## Loaded PROJ runtime: Rel. 6.3.1, February 10th, 2020, [PJ_VERSION: 631]
## Path to PROJ shared files: C:/Users/User/Documents/R/win-library/4.0/rgdal/proj
## Linking to sp version:1.4-4
## To mute warnings of possible GDAL/OSR exportToProj4() degradation,
## use options("rgdal_show_exportToProj4_warnings"="none") before loading rgdal.
library(esquisse)
library(ggplot2)
library(gridExtra)
## 
## Attaching package: 'gridExtra'
## The following object is masked from 'package:dplyr':
## 
##     combine
library(readxl)


## Experimento de seca 1
# potes pequeños

exp <- read_excel("C:/Users/User/Desktop/exp.xlsx", 
                  sheet = "expe1")

attach(exp)
head(exp)
## # A tibble: 6 x 9
##   genot Planta    cc  Rept numfo areafol folhas  talo  raiz
##   <chr>  <dbl> <dbl> <dbl> <dbl>   <dbl>  <dbl> <dbl> <dbl>
## 1 VF         1   100     3    15   123.    0.5   0.55  0.17
## 2 MT         2    30     3    11    95.2   0.28  0.36  0.14
## 3 MT         3   100     2    11   112.    0.46  0.36  0.15
## 4 VG         4   100     1    12   124.    0.5   0.36  0.21
## 5 VG         5    60     2     9    62.4   0.26  0.2   0.13
## 6 VØ         6    30     4     7    53.2   0.23  0.2   0.08
a <- as.factor(genot)
b <- as.factor(cc)
inter<-as.factor(a:b)

############ 1.1 anova Numero de folhas ###########################
summary(aov(numfo ~ a+b+inter, data = exp))
##             Df Sum Sq Mean Sq F value  Pr(>F)   
## a            3  56.72  18.906   4.900 0.00474 **
## b            2  29.10  14.550   3.771 0.03012 * 
## inter        6  17.83   2.972   0.770 0.59699   
## Residuals   48 185.20   3.858                   
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
LSD.test(aov(numfo ~ a + b + inter, data = exp),
         "a", alpha = 0.05)["groups"]
## $groups
##       numfo groups
## VF 12.46667      a
## VØ 11.13333     ab
## VG 10.13333      b
## MT 10.06667      b
LSD.test(aov(numfo ~ a + b + inter, data = exp),
         "b", alpha = 0.05)["groups"]
## $groups
##     numfo groups
## 100 11.65      a
## 60  11.20     ab
## 30  10.00      b
LSD.test(aov(numfo ~ a + b + inter, data = exp),
         "inter", alpha = 0.05)["groups"]
## $groups
##        numfo groups
## VF:100  13.2      a
## VF:60   12.8     ab
## VØ:60   12.4    abc
## VØ:100  11.6   abcd
## VF:30   11.4   abcd
## VG:100  11.4   abcd
## MT:100  10.4    bcd
## MT:60   10.2     cd
## MT:30    9.6      d
## VG:30    9.6      d
## VG:60    9.4      d
## VØ:30    9.4      d
shapiro.test(unlist(aov(numfo ~ a + b + inter, 
                        data = exp)["residuals"]))
## 
##  Shapiro-Wilk normality test
## 
## data:  unlist(aov(numfo ~ a + b + inter, data = exp)["residuals"])
## W = 0.97567, p-value = 0.2735
res <-sort(unlist(aov( numfo ~ a + b + inter, 
                       data = exp)["residuals"]),decreasing = TRUE)
ks.test(res,  "pnorm" ,mean(res),sd(res))
## Warning in ks.test(res, "pnorm", mean(res), sd(res)): ties should not be present
## for the Kolmogorov-Smirnov test
## 
##  One-sample Kolmogorov-Smirnov test
## 
## data:  res
## D = 0.1159, p-value = 0.3959
## alternative hypothesis: two-sided
kruskal(numfo, inter)["groups"]
## $groups
##        numfo groups
## VF:100  47.3      a
## VF:60   44.4     ab
## VØ:60   42.3     ab
## VØ:100  34.6    abc
## VG:100  34.4    abc
## VF:30   34.3    abc
## MT:100  27.0     bc
## MT:60   24.9     bc
## MT:30   19.8      c
## VG:30   19.6      c
## VØ:30   19.4      c
## VG:60   18.0      c
############ 1.1 anova area foliar ###########################
summary(aov(areafol ~ a+b+inter, data = exp))
##             Df Sum Sq Mean Sq F value  Pr(>F)   
## a            3   1162   387.4   0.831 0.48326   
## b            2   6000  3000.1   6.437 0.00334 **
## inter        6   4287   714.5   1.533 0.18775   
## Residuals   48  22370   466.0                   
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
LSD.test(aov(areafol ~ a + b + inter, data = exp),
         "a", alpha = 0.05)["groups"]
## $groups
##     areafol groups
## MT 91.24133      a
## VF 88.07067      a
## VG 82.65933      a
## VØ 80.03733      a
LSD.test(aov(areafol ~ a + b + inter, data = exp),
