One of the errors is we could make is to reject the null when it is false, this is called the Power = 1 - beta, which can be reduced with a large n.
Power Calculation
The calculation for Power looks like the the calculation for alpha, but when calculating power we plug in a different values of mu and n.Â
For example, if you plot and take Power to be the area under the curve of the blue plot, after the black bar you see that
More Noise Less Power
More Data More Power
Arguments of power.t.test - n: number of observations (per group)
delta : true difference in means
sd : standard deviation
sig.level : significance level (Type I error probability)
power : power of test (1 minus Type II error probability)
type : string specifying the type of t test. Can be abbreviated.
alternative : one- or two-sided test. Can be abbreviated.
strict : use strict interpretation in two-sided case
tol : numerical tolerance used in root finding, the default providing (at least) four significant digits.
mu0 = 30
mua = 32
sigma = 4
alpha = 0.05
n = 16
z = qnorm(1 - alpha)
pnorm(mu0 + z * sigma/sqrt(n), mean = mu0, sd = sigma/sqrt(n), lower.tail = FALSE)
## [1] 0.05
#[1] 0.05 ##[1] 0.01 ###[1] 0.1
pnorm(mu0 + z * sigma/sqrt(n), mean = mua, sd = sigma/sqrt(n), lower.tail = FALSE)
## [1] 0.63876
#[1] 0.6388 ##[1] 0.3720806 ###[1] 0.7637596
the effect size,power.t.test(n = 16, delta = 2/4, sd = 1, type = "one.sample", alt = "one.sided")$power
## [1] 0.6040329
#[1] 0.6040329
power.t.test(n = 16, delta = 2, sd = 4, type = "one.sample", alt = "one.sided")$power
## [1] 0.6040329
#[1] 0.6040329
power.t.test(n = 16, delta = 100, sd = 200, type = "one.sample", alt = "one.sided")$power
## [1] 0.6040329
#[1] 0.6040329
or modified:
power.t.test(power = 0.8, delta = 2/4, sd = 1, type = "one.sample", alt = "one.sided")$n
## [1] 26.13751
#[1] 26.13751
power.t.test(power = 0.8, delta = 2, sd = 4, type = "one.sample", alt = "one.sided")$n
## [1] 26.13751
#[1] 26.13751
power.t.test(power = 0.8, delta = 100, sd = 200, type = "one.sample", alt = "one.sided")$n
## [1] 26.13751
#[1] 26.13751
here we would makr n=27.
power.t.test(power = 0.8, n = 3, sd = 4, type = "one.sample", alt = "one.sided")$delta
## [1] 9.1891
#[1] 9.1891
power.t.test(power = 0.8, n = 300, sd = 4, type = "one.sample", alt = "one.sided")$delta
## [1] 0.5755219
#[1] 0.5755219
power.t.test(power = 0.8, n = 3000, sd = 4, type = "one.sample", alt = "one.sided")$delta
## [1] 0.1816282
#[1] 0.1816282