Human Capital and ICU Mortality

Make human capital variables

  1. Senior nurses defined as grades G, H and I
  2. Junior nurses grades C - F

These are WTEs in post. Also calcualte the ratio of these (senior/junior)

There are already variables measuring numbers with different qualifications.

  1. Degree
  2. Diploma
  3. ENB 6

Here we calculate proportion of WTE staff in post with these qualifications.

Possible hypothesis is that human capital matters most in units that have lower overall staffing levels, so divide staffing into quartiles. (Staffing is number of WTE direct care nurses per bed.)

Other variables to use that could be related to human capital:

  1. Average cost per nurse
  2. Ration of nurses with post-basic qualification
  3. Ratio overtime spending to total spending on nurses' salaries
  4. Ratio spending on bank to total spending on nurses' salaries
  5. Ratio spending on agency to total spending

ICU Mortality

Average cost of a nurse

## glmer(formula = diedicu ~ ave.cost.nurse + IMlo + prop.occ.c + 
##     admissions.perbed.perday + I(transin.perbed.perday * 7) + 
##     total.support.staff.perbed + N.dc.perbed + clinical.NHD.perbed + 
##     intensivist + IMlomean.x + I(avyulos/100) + (1 | trust.code), 
##     data = dta4, family = binomial(), subset = ss8, na.action = na.omit)
##                              coef.est coef.se
## (Intercept)                  -1.621    0.381 
## ave.cost.nurse                0.009    0.013 
## IMlo                          0.966    0.012 
## prop.occ.c                    0.256    0.096 
## admissions.perbed.perday      0.692    0.822 
## I(transin.perbed.perday * 7)  1.789    0.652 
## total.support.staff.perbed    0.154    0.193 
## N.dc.perbed                  -0.122    0.040 
## clinical.NHD.perbed          -0.175    0.058 
## intensivistYes                0.006    0.109 
## IMlomean.x                   -0.054    0.020 
## I(avyulos/100)                0.492    0.170 
## 
## Error terms:
##  Groups     Name        Std.Dev.
##  trust.code (Intercept) 0.276   
##  Residual               1.000   
## ---
## number of obs: 36935, groups: trust.code, 63
## AIC = 22536.6, DIC = 22511
## deviance = 22510.6
## glmer(formula = diedicu ~ ave.cost.nurse * N.dc.quart + IMlo + 
##     prop.occ.c + admissions.perbed.perday + I(transin.perbed.perday * 
##     7) + total.support.staff.perbed + N.dc.perbed + clinical.NHD.perbed + 
##     intensivist + IMlomean.x + I(avyulos/100) + (1 | trust.code), 
##     data = dta4, family = binomial(), subset = ss8, na.action = na.omit)
##                                      coef.est coef.se
## (Intercept)                          -1.578    0.445 
## ave.cost.nurse                        0.007    0.015 
## N.dc.quart(4.25,4.82]                -0.563    1.155 
## N.dc.quart(4.82,5.68]                 0.146    0.579 
## N.dc.quart(5.68,14.2]                -0.178    1.096 
## IMlo                                  0.966    0.012 
## prop.occ.c                            0.253    0.096 
## admissions.perbed.perday              0.628    0.899 
## I(transin.perbed.perday * 7)          1.567    0.714 
## total.support.staff.perbed            0.112    0.205 
## N.dc.perbed                          -0.134    0.061 
## clinical.NHD.perbed                  -0.158    0.065 
## intensivistYes                       -0.018    0.113 
## IMlomean.x                           -0.054    0.020 
## I(avyulos/100)                        0.481    0.176 
## ave.cost.nurse:N.dc.quart(4.25,4.82]  0.032    0.054 
## ave.cost.nurse:N.dc.quart(4.82,5.68] -0.003    0.025 
## ave.cost.nurse:N.dc.quart(5.68,14.2]  0.015    0.054 
## 
## Error terms:
##  Groups     Name        Std.Dev.
##  trust.code (Intercept) 0.276   
##  Residual               1.000   
## ---
## number of obs: 36935, groups: trust.code, 63
## AIC = 22547.5, DIC = 22510
## deviance = 22509.5
## Data: dta4
## Subset: ss8
## Models:
## cost.icu: diedicu ~ ave.cost.nurse + IMlo + prop.occ.c + admissions.perbed.perday + 
## cost.icu:     I(transin.perbed.perday * 7) + total.support.staff.perbed + 
## cost.icu:     N.dc.perbed + clinical.NHD.perbed + intensivist + IMlomean.x + 
## cost.icu:     I(avyulos/100) + (1 | trust.code)
## cost.icu.int: diedicu ~ ave.cost.nurse * N.dc.quart + IMlo + prop.occ.c + admissions.perbed.perday + 
## cost.icu.int:     I(transin.perbed.perday * 7) + total.support.staff.perbed + 
## cost.icu.int:     N.dc.perbed + clinical.NHD.perbed + intensivist + IMlomean.x + 
## cost.icu.int:     I(avyulos/100) + (1 | trust.code)
##              Df   AIC   BIC logLik Chisq Chi Df Pr(>Chisq)
## cost.icu     13 22537 22647 -11255                        
## cost.icu.int 19 22547 22709 -11255  1.11      6       0.98

Ratio post-basic qualifications

## glmer(formula = diedicu ~ ratio.pbq.wte + IMlo + prop.occ.c + 
##     admissions.perbed.perday + I(transin.perbed.perday * 7) + 
##     total.support.staff.perbed + N.dc.perbed + clinical.NHD.perbed + 
##     intensivist + IMlomean.x + I(avyulos/100) + (1 | trust.code), 
##     data = dta4, family = binomial(), subset = ss8, na.action = na.omit)
##                              coef.est coef.se
## (Intercept)                  -1.239    0.258 
## ratio.pbq.wte                -0.142    0.133 
## IMlo                          0.965    0.012 
## prop.occ.c                    0.212    0.093 
## admissions.perbed.perday      0.428    0.797 
## I(transin.perbed.perday * 7)  1.613    0.625 
## total.support.staff.perbed    0.168    0.187 
## N.dc.perbed                  -0.104    0.037 
## clinical.NHD.perbed          -0.170    0.058 
## intensivistYes               -0.043    0.106 
## IMlomean.x                   -0.051    0.020 
## I(avyulos/100)                0.413    0.165 
## 
## Error terms:
##  Groups     Name        Std.Dev.
##  trust.code (Intercept) 0.273   
##  Residual               1.000   
## ---
## number of obs: 38168, groups: trust.code, 65
## AIC = 23317.7, DIC = 23292
## deviance = 23291.7
## glmer(formula = diedicu ~ ratio.pbq.wte * N.dc.quart + IMlo + 
##     prop.occ.c + admissions.perbed.perday + I(transin.perbed.perday * 
##     7) + total.support.staff.perbed + N.dc.perbed + clinical.NHD.perbed + 
##     intensivist + IMlomean.x + I(avyulos/100) + (1 | trust.code), 
##     data = dta4, family = binomial(), subset = ss8, na.action = na.omit)
##                                     coef.est coef.se
## (Intercept)                         -0.653    0.339 
## ratio.pbq.wte                       -1.007    0.310 
## N.dc.quart(4.25,4.82]               -0.587    0.316 
## N.dc.quart(4.82,5.68]               -0.936    0.346 
## N.dc.quart(5.68,14.2]               -1.065    0.383 
## IMlo                                 0.965    0.012 
## prop.occ.c                           0.220    0.093 
## admissions.perbed.perday            -0.037    0.781 
## I(transin.perbed.perday * 7)         1.383    0.586 
## total.support.staff.perbed           0.158    0.175 
## N.dc.perbed                         -0.034    0.059 
## clinical.NHD.perbed                 -0.206    0.056 
## intensivistYes                      -0.060    0.098 
## IMlomean.x                          -0.051    0.020 
## I(avyulos/100)                       0.322    0.159 
## ratio.pbq.wte:N.dc.quart(4.25,4.82]  0.783    0.367 
## ratio.pbq.wte:N.dc.quart(4.82,5.68]  1.152    0.392 
## ratio.pbq.wte:N.dc.quart(5.68,14.2]  1.285    0.390 
## 
## Error terms:
##  Groups     Name        Std.Dev.
##  trust.code (Intercept) 0.241   
##  Residual               1.000   
## ---
## number of obs: 38168, groups: trust.code, 65
## AIC = 23318.6, DIC = 23281
## deviance = 23280.6
## Data: dta4
## Subset: ss8
## Models:
## pbq.icu: diedicu ~ ratio.pbq.wte + IMlo + prop.occ.c + admissions.perbed.perday + 
## pbq.icu:     I(transin.perbed.perday * 7) + total.support.staff.perbed + 
## pbq.icu:     N.dc.perbed + clinical.NHD.perbed + intensivist + IMlomean.x + 
## pbq.icu:     I(avyulos/100) + (1 | trust.code)
## pbq.icu.int: diedicu ~ ratio.pbq.wte * N.dc.quart + IMlo + prop.occ.c + admissions.perbed.perday + 
## pbq.icu.int:     I(transin.perbed.perday * 7) + total.support.staff.perbed + 
## pbq.icu.int:     N.dc.perbed + clinical.NHD.perbed + intensivist + IMlomean.x + 
## pbq.icu.int:     I(avyulos/100) + (1 | trust.code)
##             Df   AIC   BIC logLik Chisq Chi Df Pr(>Chisq)  
## pbq.icu     13 23318 23429 -11646                          
## pbq.icu.int 19 23319 23481 -11640  11.1      6      0.086 .
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Overtime

