library(readr)
library(dplyr)
library(ggplot2)
library(ggrepel)
library(ggpubr)
library(tidyr)
library(lubridate)
library(gsheet)# Local
# covid <- read_csv("../Data/VariosPaises_Covid19Actualizado.csv",
# na = "#VALUE!")
# Online
covid <- gsheet2tbl("https://docs.google.com/spreadsheets/d/1YnsFPlJHJ9TQB5lZnqoEY6HZKkjRbns2kBr9I4HwNG4/edit?usp=sharing")
# country_pops <- tibble(
# COUNTRY = unique(covid$COUNTRY),
# POP = c(11673021, 212559417, 19116201, 50882891, 17643054,
# 6486205, 17915568, 128932753, 17134872, 7132538,
# 32971854, 2860853, 46754778, 3473730)
# )
country_pops <- gsheet2tbl("https://docs.google.com/spreadsheets/d/1YnsFPlJHJ9TQB5lZnqoEY6HZKkjRbns2kBr9I4HwNG4/edit#gid=1550796837",
sheetid = 2)
covid_tbl <- covid %>%
left_join(country_pops) %>%
mutate(CONTAGIADOS_MILL = CONTAGIADOS/POP * 1000000,
FALLECIDOS_MILL = FALLECIDOS/POP * 1000000,
COUNTRY = as.factor(COUNTRY),
FECHA = dmy(FECHA),
IP = CONTAGIADOS + FALLECIDOS - RECUPERADOS,
R0_14 = R0(CONTAGIADOS, 14)) %>%
group_by(COUNTRY) %>%
mutate(CONTAGIADOS_MA = mov_avg(CONTAGIADOS, 7),
CONTAGIADOS_MILL_MA = mov_avg(CONTAGIADOS_MILL, 7),
FALLECIDOS_MA = mov_avg(FALLECIDOS, 7),
FALLECIDOS_MILL_MA = mov_avg(FALLECIDOS_MILL, 7),
RECUPERADOS_MA = mov_avg(RECUPERADOS, 7),
DIA = 1:n()) %>%
ungroup()
covid_tblThe dataset consists of 2565 observations of daily cases of COVID-19 of Spain, Netherlands and some latin american countries (14 in total), from March 2nd to Aug 31th of 2020.
infected_p1 <- covid_tbl %>%
filter(FECHA <= date("2020-08-28")) %>%
ggplot(aes(x = FECHA, y = CONTAGIADOS_MA, col = COUNTRY)) +
geom_point() +
geom_line() +
geom_label_repel(data = . %>% filter(FECHA == date("2020-08-28"),
COUNTRY %in% c("BRAZIL", "SPAIN",
"PERU", "MEXICO",
"COLOMBIA")),
aes(label = COUNTRY), family = "Poppins",
xlim = date("2020-09-02"), ylim = c(2000, 40000),
box.padding = .05, force = .1) +
geom_label(aes(label = "*"), family = "Poppins", x = date("2020-09-16"),
y = 1200, col = "black") +
scale_x_date(date_labels = "%b",
limits = date(c("2020-03-01", "2020-10-20")),
breaks = seq.Date(from = date("2020-03-01"),
to = date("2020-09-01"),
by = "month")) +
custom_theme +
labs(y = "CONTAGIADOS", caption = "* Países con número de contagiados en la última semana menor a 5000:\nChile,Bolivia, Ecuador, Guatemala, Paraguay, Puerto Rico, El Salvador,\nPaíses Bajos yUruguay")
infected_p2 <- covid_tbl %>%
filter(FECHA <= date("2020-08-28")) %>%
ggplot(aes(x = FECHA, y = CONTAGIADOS_MILL_MA, col = COUNTRY)) +
geom_point() +
geom_line() +
# geom_smooth(se = FALSE) +
geom_label_repel(data = . %>% filter(FECHA == date("2020-08-28"),
COUNTRY %in% c("BRAZIL", "SPAIN",
"PERU", "MEXICO",
"COLOMBIA")),
aes(label = COUNTRY), family = "Poppins",
xlim = date("2020-09-02"), ylim = c(80, 4000)) +
geom_label(aes(label = "*"), family = "Poppins", x = date("2020-09-16"),
