Analizde AÄustos 2018- Aralık 2020 tarihleri arasında bankamız mevduat maliyetlerinin sektƶr ile farkı olan spread deÄiÅkeni, kredi & mevduat tutarları,kredi/mevduat rasyosu, LKO, tabana yaygınlık, sektƶr mevduat payımız gibi deÄiÅkenler kullanılmıÅtır. Bu deÄiÅkenlere gerekli dƶnüÅüm iÅlemleri yapıldıktan sonra Vector Autoregressive (VAR) modeli kurularak nedensellik (Granger causality), etki tepki analizi (impulse response function) ve tahmin ƧalıÅması (forecasting) yapılmıÅtır.
Bu deÄiÅkenlerin level grafikleri:
Analizde baÄımlı deÄiÅken olarak tüm Spread deÄiÅkeni kullanıldıÄından, bu deÄiÅkenin diÄer deÄiÅkenler ile ikili daÄılım grafikleri:
Augmented Dickey Füller testi sonucunda; Yüzdesel spread, LKO ve mevduat tutarı %90 güven aralıÄında duraÄan, diÄer deÄiÅkenler birim kƶk (non-stationary).
## spread lko
## statistic -3.155359 -3.76236
## parameter 4 4
## alternative "stationary" "stationary"
## p.value 0.09864016 0.02315492
## method "Augmented Dickey-Fuller Test" "Augmented Dickey-Fuller Test"
## data.name "x" "x"
## loan deposit
## statistic -2.859918 -3.408924
## parameter 4 4
## alternative "stationary" "stationary"
## p.value 0.2193401 0.05637927
## method "Augmented Dickey-Fuller Test" "Augmented Dickey-Fuller Test"
## data.name "x" "x"
## small_deposit sector_ratio
## statistic -2.758929 -2.351961
## parameter 4 4
## alternative "stationary" "stationary"
## p.value 0.2612924 0.4303518
## method "Augmented Dickey-Fuller Test" "Augmented Dickey-Fuller Test"
## data.name "x" "x"
## ld_ratio
## statistic -2.144117
## parameter 4
## alternative "stationary"
## p.value 0.5166925
## method "Augmented Dickey-Fuller Test"
## data.name "x"
Kredi tutarına yüzdesel deÄiÅim, kredi mevduat rasyosu ve tabana yaygınlık fark iÅlemi uygulandıktan sonra tüm deÄiÅkenler duraÄan hale getirildi.
## loan_growth deposit
## statistic -5.659267 -3.385358
## parameter 4 4
## alternative "stationary" "stationary"
## p.value 0.01 0.06032925
## method "Augmented Dickey-Fuller Test" "Augmented Dickey-Fuller Test"
## data.name "x" "x"
## ld spread
## statistic -5.988474 -3.507897
## parameter 4 4
## alternative "stationary" "stationary"
## p.value 0.01 0.0445405
## method "Augmented Dickey-Fuller Test" "Augmented Dickey-Fuller Test"
## data.name "x" "x"
## small deposit sector ratio
## statistic -4.460357 -4.604432
## parameter 4 4
## alternative "stationary" "stationary"
## p.value 0.01 0.01
## method "Augmented Dickey-Fuller Test" "Augmented Dickey-Fuller Test"
## data.name "x" "x"
## lko
## statistic -3.670864
## parameter 4
## alternative "stationary"
## p.value 0.02984998
## method "Augmented Dickey-Fuller Test"
## data.name "x"
Tüm deÄiÅkenler ile Ƨoklu lineer regrasyon modeli kurulduÄunda deÄiÅkenlerin overall insignifance olması ve düÅük R square deÄeri ile baÅarısız bir model olmuÅtur.