## glmer(formula = diedicu ~ ratio.ot.total.spend + IMlo + prop.occ.c + 
##     admissions.perbed.perday + I(transin.perbed.perday * 7) + 
##     total.support.staff.perbed + N.dc.perbed + clinical.NHD.perbed + 
##     intensivist + IMlomean.x + I(avyulos/100) + (1 | trust.code), 
##     data = dta4, family = binomial(), subset = ss8, na.action = na.omit)
##                              coef.est coef.se
## (Intercept)                  -1.433    0.237 
## ratio.ot.total.spend          0.910    4.803 
## IMlo                          0.966    0.012 
## prop.occ.c                    0.260    0.096 
## admissions.perbed.perday      0.760    0.833 
## I(transin.perbed.perday * 7)  1.849    0.652 
## total.support.staff.perbed    0.147    0.195 
## N.dc.perbed                  -0.128    0.040 
## clinical.NHD.perbed          -0.173    0.058 
## intensivistYes               -0.003    0.109 
## IMlomean.x                   -0.054    0.020 
## I(avyulos/100)                0.487    0.176 
## 
## Error terms:
##  Groups     Name        Std.Dev.
##  trust.code (Intercept) 0.276   
##  Residual               1.000   
## ---
## number of obs: 36935, groups: trust.code, 63
## AIC = 22537, DIC = 22511
## deviance = 22511.0
## glmer(formula = diedicu ~ ratio.ot.total.spend * N.dc.quart + 
##     IMlo + prop.occ.c + admissions.perbed.perday + I(transin.perbed.perday * 
##     7) + total.support.staff.perbed + N.dc.perbed + clinical.NHD.perbed + 
##     intensivist + IMlomean.x + I(avyulos/100) + (1 | trust.code), 
##     data = dta4, family = binomial(), subset = ss8, na.action = na.omit)
##                                            coef.est coef.se
## (Intercept)                                 -1.555    0.283
## ratio.ot.total.spend                         1.766    6.985
## N.dc.quart(4.25,4.82]                        0.042    0.131
## N.dc.quart(4.82,5.68]                        0.030    0.143
## N.dc.quart(5.68,14.2]                        0.139    0.193
## IMlo                                         0.965    0.012
## prop.occ.c                                   0.254    0.096
## admissions.perbed.perday                     1.217    0.844
## I(transin.perbed.perday * 7)                 1.810    0.643
## total.support.staff.perbed                   0.151    0.195
## N.dc.perbed                                 -0.146    0.060
## clinical.NHD.perbed                         -0.156    0.058
## intensivistYes                              -0.001    0.111
## IMlomean.x                                  -0.056    0.020
## I(avyulos/100)                               0.552    0.177
## ratio.ot.total.spend:N.dc.quart(4.25,4.82]   4.840   11.774
## ratio.ot.total.spend:N.dc.quart(4.82,5.68]   6.869   11.078
## ratio.ot.total.spend:N.dc.quart(5.68,14.2] -10.195   10.691
## 
## Error terms:
##  Groups     Name        Std.Dev.
##  trust.code (Intercept) 0.265   
##  Residual               1.000   
## ---
## number of obs: 36935, groups: trust.code, 63
## AIC = 22544, DIC = 22506
## deviance = 22506.0
## Data: dta4
## Subset: ss8
## Models:
## ot.icu: diedicu ~ ratio.ot.total.spend + IMlo + prop.occ.c + admissions.perbed.perday + 
## ot.icu:     I(transin.perbed.perday * 7) + total.support.staff.perbed + 
## ot.icu:     N.dc.perbed + clinical.NHD.perbed + intensivist + IMlomean.x + 
## ot.icu:     I(avyulos/100) + (1 | trust.code)
## ot.icu.int: diedicu ~ ratio.ot.total.spend * N.dc.quart + IMlo + prop.occ.c + 
## ot.icu.int:     admissions.perbed.perday + I(transin.perbed.perday * 7) + 
## ot.icu.int:     total.support.staff.perbed + N.dc.perbed + clinical.NHD.perbed + 
## ot.icu.int:     intensivist + IMlomean.x + I(avyulos/100) + (1 | trust.code)
##            Df   AIC   BIC logLik Chisq Chi Df Pr(>Chisq)
## ot.icu     13 22537 22648 -11255                        
## ot.icu.int 19 22544 22706 -11253  4.98      6       0.55

Bank

## glmer(formula = diedicu ~ ratio.bank.total.spend + IMlo + prop.occ.c + 
##     admissions.perbed.perday + I(transin.perbed.perday * 7) + 
##     total.support.staff.perbed + N.dc.perbed + clinical.NHD.perbed + 
##     intensivist + IMlomean.x + I(avyulos/100) + (1 | trust.code), 
##     data = dta4, family = binomial(), subset = ss8, na.action = na.omit)
##                              coef.est coef.se
## (Intercept)                  -1.447    0.230 
## ratio.bank.total.spend       -0.864    1.213 
## IMlo                          0.966    0.012 
## prop.occ.c                    0.262    0.096 
## admissions.perbed.perday      0.771    0.820 
## I(transin.perbed.perday * 7)  1.879    0.649 
## total.support.staff.perbed    0.145    0.193 
## N.dc.perbed                  -0.129    0.040 
## clinical.NHD.perbed          -0.167    0.059 
## intensivistYes                0.004    0.108 
## IMlomean.x                   -0.054    0.020 
## I(avyulos/100)                0.520    0.178 
## 
## Error terms:
##  Groups     Name        Std.Dev.
##  trust.code (Intercept) 0.275   
##  Residual               1.000   
## ---
## number of obs: 36935, groups: trust.code, 63
## AIC = 22536.5, DIC = 22511
## deviance = 22510.5
## glmer(formula = diedicu ~ ratio.bank.total.spend * N.dc.quart + 
##     IMlo + prop.occ.c + admissions.perbed.perday + I(transin.perbed.perday * 
##     7) + total.support.staff.perbed + N.dc.perbed + clinical.NHD.perbed + 
##     intensivist + IMlomean.x + I(avyulos/100) + (1 | trust.code), 
##     data = dta4, family = binomial(), subset = ss8, na.action = na.omit)
##                                              coef.est coef.se
## (Intercept)                                  -1.477    0.269 
## ratio.bank.total.spend                        1.346    4.184 
## N.dc.quart(4.25,4.82]                         0.142    0.139 
## N.dc.quart(4.82,5.68]                         0.117    0.155 
## N.dc.quart(5.68,14.2]                         0.047    0.218 
## IMlo                                          0.966    0.012 
## prop.occ.c                                    0.261    0.096 
## admissions.perbed.perday                      0.979    0.831 
## I(transin.perbed.perday * 7)                  2.074    0.675 
## total.support.staff.perbed                    0.147    0.197 
## N.dc.perbed                                  -0.144    0.061 
## clinical.NHD.perbed                          -0.169    0.061 
## intensivistYes                                0.021    0.110 
## IMlomean.x                                   -0.054    0.020 
## I(avyulos/100)                                0.485    0.185 
## ratio.bank.total.spend:N.dc.quart(4.25,4.82] -3.174    4.594 
## ratio.bank.total.spend:N.dc.quart(4.82,5.68] -3.244    4.420 
## ratio.bank.total.spend:N.dc.quart(5.68,14.2] -0.099    4.534 
## 
## Error terms:
##  Groups     Name        Std.Dev.
##  trust.code (Intercept) 0.271   
##  Residual               1.000   
## ---
## number of obs: 36935, groups: trust.code, 63
## AIC = 22545.8, DIC = 22508
## deviance = 22507.8
## Data: dta4
## Subset: ss8
## Models:
## bank.icu: diedicu ~ ratio.bank.total.spend + IMlo + prop.occ.c + admissions.perbed.perday + 
## bank.icu:     I(transin.perbed.perday * 7) + total.support.staff.perbed + 
## bank.icu:     N.dc.perbed + clinical.NHD.perbed + intensivist + IMlomean.x + 
## bank.icu:     I(avyulos/100) + (1 | trust.code)
## bank.icu.int: diedicu ~ ratio.bank.total.spend * N.dc.quart + IMlo + prop.occ.c + 
## bank.icu.int:     admissions.perbed.perday + I(transin.perbed.perday * 7) + 
## bank.icu.int:     total.support.staff.perbed + N.dc.perbed + clinical.NHD.perbed + 
## bank.icu.int:     intensivist + IMlomean.x + I(avyulos/100) + (1 | trust.code)
##              Df   AIC   BIC logLik Chisq Chi Df Pr(>Chisq)
## bank.icu     13 22537 22647 -11255                        
## bank.icu.int 19 22546 22708 -11254  2.73      6       0.84

