dn <- read.csv("d:/UPWORK-SHINY/dclean-new.csv")
ddn <- dn %>% dplyr::select(Firstryprod_Response,Science_Response,Supplement_Response,Age_Response,Veva_response,
SpendCostsupplement_Response,Hincome_Response,Region_Response)
rfs <- randomForest(Firstryprod_Response~.,data=ddn)
erfs <- DALEX::explain(rfs,data=ddn[,2:8],y=ddn$Firstryprod_Response)
## Preparation of a new explainer is initiated
## -> model label : randomForest ( [33m default [39m )
## -> data : 206 rows 7 cols
## -> target variable : 206 values
## -> predict function : yhat.randomForest will be used ( [33m default [39m )
## -> predicted values : numerical, min = 1.422096 , mean = 4.929782 , max = 8.92598
## -> model_info : package randomForest , ver. 4.6.14 , task regression ( [33m default [39m )
## -> residual function : difference between y and yhat ( [33m default [39m )
## -> residuals : numerical, min = -2.757598 , mean = 0.007111201 , max = 3.039215
## [32m A new explainer has been created! [39m
plot(rfs)#ok
mp_rf <- model_performance(erfs)
#plot(mp_rf)
vi_lm <- variable_importance(erfs, loss_function = loss_root_mean_square)
plot(vi_lm)
dn <- read.csv("d:/UPWORK-SHINY/dclean-new.csv")
ddn <- dn %>% select(Firstryprod_Response,Science_Response,Supplement_Response,Age_Response,Veva_response,
SpendCostsupplement_Response,Hincome_Response,Region_Response)
library(ceterisParibus)
## Loading required package: gower
## Registered S3 methods overwritten by 'ceterisParibus':
## method from
## plot.ceteris_paribus_explainer ingredients
## plot.ceteris_paribus_oscillations ingredients
## print.ceteris_paribus_explainer ingredients
erfs <- DALEX::explain(rfs,data=ddn[,2:8],y=ddn$Firstryprod_Response)
## Preparation of a new explainer is initiated
## -> model label : randomForest ( [33m default [39m )
## -> data : 206 rows 7 cols
## -> target variable : 206 values
## -> predict function : yhat.randomForest will be used ( [33m default [39m )
## -> predicted values : numerical, min = 1.422096 , mean = 4.929782 , max = 8.92598
## -> model_info : package randomForest , ver. 4.6.14 , task regression ( [33m default [39m )
## -> residual function : difference between y and yhat ( [33m default [39m )
## -> residuals : numerical, min = -2.757598 , mean = 0.007111201 , max = 3.039215
## [32m A new explainer has been created! [39m
cp_rf1 <- ceteris_paribus(erfs, ddn[2,])
plot(cp_rf1, alpha = 0.5, color = "_label_", size_points = 4)
dn <- read.csv("d:/UPWORK-SHINY/dclean-new.csv")
ddn <- dn %>% select(Firstryprod_Response,Science_Response,Supplement_Response,Age_Response,Veva_response,
SpendCostsupplement_Response,Hincome_Response,Region_Response)
erfs <- DALEX::explain(rfs,data=ddn[,2:8],y=ddn$Firstryprod_Response)
## Preparation of a new explainer is initiated
## -> model label : randomForest ( [33m default [39m )
## -> data : 206 rows 7 cols
## -> target variable : 206 values
## -> predict function : yhat.randomForest will be used ( [33m default [39m )
## -> predicted values : numerical, min = 1.422096 , mean = 4.929782 , max = 8.92598
## -> model_info : package randomForest , ver. 4.6.14 , task regression ( [33m default [39m )
## -> residual function : difference between y and yhat ( [33m default [39m )
## -> residuals : numerical, min = -2.757598 , mean = 0.007111201 , max = 3.039215
## [32m A new explainer has been created! [39m
cp_rf10 <- ceteris_paribus(erfs, ddn[16,])
plot(cp_rf10, alpha = 0.5, color = "_label_", size_points = 4)
plot for variable: Firstryprod_Response,Science_Response,Supplement_Response,Age_Response,Veva_response, SpendCostsupplement_Response,Hincome_Response,Region_Response
dt <- optbin(ddn)
mdl <- OneR(dt,verbose = TRUE)
## Warning in OneR.data.frame(dt, verbose = TRUE): data contains unused factor
## levels
##
## Attribute Accuracy
## 1 * Supplement_Response 27.67%
## 2 Science_Response 26.21%
## 3 Firstryprod_Response 24.27%
## 4 SpendCostsupplement_Response 23.3%
## 5 Age_Response 22.82%
## 6 Hincome_Response 20.39%
## 7 Veva_response 19.9%
## ---
## Chosen attribute due to accuracy
## and ties method (if applicable): '*'
plot(mdl)