##
## Call:
## lm(formula = spread ~ ., data = data_model)
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.115352 -0.024685 -0.005335 0.019531 0.171824
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 4.840e-02 5.761e-02 0.840 0.403
## loan_growth -2.452e-03 3.794e-03 -0.646 0.519
## deposit 5.063e-12 5.412e-12 0.935 0.352
## ld 7.725e-02 3.211e-01 0.241 0.810
## `small deposit` 2.001e-01 1.075e+00 0.186 0.853
## `sector ratio` 5.750e+01 4.562e+01 1.260 0.210
## lko 1.874e-02 1.267e-02 1.479 0.142
##
## Residual standard error: 0.04132 on 114 degrees of freedom
## Multiple R-squared: 0.06206, Adjusted R-squared: 0.01269
## F-statistic: 1.257 on 6 and 114 DF, p-value: 0.2829
Akaike Bilgi Kriterine gƶre sıralı ekleme Ƨıkarma methodu ile deÄiÅken seƧimi yapılarak bazı deÄiÅkenler modelden atılmıÅtır. Geriye kredi büyümesi ve sektƶr mevduat payı deÄiÅkeni kalmıÅtır. DüÅük R square deÄerinden dolayı diagnostic check aÅamasına geƧilememiÅtir.
##
## Call:
## lm(formula = spread ~ loan_growth + `sector ratio`, data = data_model)
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.122126 -0.023223 -0.004861 0.017454 0.164019
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.117695 0.003762 31.285 <2e-16 ***
## loan_growth -0.002748 0.001593 -1.726 0.0870 .
## `sector ratio` 42.715781 24.790752 1.723 0.0875 .
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.04102 on 118 degrees of freedom
## Multiple R-squared: 0.0431, Adjusted R-squared: 0.02689
## F-statistic: 2.658 on 2 and 118 DF, p-value: 0.0743
Ćoklu zaman serileri arasındaki geliÅimi ve karÅılıklı baÄımlılıÄı ƶlƧmek iƧin VAR modeli kullanılmıÅtır.
Autoregressive modellerin genÅiletilmiÅ hali olan VAR modellerindetüm deÄiÅkenler modeldeki deÄiÅkenin kendi gecikmeleri ve diÄer tüm deÄiÅkenlerin gecikmelerine baÄlı olarak, deÄiÅkenin geliÅimini aƧıklayan her bir deÄiÅken iƧin bir denklem ile simetrik olarak ele alınır.
Bu analizde spread deÄiÅkeninin kendi gecikmeli dÄerleri ve diÄer deÄiÅkenlerin gecikmeli deÄerleri kullanılarak modell kurulmuÅ, testler yapılmıŠve sonrasında nedensellik, etki-tepki analizi ve tahmin aÅamalarına geƧilmiÅtir.