Agency

## glmer(formula = diedicu ~ ratio.agency.total.spend + IMlo + prop.occ.c + 
##     admissions.perbed.perday + I(transin.perbed.perday * 7) + 
##     total.support.staff.perbed + N.dc.perbed + clinical.NHD.perbed + 
##     intensivist + IMlomean.x + I(avyulos/100) + (1 | trust.code), 
##     data = dta4, family = binomial(), subset = ss8, na.action = na.omit)
##                              coef.est coef.se
## (Intercept)                  -1.413    0.228 
## ratio.agency.total.spend     -0.266    0.728 
## IMlo                          0.966    0.012 
## prop.occ.c                    0.258    0.096 
## admissions.perbed.perday      0.754    0.822 
## I(transin.perbed.perday * 7)  1.838    0.649 
## total.support.staff.perbed    0.152    0.194 
## N.dc.perbed                  -0.128    0.040 
## clinical.NHD.perbed          -0.175    0.058 
## intensivistYes                0.005    0.110 
## IMlomean.x                   -0.054    0.020 
## I(avyulos/100)                0.485    0.170 
## 
## Error terms:
##  Groups     Name        Std.Dev.
##  trust.code (Intercept) 0.276   
##  Residual               1.000   
## ---
## number of obs: 36935, groups: trust.code, 63
## AIC = 22536.9, DIC = 22511
## deviance = 22510.9
## glmer(formula = diedicu ~ ratio.agency.total.spend * N.dc.quart + 
##     IMlo + prop.occ.c + admissions.perbed.perday + I(transin.perbed.perday * 
##     7) + total.support.staff.perbed + N.dc.perbed + clinical.NHD.perbed + 
##     intensivist + IMlomean.x + I(avyulos/100) + (1 | trust.code), 
##     data = dta4, family = binomial(), subset = ss8, na.action = na.omit)
##                                                coef.est coef.se
## (Intercept)                                    -1.416    0.270 
## ratio.agency.total.spend                       -0.274    0.864 
## N.dc.quart(4.25,4.82]                           0.080    0.137 
## N.dc.quart(4.82,5.68]                           0.040    0.157 
## N.dc.quart(5.68,14.2]                           0.072    0.198 
## IMlo                                            0.966    0.012 
## prop.occ.c                                      0.257    0.096 
## admissions.perbed.perday                        0.814    0.839 
## I(transin.perbed.perday * 7)                    1.784    0.674 
## total.support.staff.perbed                      0.142    0.197 
## N.dc.perbed                                    -0.139    0.060 
## clinical.NHD.perbed                            -0.173    0.061 
## intensivistYes                                 -0.004    0.114 
## IMlomean.x                                     -0.055    0.020 
## I(avyulos/100)                                  0.482    0.173 
## ratio.agency.total.spend:N.dc.quart(4.25,4.82] -0.047    2.246 
## ratio.agency.total.spend:N.dc.quart(4.82,5.68]  1.168    2.990 
## ratio.agency.total.spend:N.dc.quart(5.68,14.2]  0.385    2.578 
## 
## Error terms:
##  Groups     Name        Std.Dev.
##  trust.code (Intercept) 0.275   
##  Residual               1.000   
## ---
## number of obs: 36935, groups: trust.code, 63
## AIC = 22548.2, DIC = 22510
## deviance = 22510.2
## Data: dta4
## Subset: ss8
## Models:
## agency.icu: diedicu ~ ratio.agency.total.spend + IMlo + prop.occ.c + admissions.perbed.perday + 
## agency.icu:     I(transin.perbed.perday * 7) + total.support.staff.perbed + 
## agency.icu:     N.dc.perbed + clinical.NHD.perbed + intensivist + IMlomean.x + 
## agency.icu:     I(avyulos/100) + (1 | trust.code)
## agency.icu.int: diedicu ~ ratio.agency.total.spend * N.dc.quart + IMlo + prop.occ.c + 
## agency.icu.int:     admissions.perbed.perday + I(transin.perbed.perday * 7) + 
## agency.icu.int:     total.support.staff.perbed + N.dc.perbed + clinical.NHD.perbed + 
## agency.icu.int:     intensivist + IMlomean.x + I(avyulos/100) + (1 | trust.code)
##                Df   AIC   BIC logLik Chisq Chi Df Pr(>Chisq)
## agency.icu     13 22537 22648 -11255                        
## agency.icu.int 19 22548 22710 -11255  0.66      6          1