y = 40, col = "black") +
scale_x_date(date_labels = "%b",
limits = date(c("2020-03-01", "2020-10-20")),
breaks = seq.Date(from = date("2020-03-01"),
to = date("2020-09-01"),
by = "month")) +
custom_theme +
labs(y = "CONTAGIADOS POR MILLON", caption = "* Países con número de contagiados por millón en la última semana\nmenor a 200:Chile, Bolivia, Ecuador, Guatemala, Paraguay, España,\nPuerto Rico, El Salvador, Países Bajos y Uruguay")
ggarrange(infected_p1, infected_p2)covid_tbl %>%
filter(COUNTRY %in% c("URUGUAY"),
FECHA <= date("2020-08-28")) %>%
ggplot(aes(x = FECHA, y = CONTAGIADOS)) +
geom_point() +
geom_smooth(se = FALSE) +
scale_x_date(date_labels = "%b",
breaks = seq.Date(from = as.Date("2020-03-01"),
to = as.Date("2020-09-01"),
by = "month")) +
facet_wrap(~COUNTRY) +
custom_theme +
theme(strip.text = element_text(size = 15))covid_tbl %>%
filter(COUNTRY %in% c("EL SALVADOR", "PUERTO RICO", "PARAGUAY"),
FECHA <= date("2020-08-28")) %>%
ggplot(aes(x = FECHA, y = CONTAGIADOS)) +
geom_point() +
geom_smooth(se = FALSE) +
scale_x_date(date_labels = "%b",
breaks = seq.Date(from = as.Date("2020-03-01"),
to = as.Date("2020-09-01"),
by = "month")) +
facet_wrap(~COUNTRY, nrow = 2) +
custom_theme +
theme(strip.text = element_text(size = 15))covid_tbl %>%
filter(COUNTRY %in% c("GUATEMALA", "NETHERLAND", "BOLIVIA", "ECUADOR"),
FECHA <= date("2020-08-28")) %>%
ggplot(aes(x = FECHA, y = CONTAGIADOS)) +
geom_point() +
geom_smooth(se = FALSE) +
scale_x_date(date_labels = "%b",
breaks = seq.Date(from = as.Date("2020-03-01"),
to = as.Date("2020-09-01"),
by = "month")) +
facet_wrap(~COUNTRY) +
custom_theme +
theme(strip.text = element_text(size = 15))covid_tbl %>%
filter(COUNTRY %in% c("CHILE", "SPAIN", "MEXICO", "COLOMBIA", "PERU"),
FECHA <= date("2020-08-28")) %>%
ggplot(aes(x = FECHA, y = CONTAGIADOS)) +
geom_point() +
geom_smooth(se = FALSE) +
scale_x_date(date_labels = "%b",
breaks = seq.Date(from = as.Date("2020-03-01"),
to = as.Date("2020-09-01"),
by = "month")) +
facet_wrap(~COUNTRY) +
custom_theme +
theme(strip.text = element_text(size = 15))covid_tbl %>%
filter(COUNTRY %in% c("BRAZIL"),
FECHA <= date("2020-08-28")) %>%
ggplot(aes(x = FECHA, y = CONTAGIADOS)) +
geom_point() +
geom_smooth(se = FALSE) +
scale_x_date(date_labels = "%b",
breaks = seq.Date(
from = date("2020-03-01"),
to = date("2020-09-01"),
by = "month"
)) +
facet_wrap( ~ COUNTRY) +
custom_theme +
theme(strip.text = element_text(size = 15))deaths_p1 <- covid_tbl %>%
filter(FECHA <= date("2020-08-28")) %>%
ggplot(aes(x = FECHA, y = FALLECIDOS_MA, col = COUNTRY)) +
geom_point() +
geom_line() +
# geom_smooth(se = FALSE) +
geom_label_repel(
data = . %>% filter(
FECHA == date("2020-08-28"),
COUNTRY %in% c("BRAZIL", "PERU", "MEXICO", "COLOMBIA")
),
aes(label = COUNTRY),
family = "Poppins",