         "b", alpha = 0.05)["groups"]
## $groups
##     areafol groups
## 100 99.2535      a
## 60  81.4865      b
## 30  75.7665      b
LSD.test(aov(areafol ~ a + b + inter, data = exp),
         "inter", alpha = 0.05)["groups"]
## $groups
##        areafol groups
## VF:100 106.674      a
## VG:100 106.660      a
## MT:100 102.400     ab
## VØ:60   90.522    abc
## MT:60   87.148   abcd
## VF:60   85.820   abcd
## MT:30   84.176   abcd
## VØ:100  81.280   abcd
## VG:30   78.862    bcd
## VF:30   71.718     cd
## VØ:30   68.310     cd
## VG:60   62.456      d
shapiro.test(unlist(aov(areafol ~ a + b + inter, 
                        data = exp)["residuals"]))
## 
##  Shapiro-Wilk normality test
## 
## data:  unlist(aov(areafol ~ a + b + inter, data = exp)["residuals"])
## W = 0.9707, p-value = 0.1578
res <-sort(unlist(aov( areafol ~ a + b + inter, 
                       data = exp)["residuals"]),decreasing = TRUE)
ks.test(res,  "pnorm" ,mean(res),sd(res))
## 
##  One-sample Kolmogorov-Smirnov test
## 
## data:  res
## D = 0.12063, p-value = 0.3208
## alternative hypothesis: two-sided
kruskal(areafol, inter)["groups"]
## $groups
##        areafol groups
## VF:100    44.4      a
## VG:100    44.2      a
## MT:100    42.4     ab
## VØ:60     34.2    abc
## MT:60     32.8    abc
## MT:30     31.2    abc
## VF:60     29.2    abc
## VØ:100    27.4    abc
## VG:30     25.2    abc
## VF:30     22.5     bc
## VG:60     17.1      c
## VØ:30     15.4      c
############ 1.1 anova Biomassa de folhas ###########################
summary(aov(folhas ~ a+b+inter, data = exp))
##             Df Sum Sq Mean Sq F value   Pr(>F)    
## a            3 0.0143 0.00476   0.613 0.609920    
## b            2 0.1646 0.08232  10.602 0.000158 ***
## inter        6 0.0225 0.00374   0.482 0.818357    
## Residuals   47 0.3649 0.00776                     
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 1 observation deleted due to missingness
LSD.test(aov(folhas ~ a + b + inter, data = exp),
         "a", alpha = 0.05)["groups"]
## $groups
##       folhas groups
## VG 0.3435714      a
## MT 0.3293333      a
## VØ 0.3140000      a
## VF 0.3020000      a
LSD.test(aov(folhas ~ a + b + inter, data = exp),
         "b", alpha = 0.05)["groups"]
## $groups
##     folhas groups
## 100 0.3900      a
## 60  0.3175      b
## 30  0.2615      b
LSD.test(aov(folhas ~ a + b + inter, data = exp),
         "inter", alpha = 0.05)["groups"]
## $groups
##        folhas groups
## VG:100  0.430      a
## MT:100  0.398     ab
## VF:100  0.386    abc
## VØ:100  0.354   abcd
## VØ:60   0.352   abcd
## MT:60   0.322  abcde
## VG:60   0.318  abcde
## VG:30   0.300   bcde
## VF:60   0.278    cde
## MT:30   0.268     de
## VF:30   0.242     de
## VØ:30   0.236      e
shapiro.test(unlist(aov(folhas ~ a + b + inter, 
                        data = exp)["residuals"]))
## 
##  Shapiro-Wilk normality test
## 
## data:  unlist(aov(folhas ~ a + b + inter, data = exp)["residuals"])
## W = 0.98597, p-value = 0.7298
res <-sort(unlist(aov( folhas ~ a + b + inter, 
                       data = exp)["residuals"]),decreasing = TRUE)
ks.test(res,  "pnorm" ,mean(res),sd(res))
## Warning in ks.test(res, "pnorm", mean(res), sd(res)): ties should not be present
## for the Kolmogorov-Smirnov test
## 
##  One-sample Kolmogorov-Smirnov test
## 
## data:  res
## D = 0.07276, p-value = 0.9136
## alternative hypothesis: two-sided
kruskal(folhas, inter)["groups"]
## $groups
##        folhas groups
## VG:100   47.5      a
## MT:100   42.6     ab
## VF:100   41.1    abc
## VØ:100   35.4   abcd
## VØ:60    34.7   abcd
## MT:60    34.0   abcd
## VG:60    27.1  abcde
## VG:30    26.7   bcde
## MT:30    21.6    cde
## VF:60    21.6    cde
## VF:30    17.4     de
## VØ:30    13.8      e
############ 1.1 anova Biomassa de talo ###########################
summary(aov(talo ~ a+b+inter, data = exp))
##             Df Sum Sq Mean Sq F value   Pr(>F)    
## a            3 0.0229 0.00762   1.128    0.347    
## b            2 0.1729 0.08647  12.803 3.64e-05 ***
## inter        6 0.0308 0.00514   0.761    0.604    
## Residuals   47 0.3174 0.00675                     
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 1 observation deleted due to missingness
