rmarkdown output

I am using prettydoc with cayman theme, for my rmarkdown this week. prettydoc has great documentation in this link https://prettydoc.statr.me/index.html

Problem Statement

The goal of this assignment is to give you practice in preparing different datasets for downstream analysis work. Your task is to: (1) Choose any three of the “wide” datasets identified in the Week 6 Discussion items. (You may use your own dataset; please don’t use my Sample Post dataset, since that was used in your Week 6 assignment!) For each of the three chosen datasets:

  • Create a .CSV file (or optionally, a MySQL database!) that includes all of the information included in the dataset. You’re encouraged to use a “wide” structure similar to how the information appears in the discussion item, so that you can practice tidying and transformations as described below.
  • Read the information from your .CSV file into R, and use tidyr and dplyr as needed to tidy and transform your data. [Most of your grade will be based on this step!]
  • Perform the analysis requested in the discussion item.
  • Your code should be in an R Markdown file, posted to rpubs.com, and should include narrative descriptions of your data cleanup work, analysis, and conclusions.
  1. Please include in your homework submission, for each of the three chosen datasets:
  • The URL to the .Rmd file in your GitHub repository, and
  • The URL for your rpubs.com web page.

Git-Hub

The datasets and .rmd file used in this project can be found at: https://github.com/ShovanBiswas/DATA607/tree/master/Week6-Project2

Loading package

The tidyverse includes both tidyr and dplyr. There’s Amazing documentation on tidyverse site: https://www.tidyverse.org/packages/.

Dataset-1: Population Migrations to USA

This is a wide dataset, in UN’s website, containing data on migrations, between countries, from 1990 to 2019. The link is as follows: https://www.un.org/en/development/desa/population/migration/data/estimates2/estimates15.asp

The questions I tried to address here, are:

  • Top 10 countries from which migrations happned to USA.
  • Bottom 10 countries from which migrations happned to USA.
  • Trend changes in population migrations to USA, over time.

Create a .csv file

After downloading dataset from original link, it was uploaded to github, which has been read below.