Ratio of senior to junior nurses

## glmer(formula = diedicu ~ ratio.senior.junior.wte + IMlo + prop.occ.c + 
##     admissions.perbed.perday + I(transin.perbed.perday * 7) + 
##     total.support.staff.perbed + N.dc.perbed + clinical.NHD.perbed + 
##     intensivist + IMlomean.x + I(avyulos/100) + (1 | trust.code), 
##     data = dta4, family = binomial(), subset = ss8, na.action = na.omit)
##                              coef.est coef.se
## (Intercept)                  -1.294    0.250 
## ratio.senior.junior.wte       0.017    0.308 
## IMlo                          0.970    0.013 
## prop.occ.c                    0.204    0.096 
## admissions.perbed.perday     -0.014    0.920 
## I(transin.perbed.perday * 7)  1.643    0.651 
## total.support.staff.perbed    0.213    0.196 
## N.dc.perbed                  -0.083    0.043 
## clinical.NHD.perbed          -0.178    0.060 
## intensivistYes               -0.034    0.108 
## IMlomean.x                   -0.046    0.021 
## I(avyulos/100)                0.327    0.189 
## 
## Error terms:
##  Groups     Name        Std.Dev.
##  trust.code (Intercept) 0.283   
##  Residual               1.000   
## ---
## number of obs: 36343, groups: trust.code, 61
## AIC = 21993.2, DIC = 21967
## deviance = 21967.2
## glmer(formula = diedicu ~ ratio.senior.junior.wte * N.dc.quart + 
##     IMlo + prop.occ.c + admissions.perbed.perday + I(transin.perbed.perday * 
##     7) + total.support.staff.perbed + N.dc.perbed + clinical.NHD.perbed + 
##     intensivist + IMlomean.x + I(avyulos/100) + (1 | trust.code), 
##     data = dta4, family = binomial(), subset = ss8, na.action = na.omit)
##                                               coef.est coef.se
## (Intercept)                                   -1.205    0.342 
## ratio.senior.junior.wte                       -1.766    1.306 
## N.dc.quart(4.25,4.82]                         -0.307    0.272 
## N.dc.quart(4.82,5.68]                         -0.485    0.303 
## N.dc.quart(5.68,14.2]                         -0.313    0.286 
## IMlo                                           0.970    0.013 
## prop.occ.c                                     0.213    0.096 
## admissions.perbed.perday                      -0.084    0.934 
## I(transin.perbed.perday * 7)                   1.464    0.662 
## total.support.staff.perbed                     0.184    0.201 
## N.dc.perbed                                   -0.046    0.067 
## clinical.NHD.perbed                           -0.171    0.066 
## intensivistYes                                -0.061    0.110 
## IMlomean.x                                    -0.046    0.021 
## I(avyulos/100)                                 0.344    0.196 
## ratio.senior.junior.wte:N.dc.quart(4.25,4.82]  2.387    1.578 
## ratio.senior.junior.wte:N.dc.quart(4.82,5.68]  3.188    1.639 
## ratio.senior.junior.wte:N.dc.quart(5.68,14.2]  1.770    1.357 
## 
## Error terms:
##  Groups     Name        Std.Dev.
##  trust.code (Intercept) 0.279   
##  Residual               1.000   
## ---
## number of obs: 36343, groups: trust.code, 61
## AIC = 22000.5, DIC = 21963
## deviance = 21962.5
## Data: dta4
## Subset: ss8
## Models:
## senior.icu: diedicu ~ ratio.senior.junior.wte + IMlo + prop.occ.c + admissions.perbed.perday + 
## senior.icu:     I(transin.perbed.perday * 7) + total.support.staff.perbed + 
## senior.icu:     N.dc.perbed + clinical.NHD.perbed + intensivist + IMlomean.x + 
## senior.icu:     I(avyulos/100) + (1 | trust.code)
## senior.icu.int: diedicu ~ ratio.senior.junior.wte * N.dc.quart + IMlo + prop.occ.c + 
## senior.icu.int:     admissions.perbed.perday + I(transin.perbed.perday * 7) + 
## senior.icu.int:     total.support.staff.perbed + N.dc.perbed + clinical.NHD.perbed + 
## senior.icu.int:     intensivist + IMlomean.x + I(avyulos/100) + (1 | trust.code)
##                Df   AIC   BIC logLik Chisq Chi Df Pr(>Chisq)
## senior.icu     13 21993 22104 -10984                        
## senior.icu.int 19 22000 22162 -10981  4.71      6       0.58

Proportion of staff with ENB 6 qualifications

## glmer(formula = diedicu ~ ratio.enb6 + IMlo + prop.occ.c + admissions.perbed.perday + 
##     I(transin.perbed.perday * 7) + total.support.staff.perbed + 
##     N.dc.perbed + clinical.NHD.perbed + intensivist + IMlomean.x + 
##     I(avyulos/100) + (1 | trust.code), data = dta4, family = binomial(), 
##     subset = ss8, na.action = na.omit)
##                              coef.est coef.se
## (Intercept)                  -1.217    0.264 
## ratio.enb6                   -0.202    0.176 
## IMlo                          0.965    0.012 
## prop.occ.c                    0.211    0.093 
## admissions.perbed.perday      0.432    0.794 
## I(transin.perbed.perday * 7)  1.673    0.625 
## total.support.staff.perbed    0.156    0.186 
## N.dc.perbed                  -0.106    0.037 
## clinical.NHD.perbed          -0.168    0.057 
## intensivistYes               -0.037    0.105 
## IMlomean.x                   -0.052    0.020 
## I(avyulos/100)                0.408    0.165 
## 
## Error terms:
##  Groups     Name        Std.Dev.
##  trust.code (Intercept) 0.272   
##  Residual               1.000   
## ---
## number of obs: 38168, groups: trust.code, 65
## AIC = 23317.6, DIC = 23292
## deviance = 23291.6
## glmer(formula = diedicu ~ ratio.enb6 * N.dc.quart + IMlo + prop.occ.c + 
##     admissions.perbed.perday + I(transin.perbed.perday * 7) + 
##     total.support.staff.perbed + N.dc.perbed + clinical.NHD.perbed + 
##     intensivist + IMlomean.x + I(avyulos/100) + (1 | trust.code), 
##     data = dta4, family = binomial(), subset = ss8, na.action = na.omit)
##                                  coef.est coef.se
## (Intercept)                      -0.855    0.370 
## ratio.enb6                       -0.804    0.418 
## N.dc.quart(4.25,4.82]            -0.373    0.336 
## N.dc.quart(4.82,5.68]            -0.374    0.347 
## N.dc.quart(5.68,14.2]            -0.436    0.384 
## IMlo                              0.965    0.012 
## prop.occ.c                        0.217    0.094 
## admissions.perbed.perday          0.175    0.824 
## I(transin.perbed.perday * 7)      1.545    0.625 
## total.support.staff.perbed        0.159    0.186 
## N.dc.perbed                      -0.089    0.058 
## clinical.NHD.perbed              -0.178    0.059 
## intensivistYes                   -0.052    0.105 
## IMlomean.x                       -0.052    0.020 
## I(avyulos/100)                    0.359    0.170 
## ratio.enb6:N.dc.quart(4.25,4.82]  0.724    0.502 
## ratio.enb6:N.dc.quart(4.82,5.68]  0.669    0.522 
## ratio.enb6:N.dc.quart(5.68,14.2]  0.786    0.527 
## 
## Error terms:
##  Groups     Name        Std.Dev.
##  trust.code (Intercept) 0.264   
##  Residual               1.000   
## ---
## number of obs: 38168, groups: trust.code, 65
## AIC = 23326.6, DIC = 23289
## deviance = 23288.6
## Data: dta4
## Subset: ss8
## Models:
## enb6.icu: diedicu ~ ratio.enb6 + IMlo + prop.occ.c + admissions.perbed.perday + 
## enb6.icu:     I(transin.perbed.perday * 7) + total.support.staff.perbed + 
## enb6.icu:     N.dc.perbed + clinical.NHD.perbed + intensivist + IMlomean.x + 
## enb6.icu:     I(avyulos/100) + (1 | trust.code)
## enb6.icu.int: diedicu ~ ratio.enb6 * N.dc.quart + IMlo + prop.occ.c + admissions.perbed.perday + 
## enb6.icu.int:     I(transin.perbed.perday * 7) + total.support.staff.perbed + 
## enb6.icu.int:     N.dc.perbed + clinical.NHD.perbed + intensivist + IMlomean.x + 
## enb6.icu.int:     I(avyulos/100) + (1 | trust.code)
##              Df   AIC   BIC logLik Chisq Chi Df Pr(>Chisq)
## enb6.icu     13 23318 23429 -11646                        
## enb6.icu.int 19 23327 23489 -11644  2.96      6       0.81