xlim = date("2020-09-02"),
ylim = c(100, 950)
) +
geom_label(
aes(label = "*"),
family = "Poppins",
x = date("2020-09-15"),
y = 40,
col = "black"
) +
scale_x_date(date_labels = "%b",
limits = date(c("2020-03-01", "2020-10-20")),
breaks = seq.Date(from = date("2020-03-01"),
to = date("2020-09-01"),
by = "month")) +
custom_theme +
labs(y = "MUERTES", caption = "* Países con número de muertes menor a 100 en la ultima semana: Chile,\nBolivia, Ecuador, Guatemala, Paraguay, España, Puerto Rico, El Salvador,\nPaíses Bajos y Uruguay")
deaths_p2 <- covid_tbl %>%
filter(FECHA <= date("2020-08-28")) %>%
ggplot(aes(x = FECHA, y = FALLECIDOS_MILL_MA, col = COUNTRY)) +
geom_point() +
geom_line() +
# geom_smooth(se = FALSE) +
geom_label_repel(
data = . %>% filter(
FECHA == date("2020-08-28"),
COUNTRY %in% c("BRAZIL", "PERU", "MEXICO", "COLOMBIA")
),
aes(label = COUNTRY),
family = "Poppins",
xlim = date("2020-09-02"),
ylim = c(10, 1000)
) +
geom_label(
aes(label = "*"),
family = "Poppins",
x = date("2020-09-15"),
y = 4,
col = "black"
) +
scale_x_date(date_labels = "%b",
limits = date(c("2020-03-01", "2020-10-20")),
breaks = seq.Date(from = date("2020-03-01"),
to = date("2020-09-01"),
by = "month")) +
custom_theme +
labs(y = "MUERTES", caption = "* Países con número de muertes por millón menor a 10 en la ultima semana:\nChile, Bolivia, Ecuador, Guatemala, Paraguay, España, Puerto Rico,\nEl Salvador, Países Bajos y Uruguay")
ggpubr::ggarrange(deaths_p1, deaths_p2)ggplot(data = covid_tbl %>%
filter(COUNTRY %in% c("URUGUAY"),
FECHA <= date("2020-08-28")),
aes(x = FECHA, y = FALLECIDOS)) +
geom_point() +
geom_smooth(se = FALSE) +
scale_x_date(date_labels = "%b",
breaks = seq.Date(from = as.Date("2020-04-01"),
to = as.Date("2020-08-01"),
by = "month")) +
scale_y_continuous(labels = scales::comma) +
facet_wrap(~COUNTRY) +
custom_theme +
theme(strip.text = element_text(size = 15))ggplot(data = covid_tbl %>%
filter(COUNTRY %in% c("EL SALVADOR", "PUERTO RICO", "PARAGUAY"),
FECHA <= date("2020-08-28")),
aes(x = FECHA, y = FALLECIDOS)) +
geom_point() +
geom_smooth(se = FALSE) +
scale_x_date(date_labels = "%b",
breaks = seq.Date(from = as.Date("2020-04-01"),
to = as.Date("2020-08-01"),
by = "month")) +
scale_y_continuous(labels = scales::comma) +
facet_wrap(~COUNTRY, nrow = 2) +
custom_theme +
theme(strip.text = element_text(size = 15))ggplot(data = covid_tbl %>%
filter(COUNTRY %in% c("GUATEMALA", "NETHERLAND", "BOLIVIA",
"ECUADOR"),
FECHA <= date("2020-08-28")),
aes(x = FECHA, y = FALLECIDOS)) +
geom_point() +
geom_smooth(se = FALSE) +
scale_x_date(date_labels = "%b",
breaks = seq.Date(from = as.Date("2020-04-01"),
to = as.Date("2020-08-01"),
by = "month")) +
scale_y_continuous(labels = scales::comma) +
facet_wrap(~COUNTRY) +
custom_theme +
theme(strip.text = element_text(size = 15))ggplot(data = covid_tbl %>%