##   Year Sort.order Major.area..region..country.or.area.of.destination Notes Code
## 1 1990    1990001                                              WORLD        900
## 2 1990    1990002                              UN development groups         NA
## 3 1990    1990003                             More developed regions     b  901
## 4 1990    1990004                             Less developed regions     c  902
## 5 1990    1990005                          Least developed countries     d  941
##   Type.of.data..a. Afghanistan Albania Algeria American.Samoa Andorra Angola
## 1                      6823350  180284  921727           2041    3792 824942
## 2                           ..      ..      ..             ..      ..     ..
## 3                       119386  177986  867015           1027    3737 167381
## 4                      6703964    2298   54712           1014      55 657561
## 5                            0       0    5622              0       0 608108
##   Anguilla Antigua.and.Barbuda Argentina Armenia Aruba Australia Austria
## 1     2047               21753    430169  899649 10596    303696  506088
## 2       ..                  ..        ..      ..    ..        ..      ..
## 3      540               14561    223308  654111  4639    245256  471950
## 4     1507                7192    206861  245538  5957     58440   34138
## 5        0                   0       526       0     0      1465     190
##   Azerbaijan Bahamas Bahrain Bangladesh Barbados Belarus Belgium Belize  Benin
## 1    1634081   25182   12820    5451831    84931 1767606  365360  36117 234314
## 2         ..      ..      ..         ..       ..      ..      ..     ..     ..
## 3    1056543   23376    1783     161091    79563 1570292  338069  32183  14838
## 4     577538    1806   11037    5290740     5368  197314   27291   3934 219476
## 5          0       0      89       2046        0       0     973      0  41733
##   Bermuda Bhutan Bolivia..Plurinational.State.of.
## 1   71702  28465                           224693
## 2      ..     ..                               ..
## 3   71550    554                            43272
## 4     152  27911                           181421
## 5       0  16805                                0
##   Bonaire..Sint.Eustatius.and.Saba Bosnia.and.Herzegovina Botswana Brazil
## 1                             3206                 861766    26053 500392
## 2                               ..                     ..       ..     ..
## 3                             2900                 854349     2843 282969
## 4                              306                   7417    23210 217423
## 5                                0                      0      652   1631
##   British.Virgin.Islands Brunei.Darussalam Bulgaria Burkina.Faso Burundi
## 1                   3094             26323   613093      1021332  337118
## 2                     ..                ..       ..           ..      ..
## 3                    158              6623   122758         6386    4620
## 4                   2936             19700   490335      1014946  332498
## 5                      0                 0        0        43162  329604
##   Cabo.Verde Cambodia Cameroon Canada Cayman.Islands Central.African.Republic
## 1      91368   355430   115853 998163            373                    46362
## 2         ..       ..       ..     ..             ..                       ..
## 3      80227   237274    50166 938586            269                     9114
## 4      11141   118156    65687  59577            104                    37248
## 5      10796    14322    33380   1876              0                    26440
##     Chad Channel.Islands  Chile   China China..Hong.Kong.SAR China..Macao.SAR
## 1 336802           18726 493026 4231648               551080            95648
## 2     ..              ..     ..      ..                   ..               ..
## 3   3608           18625 191694 1460345               516749            14382
## 4 333194             101 301332 2771303                34331            81266
## 5 208161               0    333  245923                   54                0
##   Colombia Comoros Congo Cook.Islands Costa.Rica Côte.d.Ivoire Croatia   Cuba
## 1  1009935   40083 96372        17488      69711        366348  425807 835796
## 2       ..      ..    ..           ..         ..            ..      ..     ..
## 3   365140   18946 61595        17441      48040         49237  422110 774534
## 4   644795   21137 34777           47      21671        317111    3697  61262
## 5      828    8549 25168            0        274        308481       0   1493
##   Curaçao Cyprus Czechia Dem..People.s.Republic.of.Korea
## 1   43190 174378  277260                           39784
## 2      ..     ..      ..                              ..
## 3   39067 163985  268472                           15643
## 4    4123  10393    8788                           24141
## 5       0      5       0                              78
##   Democratic.Republic.of.the.Congo Denmark Djibouti Dominica Dominican.Republic
## 1                           436526  201761     5308    42437             466216
## 2                               ..      ..       ..       ..                 ..
## 3                            95528  194363     3466    23814             387566
## 4                           340998    7398     1842    18623              78650
## 5                           257210     189      904        0               2406
##   Ecuador   Egypt El.Salvador Equatorial.Guinea Eritrea Estonia Eswatini
## 1  214008 1322178     1242075             36178  170603  113905    35181
## 2      ..      ..          ..                ..      ..      ..       ..
## 3  165601  269821      507652              8443   25565  110168      546
## 4   48407 1052357      734423             27735  145038    3737    34635
## 5       0   30582           0               355  134471       0      102
##   Ethiopia Falkland.Islands..Malvinas. Faroe.Islands  Fiji Finland  France
## 1  1689955                         260          7520 90166  250765 1215895
## 2       ..                          ..            ..    ..      ..      ..
## 3   116900                         237          7518 85997  247088  881133
## 4  1573055                          23             2  4169    3677  334762
## 5  1432950                           0             0   721       0   38541
##   French.Guiana French.Polynesia Gabon Gambia Georgia Germany  Ghana Gibraltar
## 1          2844             3149 15352  36280  919454 2929448 371162     11994
## 2            ..               ..    ..     ..      ..      ..     ..        ..
## 3            61              324  8717  12656  801710 2488935 127620     11920
## 4          2783             2825  6635  23624  117744  440513 243542        74
## 5             0                0  5273  13064       0    4776  58990         0
##    Greece Greenland Grenada Guadeloupe Guam Guatemala Guinea Guinea.Bissau
## 1 1022459      9510   43249       5828 1376    348332 352763         55409
## 2      ..        ..      ..         ..   ..        ..     ..            ..
## 3  890569      8997   23826        162   43    245297  14712         16106
## 4  131890       513   19423       5666 1333    103035 338051         39303
## 5      40         0       0          0    0         0 200952         37630
##   Guyana  Haiti Holy.See Honduras Hungary Iceland   India Indonesia
## 1 233731 528873       31   156594  387514   17621 6623177   1638365
## 2     ..     ..       ..       ..      ..      ..      ..        ..
## 3 206865 294766       10   114335  360160   17533 1232954    309159
## 4  26866 234107       21    42259   27354      88 5390223   1329206
## 5      0      0        0        0      10       0  462470     75246
##   Iran..Islamic.Republic.of.    Iraq Ireland Isle.of.Man Israel   Italy Jamaica
## 1                     631339 1506702  917286       10735 281597 3351006  589010
## 2                         ..      ..      ..          ..     ..      ..      ..
## 3                     518437  145177  908952       10735 169372 2789415  575132
## 4                     112902 1361525    8334           0 112225  561591   13878
## 5                          0    5020       1           0      0    2401       0
##    Japan Jordan Kazakhstan  Kenya Kiribati Kuwait Kyrgyzstan
## 1 608921 313997    2971639 250340     4053  81611     522578
## 2     ..     ..         ..     ..       ..     ..         ..
## 3 430558  70531    2833828 154625      989  16425     483043
## 4 178363 243466     137811  95715     3064  65186      39535
## 5   9729      0          0  82931     1054     29          0
##   Lao.People.s.Democratic.Republic Latvia Lebanon Lesotho Liberia Libya
## 1                           483021 215134  509323  191339  516886 76256
## 2                               ..     ..      ..      ..      ..    ..
## 3                           251777 200654  370568     365   18354 25322
## 4                           231244  14480  138755  190974  498532 50934
## 5                            58843      0    7337    2954  477733  3757
##   Liechtenstein Lithuania Luxembourg Madagascar Malawi Malaysia Maldives   Mali
## 1          3428    341050      36141      59424 143437   562762     2193 647436
## 2            ..        ..         ..         ..     ..       ..       ..     ..
## 3          3250    310298      35779      43500  11584   188217      304  51354
## 4           178     30752        362      15924 131853   374545     1889 596082
## 5             0         0          0      10810  47615    92880        0 132257
##    Malta Marshall.Islands Martinique Mauritania Mauritius Mayotte  Mexico
## 1 110746             1426      11041     134488    110708    1835 4395365
## 2     ..               ..         ..         ..        ..      ..      ..
## 3 110502             1115        316      13255    101617       0 4350586
## 4    244              311      10725     121233      9091    1835   44779
## 5      0                0          0     107801       113       0     306
##   Micronesia..Fed..States.of. Monaco Mongolia Montenegro Montserrat Morocco
## 1                        7714   4479    24466      77384       7188 1748251
## 2                          ..     ..       ..         ..         ..      ..
## 3                        2764   4200    24300      77143       5174 1567742
## 4                        4950    279      166        241       2014  180509
## 5                           0      0        0          0          0    3711
##   Mozambique Myanmar Namibia Nauru  Nepal Netherlands New.Caledonia New.Zealand
## 1    2222369  685310   16079  1419 748060      723638          4151      388173
## 2         ..      ..      ..    ..     ..          ..            ..          ..
## 3      78957   44698    1304   465   7177      660809          1268      371488
## 4    2143412  640612   14775   954 740883       62829          2883       16685
## 5    1265353  226295    3080   928  10025         548           292         487
##   Nicaragua  Niger Nigeria Niue North.Macedonia Northern.Mariana.Islands Norway
## 1    442126 149779  446806 5860          432296                     2525 138536
## 2        ..     ..      ..   ..              ..                       ..     ..
## 3    179003   3433  148202 5821          380767                      274 130212
## 4    263123 146346  298604   39           51529                     2251   8324
## 5         0  55934  114276    0               0                        0   4249
##    Oman Pakistan Palau Panama Papua.New.Guinea Paraguay   Peru Philippines
## 1 12535  3343328  2958 134743             3111   297979 314854     2033684
## 2    ..       ..    ..     ..               ..       ..     ..          ..