Proportion with a diploma

## glmer(formula = diedicu ~ ratio.diploma + IMlo + prop.occ.c + 
##     admissions.perbed.perday + I(transin.perbed.perday * 7) + 
##     total.support.staff.perbed + N.dc.perbed + clinical.NHD.perbed + 
##     intensivist + IMlomean.x + I(avyulos/100) + (1 | trust.code), 
##     data = dta4, family = binomial(), subset = ss8, na.action = na.omit)
##                              coef.est coef.se
## (Intercept)                  -1.367    0.229 
## ratio.diploma                -0.066    0.269 
## IMlo                          0.965    0.012 
## prop.occ.c                    0.213    0.093 
## admissions.perbed.perday      0.495    0.800 
## I(transin.perbed.perday * 7)  1.604    0.635 
## total.support.staff.perbed    0.159    0.189 
## N.dc.perbed                  -0.105    0.037 
## clinical.NHD.perbed          -0.165    0.058 
## intensivistYes               -0.031    0.106 
## IMlomean.x                   -0.051    0.020 
## I(avyulos/100)                0.431    0.165 
## 
## Error terms:
##  Groups     Name        Std.Dev.
##  trust.code (Intercept) 0.276   
##  Residual               1.000   
## ---
## number of obs: 38168, groups: trust.code, 65
## AIC = 23318.8, DIC = 23293
## deviance = 23292.8
## glmer(formula = diedicu ~ ratio.diploma * N.dc.quart + IMlo + 
##     prop.occ.c + admissions.perbed.perday + I(transin.perbed.perday * 
##     7) + total.support.staff.perbed + N.dc.perbed + clinical.NHD.perbed + 
##     intensivist + IMlomean.x + I(avyulos/100) + (1 | trust.code), 
##     data = dta4, family = binomial(), subset = ss8, na.action = na.omit)
##                                     coef.est coef.se
## (Intercept)                         -1.267    0.260 
## ratio.diploma                       -1.644    0.622 
## N.dc.quart(4.25,4.82]               -0.084    0.151 
## N.dc.quart(4.82,5.68]               -0.344    0.180 
## N.dc.quart(5.68,14.2]               -0.317    0.219 
## IMlo                                 0.965    0.012 
## prop.occ.c                           0.203    0.093 
## admissions.perbed.perday             0.541    0.774 
## I(transin.perbed.perday * 7)         1.362    0.594 
## total.support.staff.perbed           0.134    0.176 
## N.dc.perbed                         -0.067    0.056 
## clinical.NHD.perbed                 -0.184    0.055 
## intensivistYes                      -0.079    0.098 
## IMlomean.x                          -0.050    0.020 
## I(avyulos/100)                       0.395    0.157 
## ratio.diploma:N.dc.quart(4.25,4.82]  1.019    0.737 
## ratio.diploma:N.dc.quart(4.82,5.68]  2.565    0.826 
## ratio.diploma:N.dc.quart(5.68,14.2]  2.368    0.759 
## 
## Error terms:
##  Groups     Name        Std.Dev.
##  trust.code (Intercept) 0.243   
##  Residual               1.000   
## ---
## number of obs: 38168, groups: trust.code, 65
## AIC = 23316.8, DIC = 23279
## deviance = 23278.8
## Data: dta4
## Subset: ss8
## Models:
## diploma.icu: diedicu ~ ratio.diploma + IMlo + prop.occ.c + admissions.perbed.perday + 
## diploma.icu:     I(transin.perbed.perday * 7) + total.support.staff.perbed + 
## diploma.icu:     N.dc.perbed + clinical.NHD.perbed + intensivist + IMlomean.x + 
## diploma.icu:     I(avyulos/100) + (1 | trust.code)
## diploma.icu.int: diedicu ~ ratio.diploma * N.dc.quart + IMlo + prop.occ.c + admissions.perbed.perday + 
## diploma.icu.int:     I(transin.perbed.perday * 7) + total.support.staff.perbed + 
## diploma.icu.int:     N.dc.perbed + clinical.NHD.perbed + intensivist + IMlomean.x + 
## diploma.icu.int:     I(avyulos/100) + (1 | trust.code)
##                 Df   AIC   BIC logLik Chisq Chi Df Pr(>Chisq)  
## diploma.icu     13 23319 23430 -11646                          
## diploma.icu.int 19 23317 23479 -11639    14      6       0.03 *
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Proportion with a degree

## glmer(formula = diedicu ~ ratio.degree + IMlo + prop.occ.c + 
##     admissions.perbed.perday + I(transin.perbed.perday * 7) + 
##     total.support.staff.perbed + N.dc.perbed + clinical.NHD.perbed + 
##     intensivist + IMlomean.x + I(avyulos/100) + (1 | trust.code), 
##     data = dta4, family = binomial(), subset = ss8, na.action = na.omit)
##                              coef.est coef.se
## (Intercept)                  -1.367    0.226 
## ratio.degree                 -0.428    0.768 
## IMlo                          0.965    0.012 
## prop.occ.c                    0.215    0.094 
## admissions.perbed.perday      0.526    0.798 
## I(transin.perbed.perday * 7)  1.606    0.630 
## total.support.staff.perbed    0.149    0.187 
## N.dc.perbed                  -0.106    0.037 
## clinical.NHD.perbed          -0.167    0.058 
## intensivistYes               -0.039    0.107 
## IMlomean.x                   -0.051    0.020 
## I(avyulos/100)                0.438    0.165 
## 
## Error terms:
##  Groups     Name        Std.Dev.
##  trust.code (Intercept) 0.275   
##  Residual               1.000   
## ---
## number of obs: 38168, groups: trust.code, 65
## AIC = 23318.6, DIC = 23293
## deviance = 23292.6
## glmer(formula = diedicu ~ ratio.degree * N.dc.quart + IMlo + 
##     prop.occ.c + admissions.perbed.perday + I(transin.perbed.perday * 
##     7) + total.support.staff.perbed + N.dc.perbed + clinical.NHD.perbed + 
##     intensivist + IMlomean.x + I(avyulos/100) + (1 | trust.code), 
##     data = dta4, family = binomial(), subset = ss8, na.action = na.omit)
##                                    coef.est coef.se
## (Intercept)                        -1.367    0.261 
## ratio.degree                       -1.157    1.243 
## N.dc.quart(4.25,4.82]               0.055    0.140 
## N.dc.quart(4.82,5.68]              -0.003    0.161 
## N.dc.quart(5.68,14.2]              -0.011    0.206 
## IMlo                                0.965    0.012 
## prop.occ.c                          0.214    0.094 
## admissions.perbed.perday            0.624    0.803 
## I(transin.perbed.perday * 7)        1.579    0.641 
## total.support.staff.perbed          0.168    0.187 
## N.dc.perbed                        -0.106    0.057 
## clinical.NHD.perbed                -0.162    0.059 
## intensivistYes                     -0.052    0.107 
## IMlomean.x                         -0.051    0.020 
## I(avyulos/100)                      0.421    0.165 
## ratio.degree:N.dc.quart(4.25,4.82] -5.734    5.578 
## ratio.degree:N.dc.quart(4.82,5.68]  0.870    1.571 
## ratio.degree:N.dc.quart(5.68,14.2]  2.139    1.916 
## 
## Error terms:
##  Groups     Name        Std.Dev.
##  trust.code (Intercept) 0.269   
##  Residual               1.000   
## ---
## number of obs: 38168, groups: trust.code, 65
## AIC = 23327.6, DIC = 23290
## deviance = 23289.6
## Data: dta4
## Subset: ss8
## Models:
## degree.icu: diedicu ~ ratio.degree + IMlo + prop.occ.c + admissions.perbed.perday + 
## degree.icu:     I(transin.perbed.perday * 7) + total.support.staff.perbed + 
## degree.icu:     N.dc.perbed + clinical.NHD.perbed + intensivist + IMlomean.x + 
## degree.icu:     I(avyulos/100) + (1 | trust.code)
## degree.icu.int: diedicu ~ ratio.degree * N.dc.quart + IMlo + prop.occ.c + admissions.perbed.perday + 
## degree.icu.int:     I(transin.perbed.perday * 7) + total.support.staff.perbed + 
## degree.icu.int:     N.dc.perbed + clinical.NHD.perbed + intensivist + IMlomean.x + 
## degree.icu.int:     I(avyulos/100) + (1 | trust.code)
##                Df   AIC   BIC logLik Chisq Chi Df Pr(>Chisq)
## degree.icu     13 23319 23430 -11646                        
## degree.icu.int 19 23328 23490 -11645  3.01      6       0.81

