The objective is to understand the sales trends for one of the leading pharmaceutical company. The company want to explore the past data in a better mannerand give a good picture of the progress and the faliure.
dplyr, tidyr, ggplot2, plotrix, magrittr
sales = read.csv("D:\\Business Analytics\\R\\CLASS - 6\\R case study 3 (Visualization)\\SalesData.csv")
options(scipen = 999)
s1 = sales%>%
group_by(Region)%>%
summarise(TotalSales2015 = sum(Sales2015),TotalSales2016 = sum(Sales2016))
data_long = gather(s1,key = Year, value = Sales,-Region )
data_long$Sales = round(data_long$Sales,1)
ggplot(data_long,aes(Region,Sales, fill = Year,label = Sales)) + geom_bar(stat = "identity",position = "dodge") +
geom_text(size = 4) + xlab('Region') +ylab('Sales') + ggtitle("Comparision of Sales by Region")
s2 = sales%>%
group_by(Region)%>%
summarise(TotalSales2016 = sum(Sales2016))
piepercent = round(s2$TotalSales2016/sum(s2$TotalSales2016)*100,1)
lbls= s2$Region
lbls = paste(lbls,":",piepercent)
lbls = paste(lbls,"%",sep = "")
pie(s2$TotalSales2016,labels = lbls , col = c("lightskyblue","royalblue3","turquoise4"),main = "2D Pie Chart of Sales 2016",radius = 1,border = "black")
pie3D(s2$TotalSales2016,labels = lbls ,explode = 0.1, col = c("lightskyblue","royalblue3","turquoise4")) + title('3D Pie Chart of Sales 2016')
## numeric(0)
s3 = sales%>%
group_by(Region,Tier)%>%
summarise(TotalSales2015 = sum(Sales2015),TotalSales2016 = sum(Sales2016))
data_long1 = gather(s3,key = Year,value = Sales,-c(Region,Tier))
ggplot(data_long1,aes(Tier,Sales,fill = Year)) + geom_bar(stat = "identity", position = "dodge") + facet_wrap(~ Region) +ggtitle("Comparision of Sales by Region and Tiers")
s4 = sales%>%
group_by(State)%>%
filter(Region =="East")%>%
summarise(TotalSales2015 = sum(Sales2015),TotalSales2016 = sum(Sales2016))
data_long2 = gather(s4,key = Year, value = Sales,-State)
ggplot(data_long2,aes(State,Sales,fill = Year)) + geom_bar(stat = "identity",position = "dodge") +ggtitle("Comparision of Sales by State")
s5 = sales%>%
filter(Tier == "High")%>%
group_by(Division)%>%
summarise(TotalUnit2015 = sum(Units2015),TotalUnit2016 = sum(Units2016))
data_long3 = gather(s5,key = Year, value = Sales,-Division)
gg1 = ggplot(data_long3,aes(Division,Sales, fill = Year)) + geom_bar(stat = "identity",position = "dodge")
gg1 + theme(axis.text.x = element_text(angle = 90)) + ggtitle("Comparision of Sales by Division")
sales$Qtr = if_else(sales$Month == "Jan"|sales$Month == "Feb"|sales$Month == "Mar","Q1",
if_else(sales$Month == "Apr"|sales$Month == "May"|sales$Month == "Jun","Q2",
if_else(sales$Month == "Jul"|sales$Month == "Aug"|sales$Month == "Sep","Q3","Q4")))
s7 = sales%>%
group_by(Qtr)%>%
summarise(TotalSum2015 = sum(Sales2015),TotalSum2016 = sum(Sales2016))
data_long4 = gather(s7,key = Year, value = Sales,-Qtr)
ggplot(data_long4,aes(Qtr,Sales,fill = Year)) + geom_bar(stat = "identity",position = "dodge") + ggtitle("Comparision of Sales by Quarter")
s8_q1 = sales%>%group_by(Qtr,Tier)%>%filter(Qtr=="Q1")%>%summarise(TotalSales2015 = sum(Sales2015))
s8_q2 = sales%>%group_by(Qtr,Tier)%>%filter(Qtr=="Q2")%>%summarise(TotalSales2015 = sum(Sales2015))
s8_q3 = sales%>%group_by(Qtr,Tier)%>%filter(Qtr=="Q3")%>%summarise(TotalSales2015 = sum(Sales2015))
s8_q4 = sales%>%group_by(Qtr,Tier)%>%filter(Qtr=="Q4")%>%summarise(TotalSales2015 = sum(Sales2015))
piepercent1 = round(s8_q1$TotalSales2015/sum(s8_q1$TotalSales2015)*100,1)
piepercent2 = round(s8_q2$TotalSales2015/sum(s8_q2$TotalSales2015)*100,1)
piepercent3 = round(s8_q3$TotalSales2015/sum(s8_q3$TotalSales2015)*100,1)
piepercent4 = round(s8_q4$TotalSales2015/sum(s8_q4$TotalSales2015)*100,1)
lbls1 = s8_q1$Tier%>%paste(":",piepercent1)%>%paste("%",sep = "")
lbls2 = s8_q2$Tier%>%paste(":",piepercent2)%>%paste("%",sep = "")
lbls3 = s8_q3$Tier%>%paste(":",piepercent3)%>%paste("%",sep = "")
lbls4 = s8_q4$Tier%>%paste(":",piepercent4)%>%paste("%",sep = "")
par(mfrow = c(2,2))
pie(s8_q1$TotalSales2015,labels = lbls2 ,col = c("lightskyblue","royalblue3","turquoise4"),radius = 1,main = "Qtr 1")
pie(s8_q2$TotalSales2015,labels = lbls2 ,col = c("lightskyblue","royalblue3","turquoise4"),radius = 1,main = "Qtr 2")
pie(s8_q3$TotalSales2015,labels = lbls3 ,col = c("lightskyblue","royalblue3","turquoise4"),radius = 1,main = "Qtr 3")
pie(s8_q4$TotalSales2015,labels = lbls4 ,col = c("lightskyblue","royalblue3","turquoise4"),radius = 1,main = "Qtr 4")