## 3   714   447344    12  90144             1845    14571 228073     1349642
## 4 11821  2895984  2946  44599             1266   283408  86781      684042
## 5     0    17315     0      0             1160        0    351         818
##    Poland Portugal Puerto.Rico Qatar Republic.of.Korea Republic.of.Moldova
## 1 1510415  1873457     1200821 12204           1624729              625683
## 2      ..       ..          ..    ..                ..                  ..
## 3 1346970  1475456     1180927   904           1382392              567165
## 4  163445   398001       19894 11300            242337               58518
## 5       0     8194        1546     0               354                   0
##   Réunion Romania Russian.Federation Rwanda Saint.Helena Saint.Kitts.and.Nevis
## 1    3087  813066           12662893 547718          884                 20714
## 2      ..      ..                 ..     ..           ..                    ..
## 3     125  661082            7566200   8427          539                  9886
## 4    2962  151984            5096693 539291          345                 10828
## 5     957       0               1465 532395            0                     0
##   Saint.Lucia Saint.Pierre.and.Miquelon Saint.Vincent.and.the.Grenadines Samoa
## 1       22005                       485                            37049 74861
## 2          ..                        ..                               ..    ..
## 3       10108                       433                            18424 59558
## 4       11897                        52                            18625 15303
## 5           0                         0                                0    21
##   San.Marino Sao.Tome.and.Principe Saudi.Arabia Senegal Serbia Seychelles
## 1       1419                 13977       107166  370263 742547      35633
## 2         ..                    ..           ..      ..     ..         ..
## 3       1376                  5881        24905  130627 738976      28990
## 4         43                  8096        82261  239636   3571       6643
## 5          0                  3219         2132  196154      0       6426
##   Sierra.Leone Singapore Sint.Maarten..Dutch.part. Slovakia Slovenia
## 1        61854    156468                     14823   133006    91496
## 2           ..        ..                        ..       ..       ..
## 3        19718     90554                     13911   132447    89464
## 4        42136     65914                       912      559     2032
## 5        39039     10678                         0        0       15
##   Solomon.Islands Somalia South.Africa South.Sudan   Spain Sri.Lanka
## 1            2212  848067       308303      514943 1439019    885951
## 2              ..      ..           ..          ..      ..        ..
## 3            1115   67402       224304           1  917001    260120
## 4            1097  780665        83999      514942  522018    625831
## 5              83  757421        21041      498608    1778       115
##   State.of.Palestine  Sudan Suriname Sweden Switzerland Syrian.Arab.Republic
## 1            1813063 584940   179870 206848      326276               621881
## 2                 ..     ..       ..     ..          ..                   ..
## 3              35600  15083   160380 197121      288203               126353
## 4            1777463 569857    19490   9727       38073               495528
## 5               2697 244607        0   1170         686                 2393
##   Tajikistan Thailand Timor.Leste   Togo Tokelau Tonga Trinidad.and.Tobago
## 1     537701   311308       11261 193830    1684 32666              197521
## 2         ..       ..          ..     ..      ..    ..                  ..
## 3     471233   206019       10514  19358    1523 29974              182904
## 4      66468   105289         747 174472     161  2692               14617
## 5      40537    32076           0  32868       0    24                   0
##   Tunisia  Turkey Turkmenistan Turks.and.Caicos.Islands Tuvalu Uganda Ukraine
## 1  465576 2640033       259987                     2311   2350 311602 5545760
## 2      ..      ..           ..                       ..     ..     ..      ..
## 3  416484 2548456       249213                      221   1171  71129 4668356
## 4   49092   91577        10774                     2090   1179 240473  877404
## 5     221       6            0                        0    377 149308      84
##   United.Arab.Emirates United.Kingdom United.Republic.of.Tanzania
## 1                79545        3794333                      203070
## 2                   ..             ..                          ..
## 3                 5600        3462531                       61033
## 4                73945         331802                      142037
## 5                   62          15760                       72693
##   United.States.of.America United.States.Virgin.Islands Uruguay Uzbekistan
## 1                  1739233                         2362  237486    1428020
## 2                       ..                           ..      ..         ..
## 3                   889414                           70   56838    1078563
## 4                   849819                         2292  180648     349457
## 5                    38316                            0     286       2027
##   Vanuatu Venezuela..Bolivarian.Republic.of. Viet.Nam Wallis.and.Futuna.Islands
## 1    5060                             185946  1237873                      6484
## 2      ..                                 ..       ..                        ..
## 3    1017                             114991  1085310                       884
## 4    4043                              70955   152563                      5600
## 5       9                               2510    71579                         0
##   Western.Sahara  Yemen Zambia Zimbabwe  X
## 1         168239 455492  85203   204365 NA
## 2             ..     ..     ..       .. NA
## 3            333  11457  26062    40957 NA
## 4         167906 444035  59141   163408 NA
## 5              0    357  26254    75122 NA
## [1] 1981  239
## [1] "data.frame"