LSD.test(aov(talo ~ a + b + inter, data = exp),
         "a", alpha = 0.05)["groups"]
## $groups
##         talo groups
## MT 0.3360000      a
## VF 0.3313333      a
## VG 0.2986667      a
## VØ 0.2907143      a
LSD.test(aov(talo ~ a + b + inter, data = exp),
         "b", alpha = 0.05)["groups"]
## $groups
##          talo groups
## 100 0.3795000      a
## 60  0.3163158      b
## 30  0.2480000      c
LSD.test(aov(talo ~ a + b + inter, data = exp),
         "inter", alpha = 0.05)["groups"]
## $groups
##          talo groups
## MT:100 0.4240      a
## VF:100 0.4200      a
## VØ:100 0.3420     ab
## VØ:60  0.3375     ab
## VG:100 0.3320     ab
## MT:60  0.3200     ab
## VF:60  0.3100      b
## VG:60  0.3020     bc
## MT:30  0.2640     bc
## VF:30  0.2640     bc
## VG:30  0.2620     bc
## VØ:30  0.2020      c
shapiro.test(unlist(aov(talo ~ a + b + inter, 
                        data = exp)["residuals"]))
## 
##  Shapiro-Wilk normality test
## 
## data:  unlist(aov(talo ~ a + b + inter, data = exp)["residuals"])
## W = 0.97841, p-value = 0.3762
res <-sort(unlist(aov( talo ~ a + b + inter, 
                       data = exp)["residuals"]),decreasing = TRUE)
ks.test(res,  "pnorm" ,mean(res),sd(res))
## Warning in ks.test(res, "pnorm", mean(res), sd(res)): ties should not be present
## for the Kolmogorov-Smirnov test
## 
##  One-sample Kolmogorov-Smirnov test
## 
## data:  res
## D = 0.080472, p-value = 0.8394
## alternative hypothesis: two-sided
kruskal(talo, inter)["groups"]
## $groups
##          talo groups
## MT:100 50.300      a
## VF:100 47.700      a
## VG:100 35.000     ab
## VØ:60  34.125     ab
## MT:60  32.900     ab
## VØ:100 32.600     ab
## VF:60  29.600      b
## VG:60  27.800      b
## VF:30  21.600     bc
## MT:30  20.800     bc
## VG:30  20.700     bc
## VØ:30   7.700      c
############ 1.1 anova Biomassa de raiz ###########################
summary(aov(raiz ~ a+b+inter, data = exp))
##             Df  Sum Sq   Mean Sq F value Pr(>F)
## a            3 0.00019 0.0000627   0.033  0.992
## b            2 0.00086 0.0004314   0.228  0.797
## inter        6 0.00856 0.0014267   0.753  0.610
## Residuals   47 0.08904 0.0018945               
## 1 observation deleted due to missingness
LSD.test(aov(raiz ~ a + b + inter, data = exp),
         "a", alpha = 0.05)["groups"]
## $groups
##         raiz groups
## MT 0.1253333      a
## VG 0.1242857      a
## VF 0.1213333      a
## VØ 0.1213333      a
LSD.test(aov(raiz ~ a + b + inter, data = exp),
         "b", alpha = 0.05)["groups"]
## $groups
##          raiz groups
## 100 0.1284211      a
## 60  0.1215000      a
## 30  0.1195000      a
LSD.test(aov(raiz ~ a + b + inter, data = exp),
         "inter", alpha = 0.05)["groups"]
## $groups
##         raiz groups
## VØ:60  0.144      a
## VF:100 0.140      a
## MT:100 0.134      a
## VG:100 0.130      a
## VF:30  0.126      a
## VG:60  0.126      a
## MT:30  0.124      a
## VG:30  0.118      a
## MT:60  0.118      a
## VØ:100 0.110      a
## VØ:30  0.110      a
## VF:60  0.098      a
shapiro.test(unlist(aov(raiz ~ a + b + inter, 
                        data = exp)["residuals"]))
## 
##  Shapiro-Wilk normality test
## 
## data:  unlist(aov(raiz ~ a + b + inter, data = exp)["residuals"])
## W = 0.98833, p-value = 0.8435
res <-sort(unlist(aov( raiz ~ a + b + inter, 
                       data = exp)["residuals"]),decreasing = TRUE)
ks.test(res,  "pnorm" ,mean(res),sd(res))
## Warning in ks.test(res, "pnorm", mean(res), sd(res)): ties should not be present
## for the Kolmogorov-Smirnov test
## 
##  One-sample Kolmogorov-Smirnov test
## 
## data:  res
## D = 0.084614, p-value = 0.7921
## alternative hypothesis: two-sided
kruskal(raiz, inter)["groups"]
## $groups
##        raiz groups
## VF:100 38.4      a
## VØ:60  37.8      a
## MT:100 35.3      a
## VF:30  34.5      a
## VG:60  31.7      a
## MT:30  31.1      a
## VG:100 30.0      a
## MT:60  28.5      a
## VG:30  28.1      a
## VØ:30  24.0      a
## VØ:100 21.5      a
## VF:60  19.1      a