Try using three staffing levels instead of 4

## glmer(formula = diedicu ~ ratio.enb6 * N.dc.three + IMlo + prop.occ.c + 
##     admissions.perbed.perday + I(transin.perbed.perday * 7) + 
##     total.support.staff.perbed + N.dc.perbed + clinical.NHD.perbed + 
##     intensivist + IMlomean.x + I(avyulos/100) + (1 | trust.code), 
##     data = dta4, family = binomial(), subset = ss8, na.action = na.omit)
##                                  coef.est coef.se
## (Intercept)                      -0.835    0.353 
## ratio.enb6                       -0.621    0.348 
## N.dc.three(4.48,5.51]            -0.415    0.277 
## N.dc.three(5.51,14.2]            -0.272    0.331 
## IMlo                              0.965    0.012 
## prop.occ.c                        0.207    0.093 
## admissions.perbed.perday          0.116    0.802 
## I(transin.perbed.perday * 7)      1.660    0.608 
## total.support.staff.perbed        0.188    0.180 
## N.dc.perbed                      -0.109    0.055 
## clinical.NHD.perbed              -0.177    0.058 
## intensivistYes                   -0.038    0.100 
## IMlomean.x                       -0.052    0.020 
## I(avyulos/100)                    0.363    0.165 
## ratio.enb6:N.dc.three(4.48,5.51]  0.617    0.417 
## ratio.enb6:N.dc.three(5.51,14.2]  0.513    0.455 
## 
## Error terms:
##  Groups     Name        Std.Dev.
##  trust.code (Intercept) 0.257   
##  Residual               1.000   
## ---
## number of obs: 38168, groups: trust.code, 65
## AIC = 23322.5, DIC = 23289
## deviance = 23288.5
## Data: dta4
## Subset: ss8
## Models:
## enb6.icu: diedicu ~ ratio.enb6 + IMlo + prop.occ.c + admissions.perbed.perday + 
## enb6.icu:     I(transin.perbed.perday * 7) + total.support.staff.perbed + 
## enb6.icu:     N.dc.perbed + clinical.NHD.perbed + intensivist + IMlomean.x + 
## enb6.icu:     I(avyulos/100) + (1 | trust.code)
## enb6.icu.thr: diedicu ~ ratio.enb6 * N.dc.three + IMlo + prop.occ.c + admissions.perbed.perday + 
## enb6.icu.thr:     I(transin.perbed.perday * 7) + total.support.staff.perbed + 
## enb6.icu.thr:     N.dc.perbed + clinical.NHD.perbed + intensivist + IMlomean.x + 
## enb6.icu.thr:     I(avyulos/100) + (1 | trust.code)
##              Df   AIC   BIC logLik Chisq Chi Df Pr(>Chisq)
## enb6.icu     13 23318 23429 -11646                        
## enb6.icu.thr 17 23323 23468 -11644  3.07      4       0.55

Average cost of a nurse

## glmer(formula = diedicu ~ ave.cost.nurse * N.dc.three + IMlo + 
##     prop.occ.c + admissions.perbed.perday + I(transin.perbed.perday * 
##     7) + total.support.staff.perbed + N.dc.perbed + clinical.NHD.perbed + 
##     intensivist + IMlomean.x + I(avyulos/100) + (1 | trust.code), 
##     data = dta4, family = binomial(), subset = ss8, na.action = na.omit)
##                                      coef.est coef.se
## (Intercept)                          -1.470    0.413 
## ave.cost.nurse                        0.007    0.014 
## N.dc.three(4.48,5.51]                -0.252    0.535 
## N.dc.three(5.51,14.2]                 0.068    1.002 
## IMlo                                  0.966    0.012 
## prop.occ.c                            0.250    0.096 
## admissions.perbed.perday              0.645    0.842 
## I(transin.perbed.perday * 7)          1.883    0.641 
## total.support.staff.perbed            0.155    0.193 
## N.dc.perbed                          -0.156    0.057 
## clinical.NHD.perbed                  -0.159    0.062 
## intensivistYes                        0.006    0.106 
## IMlomean.x                           -0.054    0.020 
## I(avyulos/100)                        0.504    0.167 
## ave.cost.nurse:N.dc.three(4.48,5.51]  0.011    0.024 
## ave.cost.nurse:N.dc.three(5.51,14.2]  0.002    0.048 
## 
## Error terms:
##  Groups     Name        Std.Dev.
##  trust.code (Intercept) 0.266   
##  Residual               1.000   
## ---
## number of obs: 36935, groups: trust.code, 63
## AIC = 22543.1, DIC = 22509
## deviance = 22509.1
## Data: dta4
## Subset: ss8
## Models:
## cost.icu: diedicu ~ ave.cost.nurse + IMlo + prop.occ.c + admissions.perbed.perday + 
## cost.icu:     I(transin.perbed.perday * 7) + total.support.staff.perbed + 
## cost.icu:     N.dc.perbed + clinical.NHD.perbed + intensivist + IMlomean.x + 
## cost.icu:     I(avyulos/100) + (1 | trust.code)
## cost.icu.int3: diedicu ~ ave.cost.nurse * N.dc.three + IMlo + prop.occ.c + admissions.perbed.perday + 
## cost.icu.int3:     I(transin.perbed.perday * 7) + total.support.staff.perbed + 
## cost.icu.int3:     N.dc.perbed + clinical.NHD.perbed + intensivist + IMlomean.x + 
## cost.icu.int3:     I(avyulos/100) + (1 | trust.code)
##               Df   AIC   BIC logLik Chisq Chi Df Pr(>Chisq)
## cost.icu      13 22537 22647 -11255                        
## cost.icu.int3 17 22543 22688 -11255  1.51      4       0.83

Ratio post-basic qualifications

## glmer(formula = diedicu ~ ratio.pbq.wte * N.dc.three + IMlo + 
##     prop.occ.c + admissions.perbed.perday + I(transin.perbed.perday * 
##     7) + total.support.staff.perbed + N.dc.perbed + clinical.NHD.perbed + 
##     intensivist + IMlomean.x + I(avyulos/100) + (1 | trust.code), 
##     data = dta4, family = binomial(), subset = ss8, na.action = na.omit)
##                                     coef.est coef.se
## (Intercept)                         -0.535    0.305 
## ratio.pbq.wte                       -1.017    0.247 
## N.dc.three(4.48,5.51]               -0.926    0.260 
## N.dc.three(5.51,14.2]               -1.035    0.311 
## IMlo                                 0.965    0.012 
## prop.occ.c                           0.211    0.093 
## admissions.perbed.perday            -0.239    0.732 
## I(transin.perbed.perday * 7)         1.310    0.557 
## total.support.staff.perbed           0.261    0.168 
## N.dc.perbed                         -0.038    0.054 
## clinical.NHD.perbed                 -0.214    0.054 
## intensivistYes                      -0.072    0.092 
## IMlomean.x                          -0.051    0.020 
## I(avyulos/100)                       0.296    0.151 
## ratio.pbq.wte:N.dc.three(4.48,5.51]  1.069    0.304 
## ratio.pbq.wte:N.dc.three(5.51,14.2]  1.271    0.322 
## 
## Error terms:
##  Groups     Name        Std.Dev.
##  trust.code (Intercept) 0.227   
##  Residual               1.000   
## ---
## number of obs: 38168, groups: trust.code, 65
## AIC = 23309.5, DIC = 23276
## deviance = 23275.5
## Data: dta4
## Subset: ss8
## Models:
## pbq.icu: diedicu ~ ratio.pbq.wte + IMlo + prop.occ.c + admissions.perbed.perday + 
## pbq.icu:     I(transin.perbed.perday * 7) + total.support.staff.perbed + 
## pbq.icu:     N.dc.perbed + clinical.NHD.perbed + intensivist + IMlomean.x + 
## pbq.icu:     I(avyulos/100) + (1 | trust.code)
## pbq.icu.int3: diedicu ~ ratio.pbq.wte * N.dc.three + IMlo + prop.occ.c + admissions.perbed.perday + 
## pbq.icu.int3:     I(transin.perbed.perday * 7) + total.support.staff.perbed + 
## pbq.icu.int3:     N.dc.perbed + clinical.NHD.perbed + intensivist + IMlomean.x + 
## pbq.icu.int3:     I(avyulos/100) + (1 | trust.code)
##              Df   AIC   BIC logLik Chisq Chi Df Pr(>Chisq)   
## pbq.icu      13 23318 23429 -11646                           
## pbq.icu.int3 17 23310 23455 -11638  16.2      4     0.0028 **
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Overtime