Converting to tibbles

Tibbles is an enhanced dataframe, which inherits data frame class, and improves three behaviors, which are:

  • Subsetting: Always returns a new tibble, [[ and $ return a vector.
  • No partial matching: One must use full column names when subsetting.
  • Display: When one prints a tibble, R provides a concise view of the data, which fits on one screen.

This is good site for tibbles documentation: https://tibble.tidyverse.org/

Converting dataframe to tibble

Check if data frame to tibble conversion worked

## [1] TRUE

my Approach

In Migrantion dataset, columns 6 to 239 represent values of country variable, and each row represents 239 observations. I used the most recent functions pivot_longer(), introduced in tidyr 1.0.0, replacing the older functions spread() and gather().

More information is available at: https://tidyr.tidyverse.org/reference/pivot_longer.html

Transformation, using pivot_longer()

## # A tibble: 5 x 8
##    year Sort.order destination Notes  Code Type.of.data..a. country_of_orig~
##   <int>      <int> <chr>       <chr> <int> <chr>            <chr>           
## 1  1990    1990001 WORLD       ""      900 ""               Afghanistan     
## 2  1990    1990001 WORLD       ""      900 ""               Albania         
## 3  1990    1990001 WORLD       ""      900 ""               Algeria         
## 4  1990    1990001 WORLD       ""      900 ""               American.Samoa  
## 5  1990    1990001 WORLD       ""      900 ""               Andorra         
## # ... with 1 more variable: count_in_thousand <chr>

I am selecting necessary columns, and filtering rows for migrations to USA, based on the conditions for my main analysis.

## # A tibble: 6 x 4
##    year destination              country_of_origin count_in_thousand
##   <int> <chr>                    <chr>             <chr>            
## 1  1990 United States of America Afghanistan       "28444"          
## 2  1990 United States of America Albania           "5627"           
## 3  1990 United States of America Algeria           "4629"           
## 4  1990 United States of America American.Samoa    ""               
## 5  1990 United States of America Andorra           ""               
## 6  1990 United States of America Angola            "2252"

I need to change data type of count_in_thousand to numeric

Top 10 countries from where people migrated to USA

## `summarise()` ungrouping output (override with `.groups` argument)
## Selecting by count_in_thousand
country_of_origin count_in_thousand
Mexico 66449196
China 12287459
Puerto.Rico 10995652
Philippines 10941865
India 10471258
Viet.Nam 7344249
Cuba 7010218
El.Salvador 6925286
Republic.of.Korea 6441503
Canada 5746699

So, at this point, having seen the top 10 countries, from where migrations happnened to USA, now I’ll see the bottom 10.

Conclusion

So, I answered the three questions, which I wanted to answer in the begining, and observed that the migrations to USA has been progressively increasing, over the years.

Dataset-2: Educational attainment

This is a wide dataset, at Census Bureau website, containing data on educatioanl attainments and incomes, for 2017. The link is as follows: https://www.census.gov/data/datasets/time-series/demo/income-poverty/cps-asec-design.html

The questions, I tried to address here are:

  • Percentage wise distribution of levels of education (e.g. GED, Bachelors etc), in 2017.
  • Correlation between educational attainment and being without earning.
  • Correlation between educational attainment and high inclome, over $100,000.

After downloading dataset from original link, it was uploaded to github, which has been read below.