##
## VAR Estimation Results:
## =========================
## Endogenous variables: spread, loan_growth
## Deterministic variables: const
## Sample size: 118
## Log Likelihood: 18.766
## Roots of the characteristic polynomial:
## 0.8336 0.5574 0.5465 0.5465 0.5302 0.5302
## Call:
## VAR(y = data_n, type = "const", lag.max = 10, ic = "AIC")
##
##
## Estimation results for equation spread:
## =======================================
## spread = spread.l1 + loan_growth.l1 + spread.l2 + loan_growth.l2 + spread.l3 + loan_growth.l3 + const
##
## Estimate Std. Error t value Pr(>|t|)
## spread.l1 0.5423310 0.0910999 5.953 3.14e-08 ***
## loan_growth.l1 0.0014741 0.0009107 1.619 0.1083
## spread.l2 0.0571264 0.1003080 0.570 0.5702
## loan_growth.l2 0.0011870 0.0009051 1.311 0.1924
## spread.l3 0.2186866 0.0881722 2.480 0.0146 *
## loan_growth.l3 0.0021314 0.0009017 2.364 0.0198 *
## const 0.0184092 0.0072638 2.534 0.0127 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
##
## Residual standard error: 0.02278 on 111 degrees of freedom
## Multiple R-Squared: 0.6377, Adjusted R-squared: 0.6181
## F-statistic: 32.56 on 6 and 111 DF, p-value: < 2.2e-16
##
##
## Estimation results for equation loan_growth:
## ============================================
## loan_growth = spread.l1 + loan_growth.l1 + spread.l2 + loan_growth.l2 + spread.l3 + loan_growth.l3 + const
##
## Estimate Std. Error t value Pr(>|t|)
## spread.l1 1.00973 9.35950 0.108 0.9143
## loan_growth.l1 0.02384 0.09356 0.255 0.7993
## spread.l2 -15.80446 10.30554 -1.534 0.1280
## loan_growth.l2 -0.05059 0.09299 -0.544 0.5875
## spread.l3 0.46905 9.05872 0.052 0.9588
## loan_growth.l3 -0.17380 0.09264 -1.876 0.0633 .
## const 1.93881 0.74627 2.598 0.0106 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
##
## Residual standard error: 2.341 on 111 degrees of freedom
## Multiple R-Squared: 0.09355, Adjusted R-squared: 0.04456
## F-statistic: 1.909 on 6 and 111 DF, p-value: 0.08544
##
##
##
## Covariance matrix of residuals:
## spread loan_growth
## spread 0.0005191 0.005054
## loan_growth 0.0050545 5.479111
##
## Correlation matrix of residuals:
## spread loan_growth
## spread 1.00000 0.09478
## loan_growth 0.09478 1.00000
Serial correlation check Reasiduallarda serial correlationa rastlanmamıÅtır. Autocorrelation testini geƧmiÅtir.
##
## Portmanteau Test (asymptotic)
##
## data: Residuals of VAR object model1
## Chi-squared = 24.191, df = 28, p-value = 0.6714
Residual variance heteroscedastic problem. Homoscedasticity testinde fail etmiÅtir.
##
## ARCH (multivariate)
##
## data: Residuals of VAR object model1
## Chi-squared = 81.139, df = 90, p-value = 0.7367
Cusum test sonrası yapısal kırılmaya rastlanmadı.
## $Granger
##
## Granger causality H0: loan_growth do not Granger-cause spread
##
## data: VAR object model1
## F-Test = 3.2562, df1 = 3, df2 = 222, p-value = 0.02248
##
##
## $Instant
##
## H0: No instantaneous causality between: loan_growth and spread
##
## data: VAR object model1
## Chi-squared = 1.0505, df = 1, p-value = 0.3054
Spread ve tabana yaygınlık ile VAR model fit
##
## VAR Estimation Results:
## =========================
## Endogenous variables: spread, small
## Deterministic variables: const
## Sample size: 119
## Log Likelihood: 702.17
## Roots of the characteristic polynomial:
## 0.8423 0.4165 0.3118 0.3118
## Call:
## VAR(y = data_2, type = "const", lag.max = 10, ic = "AIC")
##
##
## Estimation results for equation spread:
## =======================================
## spread = spread.l1 + small.l1 + spread.l2 + small.l2 + const
##
## Estimate Std. Error t value Pr(>|t|)
## spread.l1 0.57555 0.08736 6.588 1.44e-09 ***
## small.l1 -0.17836 0.28763 -0.620 0.536423
## spread.l2 0.18965 0.08644 2.194 0.030269 *
## small.l2 0.60925 0.27811 2.191 0.030509 *
## const 0.02590 0.00669 3.872 0.000181 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
##
## Residual standard error: 0.02324 on 114 degrees of freedom
## Multiple R-Squared: 0.6418, Adjusted R-squared: 0.6293
## F-statistic: 51.07 on 4 and 114 DF, p-value: < 2.2e-16
##
##
## Estimation results for equation small:
## ======================================
## small = spread.l1 + small.l1 + spread.l2 + small.l2 + const
##
## Estimate Std. Error t value Pr(>|t|)
## spread.l1 -0.031726 0.029216 -1.086 0.2798
## small.l1 0.220914 0.096189 2.297 0.0235 *
## spread.l2 0.064581 0.028908 2.234 0.0274 *
## small.l2 0.027582 0.093006 0.297 0.7673
## const -0.004262 0.002237 -1.905 0.0593 .
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
##
## Residual standard error: 0.007772 on 114 degrees of freedom
## Multiple R-Squared: 0.1224, Adjusted R-squared: 0.0916
## F-statistic: 3.975 on 4 and 114 DF, p-value: 0.004677
##
##
##
## Covariance matrix of residuals:
## spread small
## spread 5.401e-04 -6.797e-05
## small -6.797e-05 6.040e-05
##
## Correlation matrix of residuals:
## spread small
## spread 1.0000 -0.3763
## small -0.3763 1.0000
Serial correlation check Reasiduallarda serial correlationa rastlanmamıÅtır. Autocorrelation testini geƧmiÅtir.