## glmer(formula = diedicu ~ ratio.ot.total.spend * N.dc.three + 
##     IMlo + prop.occ.c + admissions.perbed.perday + I(transin.perbed.perday * 
##     7) + total.support.staff.perbed + N.dc.perbed + clinical.NHD.perbed + 
##     intensivist + IMlomean.x + I(avyulos/100) + (1 | trust.code), 
##     data = dta4, family = binomial(), subset = ss8, na.action = na.omit)
##                                            coef.est coef.se
## (Intercept)                                 -1.433    0.279
## ratio.ot.total.spend                         3.480    5.940
## N.dc.three(4.48,5.51]                        0.005    0.113
## N.dc.three(5.51,14.2]                        0.165    0.156
## IMlo                                         0.965    0.012
## prop.occ.c                                   0.249    0.096
## admissions.perbed.perday                     1.081    0.839
## I(transin.perbed.perday * 7)                 1.919    0.637
## total.support.staff.perbed                   0.177    0.192
## N.dc.perbed                                 -0.166    0.057
## clinical.NHD.perbed                         -0.154    0.058
## intensivistYes                               0.020    0.107
## IMlomean.x                                  -0.056    0.020
## I(avyulos/100)                               0.536    0.175
## ratio.ot.total.spend:N.dc.three(4.48,5.51]   3.485   11.185
## ratio.ot.total.spend:N.dc.three(5.51,14.2] -11.642    7.611
## 
## Error terms:
##  Groups     Name        Std.Dev.
##  trust.code (Intercept) 0.264   
##  Residual               1.000   
## ---
## number of obs: 36935, groups: trust.code, 63
## AIC = 22540.9, DIC = 22507
## deviance = 22506.9
## Data: dta4
## Subset: ss8
## Models:
## ot.icu: diedicu ~ ratio.ot.total.spend + IMlo + prop.occ.c + admissions.perbed.perday + 
## ot.icu:     I(transin.perbed.perday * 7) + total.support.staff.perbed + 
## ot.icu:     N.dc.perbed + clinical.NHD.perbed + intensivist + IMlomean.x + 
## ot.icu:     I(avyulos/100) + (1 | trust.code)
## ot.icu.int3: diedicu ~ ratio.ot.total.spend * N.dc.three + IMlo + prop.occ.c + 
## ot.icu.int3:     admissions.perbed.perday + I(transin.perbed.perday * 7) + 
## ot.icu.int3:     total.support.staff.perbed + N.dc.perbed + clinical.NHD.perbed + 
## ot.icu.int3:     intensivist + IMlomean.x + I(avyulos/100) + (1 | trust.code)
##             Df   AIC   BIC logLik Chisq Chi Df Pr(>Chisq)
## ot.icu      13 22537 22648 -11255                        
## ot.icu.int3 17 22541 22686 -11253  4.06      4        0.4

Bank

## glmer(formula = diedicu ~ ratio.bank.total.spend * N.dc.three + 
##     IMlo + prop.occ.c + admissions.perbed.perday + I(transin.perbed.perday * 
##     7) + total.support.staff.perbed + N.dc.perbed + clinical.NHD.perbed + 
##     intensivist + IMlomean.x + I(avyulos/100) + (1 | trust.code), 
##     data = dta4, family = binomial(), subset = ss8, na.action = na.omit)
##                                              coef.est coef.se
## (Intercept)                                  -1.325    0.261 
## ratio.bank.total.spend                       -1.375    3.872 
## N.dc.three(4.48,5.51]                         0.010    0.127 
## N.dc.three(5.51,14.2]                         0.089    0.164 
## IMlo                                          0.966    0.012 
## prop.occ.c                                    0.258    0.096 
## admissions.perbed.perday                      0.764    0.814 
## I(transin.perbed.perday * 7)                  2.040    0.684 
## total.support.staff.perbed                    0.170    0.193 
## N.dc.perbed                                  -0.165    0.057 
## clinical.NHD.perbed                          -0.159    0.059 
## intensivistYes                                0.006    0.108 
## IMlomean.x                                   -0.054    0.020 
## I(avyulos/100)                                0.520    0.177 
## ratio.bank.total.spend:N.dc.three(4.48,5.51]  0.260    4.129 
## ratio.bank.total.spend:N.dc.three(5.51,14.2]  1.309    4.143 
## 
## Error terms:
##  Groups     Name        Std.Dev.
##  trust.code (Intercept) 0.267   
##  Residual               1.000   
## ---
## number of obs: 36935, groups: trust.code, 63
## AIC = 22543.2, DIC = 22509
## deviance = 22509.2
## Data: dta4
## Subset: ss8
## Models:
## bank.icu: diedicu ~ ratio.bank.total.spend + IMlo + prop.occ.c + admissions.perbed.perday + 
## bank.icu:     I(transin.perbed.perday * 7) + total.support.staff.perbed + 
## bank.icu:     N.dc.perbed + clinical.NHD.perbed + intensivist + IMlomean.x + 
## bank.icu:     I(avyulos/100) + (1 | trust.code)
## bank.icu.int3: diedicu ~ ratio.bank.total.spend * N.dc.three + IMlo + prop.occ.c + 
## bank.icu.int3:     admissions.perbed.perday + I(transin.perbed.perday * 7) + 
## bank.icu.int3:     total.support.staff.perbed + N.dc.perbed + clinical.NHD.perbed + 
## bank.icu.int3:     intensivist + IMlomean.x + I(avyulos/100) + (1 | trust.code)
##               Df   AIC   BIC logLik Chisq Chi Df Pr(>Chisq)
## bank.icu      13 22537 22647 -11255                        
## bank.icu.int3 17 22543 22688 -11255  1.32      4       0.86

Agency

## glmer(formula = diedicu ~ ratio.agency.total.spend * N.dc.three + 
##     IMlo + prop.occ.c + admissions.perbed.perday + I(transin.perbed.perday * 
##     7) + total.support.staff.perbed + N.dc.perbed + clinical.NHD.perbed + 
##     intensivist + IMlomean.x + I(avyulos/100) + (1 | trust.code), 
##     data = dta4, family = binomial(), subset = ss8, na.action = na.omit)
##                                                coef.est coef.se
## (Intercept)                                    -1.287    0.262 
## ratio.agency.total.spend                       -0.389    0.813 
## N.dc.three(4.48,5.51]                          -0.042    0.123 
## N.dc.three(5.51,14.2]                           0.077    0.156 
## IMlo                                            0.966    0.012 
## prop.occ.c                                      0.250    0.096 
## admissions.perbed.perday                        0.664    0.814 
## I(transin.perbed.perday * 7)                    1.880    0.665 
## total.support.staff.perbed                      0.165    0.191 
## N.dc.perbed                                    -0.154    0.057 
## clinical.NHD.perbed                            -0.168    0.059 
## intensivistYes                                 -0.013    0.112 
## IMlomean.x                                     -0.055    0.020 
## I(avyulos/100)                                  0.476    0.169 
## ratio.agency.total.spend:N.dc.three(4.48,5.51]  0.946    2.151 
## ratio.agency.total.spend:N.dc.three(5.51,14.2]  0.796    2.427 
## 
## Error terms:
##  Groups     Name        Std.Dev.
##  trust.code (Intercept) 0.267   
##  Residual               1.000   
## ---
## number of obs: 36935, groups: trust.code, 63
## AIC = 22543.5, DIC = 22510
## deviance = 22509.5
## Data: dta4
## Subset: ss8
## Models:
## agency.icu: diedicu ~ ratio.agency.total.spend + IMlo + prop.occ.c + admissions.perbed.perday + 
## agency.icu:     I(transin.perbed.perday * 7) + total.support.staff.perbed + 
## agency.icu:     N.dc.perbed + clinical.NHD.perbed + intensivist + IMlomean.x + 
## agency.icu:     I(avyulos/100) + (1 | trust.code)
## agency.icu.int3: diedicu ~ ratio.agency.total.spend * N.dc.three + IMlo + prop.occ.c + 
## agency.icu.int3:     admissions.perbed.perday + I(transin.perbed.perday * 7) + 
## agency.icu.int3:     total.support.staff.perbed + N.dc.perbed + clinical.NHD.perbed + 
## agency.icu.int3:     intensivist + IMlomean.x + I(avyulos/100) + (1 | trust.code)
##                 Df   AIC   BIC logLik Chisq Chi Df Pr(>Chisq)
## agency.icu      13 22537 22648 -11255                        
## agency.icu.int3 17 22544 22688 -11255  1.35      4       0.85