##         Characteristic Less.Than.9th.Grade Nongrad.9th.to.12th
## 1     Without Earnings                4943                7159
## 2 $1 to $2,499 or loss                 135                 250
## 3     $2,500 to $4,999                  92                 201
## 4     $5,000 to $7,499                 130                 283
## 5     $7,500 to $9,999                  92                 190
## 6   $10,000 to $12,499                 291                 388
##   High.School.Grad..Incl.GED. Some.College.No.Degree Associate.Degree
## 1                       26111                  12574             6394
## 2                         889                    682              398
## 3                         628                    494              277
## 4                        1013                    579              283
## 5                         761                    389              244
## 6                        1612                    829              575
##   Bachelor.Degree Master.Degree Professional.Degree Doctorate.Degree
## 1           11592          5003                 676              915
## 2             663           249                  36               43
## 3             417           127                  17               25
## 4             633           282                  16               42
## 5             311           106                   9               33
## 6             864           291                  47               24
##              Character Less Than 9th Grade Nongrad 9th to 12th
## 1     Without Earnings                4943                7159
## 2 $1 to $2,499 or loss                 135                 250
## 3     $2,500 to $4,999                  92                 201
## 4     $5,000 to $7,499                 130                 283
## 5     $7,500 to $9,999                  92                 190
## 6   $10,000 to $12,499                 291                 388
##   High School Grad  Incl GED  Some College No Degree Associate Degree
## 1                       26111                  12574             6394
## 2                         889                    682              398
## 3                         628                    494              277
## 4                        1013                    579              283
## 5                         761                    389              244
## 6                        1612                    829              575
##   Bachelor Degree Master Degree Professional Degree Doctorate Degree
## 1           11592          5003                 676              915
## 2             663           249                  36               43
## 3             417           127                  17               25
## 4             633           282                  16               42
## 5             311           106                   9               33
## 6             864           291                  47               24

Transformation, using pivot_longer() and melt (member of reshape2)

Reshape using data.table

##               Character           Education Count_in_Thousands
## 1:     Without Earnings Less Than 9th Grade               4943
## 2: $1 to $2,499 or loss Less Than 9th Grade                135
## 3:     $2,500 to $4,999 Less Than 9th Grade                 92
## 4:     $5,000 to $7,499 Less Than 9th Grade                130
## 5:     $7,500 to $9,999 Less Than 9th Grade                 92
## 6:   $10,000 to $12,499 Less Than 9th Grade                291

Reshape using tidyr

## # A tibble: 378 x 3
##    Character            Education                     Count_in_Thousands
##    <chr>                <chr>                                      <int>
##  1 Without Earnings     "Less Than 9th Grade"                       4943
##  2 Without Earnings     "Nongrad 9th to 12th"                       7159
##  3 Without Earnings     "High School Grad  Incl GED "              26111
##  4 Without Earnings     "Some College No Degree"                   12574
##  5 Without Earnings     "Associate Degree"                          6394
##  6 Without Earnings     "Bachelor Degree"                          11592
##  7 Without Earnings     "Master Degree"                             5003
##  8 Without Earnings     "Professional Degree"                        676
##  9 Without Earnings     "Doctorate Degree"                           915
## 10 $1 to $2,499 or loss "Less Than 9th Grade"                        135
## # ... with 368 more rows

Percentage wise distribution of levels of education (e.g. GED, Bachelors etc), in 2017.

## `summarise()` ungrouping output (override with `.groups` argument)
Education Count_in_Thousands
High School Grad Incl GED 62669
Bachelor Degree 48220
Some College No Degree 35457
Associate Degree 22370
Master Degree 21054
Nongrad 9th to 12th 13685
Less Than 9th Grade 8723
Doctorate Degree 4473
Professional Degree 3176
## # A tibble: 9 x 3
##   Education                     Count_in_Thousands Percent_total
##   <fct>                                      <int>         <dbl>
## 1 "High School Grad  Incl GED "              62669         28.5 
## 2 "Bachelor Degree"                          48220         21.9 
## 3 "Some College No Degree"                   35457         16.1 
## 4 "Associate Degree"                         22370         10.2 
## 5 "Master Degree"                            21054          9.58
## 6 "Nongrad 9th to 12th"                      13685          6.23
## 7 "Less Than 9th Grade"                       8723          3.97
## 8 "Doctorate Degree"                          4473          2.03
## 9 "Professional Degree"                       3176          1.44

Let’s see it visually using ggplot2

Correlation between educational attainment and being without earning.

