Description about Data :-

The dataset name is cats. It is from MASS package.

data(cats , package = "MASS")
str(cats)
## 'data.frame':    144 obs. of  3 variables:
##  $ Sex: Factor w/ 2 levels "F","M": 1 1 1 1 1 1 1 1 1 1 ...
##  $ Bwt: num  2 2 2 2.1 2.1 2.1 2.1 2.1 2.1 2.1 ...
##  $ Hwt: num  7 7.4 9.5 7.2 7.3 7.6 8.1 8.2 8.3 8.5 ...
summary(cats)
##  Sex         Bwt             Hwt       
##  F:47   Min.   :2.000   Min.   : 6.30  
##  M:97   1st Qu.:2.300   1st Qu.: 8.95  
##         Median :2.700   Median :10.10  
##         Mean   :2.724   Mean   :10.63  
##         3rd Qu.:3.025   3rd Qu.:12.12  
##         Max.   :3.900   Max.   :20.50

Statisical Model 1 :-

Fitting SVM Classifier :-

m <- svm(Sex~. , data = cats)
plot(m , data = cats)

It seems , lot of objects are mis-classified with this default SVM model.

Getting more details about default SVM :-

summary(m)
## 
## Call:
## svm(formula = Sex ~ ., data = cats)
## 
## 
## Parameters:
##    SVM-Type:  C-classification 
##  SVM-Kernel:  radial 
##        cost:  1 
## 
## Number of Support Vectors:  84
## 
##  ( 39 45 )
## 
## 
## Number of Classes:  2 
## 
## Levels: 
##  F M
data.frame(predict(m) , cats$Sex)
##     predict.m. cats.Sex
## 1            F        F
## 2            F        F
## 3            F        F
## 4            F        F
## 5            F        F
## 6            F        F
## 7            F        F
## 8            F        F
## 9            F        F
## 10           F        F
## 11           F        F
## 12           F        F
## 13           F        F
## 14           F        F
## 15           F        F
## 16           F        F
## 17           F        F
## 18           F        F
## 19           F        F
## 20           F        F
## 21           F        F
## 22           F        F
## 23           F        F
## 24           F        F
## 25           F        F
## 26           F        F
## 27           F        F
## 28           F        F
## 29           F        F
## 30           F        F
## 31           M        F
## 32           F        F
## 33           F        F
## 34           F        F
## 35           M        F
## 36           M        F
## 37           M        F
## 38           M        F
## 39           M        F
## 40           M        F
## 41           M        F
## 42           M        F
## 43           M        F
## 44           M        F
## 45           M        F
## 46           M        F
## 47           M        F
## 48           F        M
## 49           F        M
## 50           F        M
## 51           F        M
## 52           F        M
## 53           F        M
## 54           F        M
## 55           F        M
## 56           F        M
## 57           F        M
## 58           F        M
## 59           F        M
## 60           M        M
## 61           M        M
## 62           M        M
## 63           F        M
## 64           F        M
## 65           M        M
## 66           M        M
## 67           M        M
## 68           M        M
## 69           M        M
## 70           M        M
## 71           M        M
## 72           M        M
## 73           M        M
## 74           M        M
## 75           M        M
## 76           M        M
## 77           M        M
## 78           M        M
## 79           M        M
## 80           M        M
## 81           M        M
## 82           M        M
## 83           M        M
## 84           M        M
## 85           M        M
## 86           M        M
## 87           M        M
## 88           M        M
## 89           M        M
## 90           M        M
## 91           M        M
## 92           M        M
## 93           M        M
## 94           M        M
## 95           M        M
## 96           M        M
## 97           M        M
## 98           M        M
## 99           M        M
## 100          M        M
## 101          M        M
## 102          M        M
## 103          M        M
## 104          M        M
## 105          M        M
## 106          M        M
## 107          M        M
## 108          M        M
## 109          M        M
## 110          M        M
## 111          M        M
## 112          M        M
## 113          M        M
## 114          M        M
## 115          M        M
## 116          M        M
## 117          M        M
## 118          M        M
## 119          M        M
## 120          M        M
## 121          M        M
## 122          M        M
## 123          M        M
## 124          M        M
## 125          M        M
## 126          M        M
## 127          M        M
## 128          M        M
## 129          M        M
## 130          M        M
## 131          M        M
## 132          M        M
## 133          M        M
## 134          M        M
## 135          M        M
## 136          M        M
## 137          M        M
## 138          M        M
## 139          M        M
## 140          M        M
## 141          M        M
## 142          M        M
## 143          M        M
## 144          M        M
table(true=cats$Sex , predicted = predict(m))
##     predicted
## true  F  M
##    F 33 14
##    M 14 83

Tunning the parameters :-

obj <- tune(svm,
            Sex~.,
            data = cats,
            ranges = list(gamma = seq(0 , 1.0 , 0.1),
                          cost = seq(10,100,.1)),
            tunecontrol = tune.control(sampling = "fix"))
plot(obj)

obj
## 
## Parameter tuning of 'svm':
## 
## - sampling method: fixed training/validation set 
## 
## - best parameters:
##  gamma cost
##      0   10
## 
## - best performance: 0.2083333

Fitting the SVM with optimized parameters :-

m2 <- svm(Sex~. , data = cats , gamma=0.5 , cost = 67.8)
plot(m2, data = cats)

table(true = cats$Sex , predicted = predict(m2))
##     predicted
## true  F  M
##    F 33 14
##    M 11 86