##
## Portmanteau Test (asymptotic)
##
## data: Residuals of VAR object model2
## Chi-squared = 22.252, df = 32, p-value = 0.9005
Residual variancelarında deÄiÅken varyansa rastlanmıÅtır (Heteroscedasticity) Homoscedasticity testinde fail etmiÅtir. Data DCC Garch gibi conditional variance modellerine daha uygundur.
##
## ARCH (multivariate)
##
## data: Residuals of VAR object model2
## Chi-squared = 67.281, df = 90, p-value = 0.9649
Cusum test sonrası datada yapısal kırılmaya rastlanmadı.
Spread ve km rasyosu ile VAR model fit
##
## VAR Estimation Results:
## =========================
## Endogenous variables: spread, ld
## Deterministic variables: const
## Sample size: 118
## Log Likelihood: 523.769
## Roots of the characteristic polynomial:
## 0.8731 0.5904 0.5904 0.5014 0.5014 0.3422
## Call:
## VAR(y = data_3, type = "const", lag.max = 10, ic = "AIC")
##
##
## Estimation results for equation spread:
## =======================================
## spread = spread.l1 + ld.l1 + spread.l2 + ld.l2 + spread.l3 + ld.l3 + const
##
## Estimate Std. Error t value Pr(>|t|)
## spread.l1 0.52007 0.09521 5.462 2.91e-07 ***
## ld.l1 0.04775 0.06251 0.764 0.446541
## spread.l2 0.14252 0.10040 1.419 0.158558
## ld.l2 0.21656 0.06238 3.471 0.000739 ***
## spread.l3 0.13992 0.08610 1.625 0.107000
## ld.l3 0.09496 0.06582 1.443 0.151926
## const 0.02094 0.00689 3.039 0.002965 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
##
## Residual standard error: 0.02224 on 111 degrees of freedom
## Multiple R-Squared: 0.6547, Adjusted R-squared: 0.6361
## F-statistic: 35.08 on 6 and 111 DF, p-value: < 2.2e-16
##
##
## Estimation results for equation ld:
## ===================================
## ld = spread.l1 + ld.l1 + spread.l2 + ld.l2 + spread.l3 + ld.l3 + const
##
## Estimate Std. Error t value Pr(>|t|)
## spread.l1 -0.211272 0.144842 -1.459 0.147
## ld.l1 0.038609 0.095100 0.406 0.686
## spread.l2 -0.032033 0.152740 -0.210 0.834
## ld.l2 -0.094192 0.094902 -0.993 0.323
## spread.l3 0.200373 0.130988 1.530 0.129
## ld.l3 -0.051166 0.100130 -0.511 0.610
## const 0.005338 0.010482 0.509 0.612
##
##
## Residual standard error: 0.03384 on 111 degrees of freedom
## Multiple R-Squared: 0.06147, Adjusted R-squared: 0.01074
## F-statistic: 1.212 on 6 and 111 DF, p-value: 0.3056
##
##
##
## Covariance matrix of residuals:
## spread ld
## spread 0.0004947 -0.0001609
## ld -0.0001609 0.0011449
##
## Correlation matrix of residuals:
## spread ld
## spread 1.0000 -0.2139
## ld -0.2139 1.0000
Serial correlation check Reasiduallarda serial correlationa rastlanmamıÅtır. Autocorrelation testini geƧmiÅtir.
##
## Portmanteau Test (asymptotic)
##
## data: Residuals of VAR object model3
## Chi-squared = 15.072, df = 28, p-value = 0.9777
Residual variance heteroscedastic problem. Homoscedasticity testinde fail etmiÅtir.
##
## ARCH (multivariate)
##
## data: Residuals of VAR object model3
## Chi-squared = 91.801, df = 90, p-value = 0.4274
Cusum test sonrası structural breake rastlanmadı.