Education Without Earnings $1 to $2,499 or loss $2,500 to $4,999 $5,000 to $7,499 $7,500 to $9,999 $10,000 to $12,499 $12,500 to $14,999 $15,000 to $17,499 $17,500 to $19,999 $20,000 to $22,499 $22,500 to $24,999 $25,000 to $27,499 $27,500 to $29,999 $30,000 to $32,499 $32,500 to $34,999 $35,000 to $37,499 $37,500 to $39,999 $40,000 to $42,499 $42,500 to $44,999 $45,000 to $47,499 $47,500 to $49,999 $50,000 to $52,499 $52,500 to $54,999 $55,000 to $57,499 $57,500 to $59,999 $60,000 to $62,499 $62,500 to $64,999 $65,000 to $67,499 $67,500 to $69,999 $70,000 to $72,499 $72,500 to $74,999 $75,000 to $77,499 $77,500 to $79,999 $80,000 to $82,499 $82,500 to $84,999 $85,000 to $87,499 $87,500 to $89,999 $90,000 to $92,499 $92,500 to $94,999 $95,000 to $97,499 $97,500 to $99,999 $100,000 and over
Less Than 9th Grade 4943 135 92 130 92 291 156 290 195 406 205 346 89 291 81 159 76 156 24 92 31 129 6 47 17 64 5 27 3 16 4 25 4 24 2 3 2 15 4 6 1 39
Nongrad 9th to 12th 7159 250 201 283 190 388 228 399 288 675 318 521 121 484 148 284 142 325 45 142 90 229 31 83 24 118 27 61 25 63 13 47 22 54 1 15 7 35 1 6 6 136
High School Grad Incl GED 26111 889 628 1013 761 1612 868 1697 1097 2406 1244 2451 1058 2724 700 2114 788 2041 396 1475 599 2011 321 937 305 1158 165 694 187 649 126 446 92 522 88 223 94 245 33 144 30 1527
Some College No Degree 12574 682 494 579 389 829 333 914 594 1209 626 1283 604 1698 443 1239 469 1253 269 852 356 1204 280 591 213 870 129 545 150 533 132 388 98 374 65 211 73 179 23 138 59 1513
Associate Degree 6394 398 277 283 244 575 196 557 326 740 409 828 389 1058 334 859 383 940 246 597 306 825 261 463 175 652 125 420 139 341 94 323 78 319 52 214 32 221 21 98 42 1136
Bachelor Degree 11592 663 417 633 311 864 297 735 383 1048 505 1094 559 1473 413 1403 559 1881 446 1424 697 2090 500 1192 411 1640 296 1012 282 1247 194 998 266 1042 230 580 183 740 114 380 138 7288
Master Degree 5003 249 127 282 106 291 135 208 113 334 142 273 108 421 99 367 137 477 138 474 245 881 218 474 189 717 166 408 165 621 155 542 145 689 89 387 92 441 66 247 107 4526
Professional Degree 676 36 17 16 9 47 14 18 4 23 11 32 8 36 12 39 8 40 9 38 19 102 25 42 12 87 16 67 14 45 10 59 8 80 12 36 11 60 11 41 16 1310
Doctorate Degree 915 43 25 42 33 24 37 49 32 38 10 33 22 57 19 46 19 50 14 52 45 152 38 73 19 119 18 71 15 67 24 103 32 121 20 53 22 114 12 61 41 1693
Education Without Earnings Percent_total
High School Grad Incl GED 26111 34.65
Some College No Degree 12574 16.68
Bachelor Degree 11592 15.38
Nongrad 9th to 12th 7159 9.50
Associate Degree 6394 8.48
Master Degree 5003 6.64
Less Than 9th Grade 4943 6.56
Doctorate Degree 915 1.21
Professional Degree 676 0.90

Let’s see it visually using ggplot2

Conclusion

  1. Of the people surveyed, 28.51% graduated from high school (incl GED), 21.94% attained bachelor’s degree and 16.13% had some college degree.
  2. There’s a correlation between educational attainment and being without earning, because 34.65% of incomeless people, had only high school degree.
  3. There’s a correlation between educational attainment and high inclome (over $100,000), because 34.02% of those who earn 100k or more, have bachlor’s degree, 23.61% have master’s degree, and 8.83% have PhD.