Ratio of senior to junior nurses

## glmer(formula = diedicu ~ ratio.senior.junior.wte * N.dc.three + 
##     IMlo + prop.occ.c + admissions.perbed.perday + I(transin.perbed.perday * 
##     7) + total.support.staff.perbed + N.dc.perbed + clinical.NHD.perbed + 
##     intensivist + IMlomean.x + I(avyulos/100) + (1 | trust.code), 
##     data = dta4, family = binomial(), subset = ss8, na.action = na.omit)
##                                               coef.est coef.se
## (Intercept)                                   -1.195    0.324 
## ratio.senior.junior.wte                       -0.192    0.784 
## N.dc.three(4.48,5.51]                         -0.157    0.221 
## N.dc.three(5.51,14.2]                          0.004    0.212 
## IMlo                                           0.970    0.013 
## prop.occ.c                                     0.202    0.096 
## admissions.perbed.perday                      -0.081    0.927 
## I(transin.perbed.perday * 7)                   1.644    0.656 
## total.support.staff.perbed                     0.222    0.192 
## N.dc.perbed                                   -0.094    0.062 
## clinical.NHD.perbed                           -0.172    0.060 
## intensivistYes                                -0.037    0.106 
## IMlomean.x                                    -0.047    0.021 
## I(avyulos/100)                                 0.327    0.191 
## ratio.senior.junior.wte:N.dc.three(4.48,5.51]  0.787    1.201 
## ratio.senior.junior.wte:N.dc.three(5.51,14.2]  0.179    0.812 
## 
## Error terms:
##  Groups     Name        Std.Dev.
##  trust.code (Intercept) 0.274   
##  Residual               1.000   
## ---
## number of obs: 36343, groups: trust.code, 61
## AIC = 22000.2, DIC = 21966
## deviance = 21966.2
## Data: dta4
## Subset: ss8
## Models:
## senior.icu: diedicu ~ ratio.senior.junior.wte + IMlo + prop.occ.c + admissions.perbed.perday + 
## senior.icu:     I(transin.perbed.perday * 7) + total.support.staff.perbed + 
## senior.icu:     N.dc.perbed + clinical.NHD.perbed + intensivist + IMlomean.x + 
## senior.icu:     I(avyulos/100) + (1 | trust.code)
## senior.icu.int3: diedicu ~ ratio.senior.junior.wte * N.dc.three + IMlo + prop.occ.c + 
## senior.icu.int3:     admissions.perbed.perday + I(transin.perbed.perday * 7) + 
## senior.icu.int3:     total.support.staff.perbed + N.dc.perbed + clinical.NHD.perbed + 
## senior.icu.int3:     intensivist + IMlomean.x + I(avyulos/100) + (1 | trust.code)
##                 Df   AIC   BIC logLik Chisq Chi Df Pr(>Chisq)
## senior.icu      13 21993 22104 -10984                        
## senior.icu.int3 17 22000 22145 -10983  0.99      4       0.91

Proportion with a diploma

## glmer(formula = diedicu ~ ratio.diploma * N.dc.three + IMlo + 
##     prop.occ.c + admissions.perbed.perday + I(transin.perbed.perday * 
##     7) + total.support.staff.perbed + N.dc.perbed + clinical.NHD.perbed + 
##     intensivist + IMlomean.x + I(avyulos/100) + (1 | trust.code), 
##     data = dta4, family = binomial(), subset = ss8, na.action = na.omit)
##                                     coef.est coef.se
## (Intercept)                         -1.271    0.244 
## ratio.diploma                       -1.747    0.450 
## N.dc.three(4.48,5.51]               -0.337    0.129 
## N.dc.three(5.51,14.2]               -0.362    0.169 
## IMlo                                 0.965    0.012 
## prop.occ.c                           0.204    0.093 
## admissions.perbed.perday             0.540    0.726 
## I(transin.perbed.perday * 7)         1.383    0.559 
## total.support.staff.perbed           0.229    0.170 
## N.dc.perbed                         -0.066    0.051 
## clinical.NHD.perbed                 -0.186    0.053 
## intensivistYes                      -0.094    0.093 
## IMlomean.x                          -0.049    0.020 
## I(avyulos/100)                       0.433    0.147 
## ratio.diploma:N.dc.three(4.48,5.51]  2.003    0.606 
## ratio.diploma:N.dc.three(5.51,14.2]  2.523    0.572 
## 
## Error terms:
##  Groups     Name        Std.Dev.
##  trust.code (Intercept) 0.228   
##  Residual               1.000   
## ---
## number of obs: 38168, groups: trust.code, 65
## AIC = 23307.1, DIC = 23273
## deviance = 23273.1
## Data: dta4
## Subset: ss8
## Models:
## diploma.icu: diedicu ~ ratio.diploma + IMlo + prop.occ.c + admissions.perbed.perday + 
## diploma.icu:     I(transin.perbed.perday * 7) + total.support.staff.perbed + 
## diploma.icu:     N.dc.perbed + clinical.NHD.perbed + intensivist + IMlomean.x + 
## diploma.icu:     I(avyulos/100) + (1 | trust.code)
## diploma.icu.int3: diedicu ~ ratio.diploma * N.dc.three + IMlo + prop.occ.c + admissions.perbed.perday + 
## diploma.icu.int3:     I(transin.perbed.perday * 7) + total.support.staff.perbed + 
## diploma.icu.int3:     N.dc.perbed + clinical.NHD.perbed + intensivist + IMlomean.x + 
## diploma.icu.int3:     I(avyulos/100) + (1 | trust.code)
##                  Df   AIC   BIC logLik Chisq Chi Df Pr(>Chisq)    
## diploma.icu      13 23319 23430 -11646                            
## diploma.icu.int3 17 23307 23452 -11637  19.7      4    0.00056 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Proportion with a degree

## glmer(formula = diedicu ~ ratio.degree * N.dc.three + IMlo + 
##     prop.occ.c + admissions.perbed.perday + I(transin.perbed.perday * 
##     7) + total.support.staff.perbed + N.dc.perbed + clinical.NHD.perbed + 
##     intensivist + IMlomean.x + I(avyulos/100) + (1 | trust.code), 
##     data = dta4, family = binomial(), subset = ss8, na.action = na.omit)
##                                    coef.est coef.se
## (Intercept)                        -1.286    0.257 
## ratio.degree                       -1.517    1.152 
## N.dc.three(4.48,5.51]              -0.079    0.118 
## N.dc.three(5.51,14.2]              -0.003    0.161 
## IMlo                                0.965    0.012 
## prop.occ.c                          0.213    0.094 
## admissions.perbed.perday            0.527    0.782 
## I(transin.perbed.perday * 7)        1.660    0.617 
## total.support.staff.perbed          0.160    0.183 
## N.dc.perbed                        -0.120    0.054 
## clinical.NHD.perbed                -0.148    0.058 
## intensivistYes                     -0.047    0.104 
## IMlomean.x                         -0.051    0.020 
## I(avyulos/100)                      0.434    0.162 
## ratio.degree:N.dc.three(4.48,5.51]  0.631    1.643 
## ratio.degree:N.dc.three(5.51,14.2]  2.110    1.591 
## 
## Error terms:
##  Groups     Name        Std.Dev.
##  trust.code (Intercept) 0.264   
##  Residual               1.000   
## ---
## number of obs: 38168, groups: trust.code, 65
## AIC = 23323.6, DIC = 23290
## deviance = 23289.6
## Data: dta4
## Subset: ss8
## Models:
## degree.icu: diedicu ~ ratio.degree + IMlo + prop.occ.c + admissions.perbed.perday + 
## degree.icu:     I(transin.perbed.perday * 7) + total.support.staff.perbed + 
## degree.icu:     N.dc.perbed + clinical.NHD.perbed + intensivist + IMlomean.x + 
## degree.icu:     I(avyulos/100) + (1 | trust.code)
## degree.icu.int3: diedicu ~ ratio.degree * N.dc.three + IMlo + prop.occ.c + admissions.perbed.perday + 
## degree.icu.int3:     I(transin.perbed.perday * 7) + total.support.staff.perbed + 
## degree.icu.int3:     N.dc.perbed + clinical.NHD.perbed + intensivist + IMlomean.x + 
## degree.icu.int3:     I(avyulos/100) + (1 | trust.code)
##                 Df   AIC   BIC logLik Chisq Chi Df Pr(>Chisq)
## degree.icu      13 23319 23430 -11646                        
## degree.icu.int3 17 23324 23469 -11645  2.95      4       0.57