Dataset-3: population, by global entities, from 1960 to 2010.

This is a wide dataset, in Worldbank’s website, containing data on populations by entities (including countries, regions etc), from 1960 to 2010. The link is as follows: https://databank.worldbank.org/home.aspx

The questions, I tried to address here are:

  • Populations of top 20 entities from in the year 2010.
  • Populations of bottom 20 entities from in the year 2010.
  • Trend changes in world (i.e. sum total of entities, countries, regions etc) population, over time.

Reading the dataset.

After downloading dataset from original link, it was uploaded to github, which has been read below.

Selecting relevant columns and omitting NA

Populations of top 20 entities in the year 2010

## Selecting by Population
Country.Name Population
World 6922947261
IDA & IBRD total 5793479782
Low & middle income 5765121055
Middle income 5187847044
IBRD only 4421851199
Early-demographic dividend 2908287643
Lower middle income 2688436551
Upper middle income 2499410493
East Asia & Pacific 2206884624
Late-demographic dividend 2181529363
East Asia & Pacific (excluding high income) 1965964309
East Asia & Pacific (IDA & IBRD countries) 1941377349
South Asia 1638792934
South Asia (IDA & IBRD) 1638792934
IDA total 1371628583
China 1337705000
OECD members 1242309585
India 1234281170
High income 1157826206
Post-demographic dividend 1074869481

Populations of bottom 20 entities in the year 2010

## Selecting by Population
Country.Name Population
Andorra 84449
Dominica 70878
Bermuda 65124
Greenland 56905
Cayman Islands 56672
Marshall Islands 56366
American Samoa 56079
Northern Mariana Islands 53971
St. Kitts and Nevis 49016
Faroe Islands 47814
St. Martin (French part) 37582
Liechtenstein 35994
Monaco 35612
Gibraltar 33585
Turks and Caicos Islands 32660
San Marino 31229
British Virgin Islands 27794
Palau 17955
Tuvalu 10530
Nauru 10005

Trend changes in world (i.e. sum total of entities, countries, regions etc) population, over time

## `summarise()` ungrouping output (override with `.groups` argument)
Year Total Population
X1960 30696994944
X1961 31108353431
X1962 31658294754
X1963 32342820687
X1964 33032632731
X1965 33739453133
X1966 34483819203
X1967 35225755472
X1968 35981282059
X1969 36774110168
X1970 37578380420
X1971 38403294546
X1972 39218037696
X1973 40027236911
X1974 40838904173
X1975 41634929535
X1976 42418106464
X1977 43198308074
X1978 43991861452
X1979 44804464513
X1980 45627321658
X1981 46472179835
X1982 47351062716
X1983 48240338882
X1984 49128810634
X1985 50034855935
X1986 50967920664
X1987 51925263797
X1988 52893291009
X1989 53860012489
X1990 54840819416
X1991 55795466259
X1992 56723821804
X1993 57652320273
X1994 58572105249
X1995 59492289648
X1996 60399571928
X1997 61304671961
X1998 62200715609
X1999 63084689314
X2000 63961898183
X2001 64834636987
X2002 65706004220
X2003 66581568814
X2004 67462607601
X2005 68349669516
X2006 69242979693
X2007 70140938566
X2008 71051310936
X2009 71967689579
X2010 72885851687

Conclusion

  1. I selected the top 20 entities. I saw that among them are China, India, and there South Asia region.
  2. Among the bottom 20 entities, I saw Palau, Tuvalu, Nauru.
  3. Finally, I saw that the world population has been progressivley increasing from 1960 to 2010.

Marker: 607-06_p