filter(COUNTRY %in% c("CHILE", "SPAIN", "MEXICO", "COLOMBIA",
"PERU"),
FECHA <= date("2020-08-28")),
aes(x = FECHA, y = FALLECIDOS)) +
geom_point() +
geom_smooth(se = FALSE) +
scale_x_date(date_labels = "%b",
breaks = seq.Date(from = as.Date("2020-04-01"),
to = as.Date("2020-08-01"),
by = "month")) +
scale_y_continuous(labels = scales::comma) +
facet_wrap(~COUNTRY) +
custom_theme +
theme(strip.text = element_text(size = 15))ggplot(data = covid_tbl %>%
filter(COUNTRY %in% c("BRAZIL"),
FECHA <= date("2020-08-28")),
aes(x = FECHA, y = FALLECIDOS)) +
geom_point() +
geom_smooth(se = FALSE) +
scale_x_date(date_labels = "%b",
breaks = seq.Date(from = as.Date("2020-03-01"),
to = as.Date("2020-09-01"),
by = "month")) +
scale_y_continuous(labels = scales::comma) +
facet_wrap(~COUNTRY) +
custom_theme +
theme(strip.text = element_text(size = 15))ggplot(data = covid_tbl %>%
filter(COUNTRY %in% c("URUGUAY"),
FECHA <= date("2020-08-28")),
aes(x = FECHA, y = IP)) +
geom_point() +
geom_smooth(se = FALSE) +
scale_x_date(date_labels = "%b",
breaks = seq.Date(from = as.Date("2020-04-01"),
to = as.Date("2020-08-01"),
by = "month")) +
scale_y_continuous(labels = scales::comma) +
facet_wrap(~COUNTRY) +
custom_theme +
theme(strip.text = element_text(size = 15))ggplot(data = covid_tbl %>%
filter(COUNTRY %in% c("EL SALVADOR", "PUERTO RICO", "PARAGUAY"),
FECHA <= date("2020-08-28")),
aes(x = FECHA, y = IP)) +
geom_point() +
geom_smooth(se = FALSE) +
scale_x_date(date_labels = "%b",
breaks = seq.Date(from = as.Date("2020-04-01"),
to = as.Date("2020-08-01"),
by = "month")) +
scale_y_continuous(labels = scales::comma) +
facet_wrap(~COUNTRY, nrow = 2) +
custom_theme +
theme(strip.text = element_text(size = 15))ggplot(data = covid_tbl %>%
filter(COUNTRY %in% c("GUATEMALA", "NETHERLAND", "BOLIVIA",
"ECUADOR"),
FECHA <= date("2020-08-28")),
aes(x = FECHA, y = IP)) +
geom_point() +
geom_smooth(se = FALSE) +
scale_x_date(date_labels = "%b",
breaks = seq.Date(from = as.Date("2020-04-01"),
to = as.Date("2020-08-01"),
by = "month")) +
scale_y_continuous(labels = scales::comma, limits = c(-800, 1800)) +
facet_wrap(~COUNTRY) +
custom_theme +
theme(strip.text = element_text(size = 15))ggplot(data = covid_tbl %>%
filter(COUNTRY %in% c("CHILE", "SPAIN", "MEXICO", "COLOMBIA",
"PERU"),
FECHA <= date("2020-08-28")),
aes(x = FECHA, y = IP)) +
geom_point() +
geom_smooth(se = FALSE) +
scale_x_date(date_labels = "%b",
breaks = seq.Date(from = as.Date("2020-04-01"),
to = as.Date("2020-08-01"),
by = "month")) +
scale_y_continuous(labels = scales::comma, limits = c(-2000, 8200)) +
facet_wrap(~COUNTRY) +
custom_theme +
theme(strip.text = element_text(size = 15))ggplot(data = covid_tbl %>%
filter(COUNTRY %in% c("BRAZIL"),
FECHA <= date("2020-08-28")),
aes(x = FECHA, y = FALLECIDOS)) +
geom_point() +
geom_smooth(se = FALSE) +
scale_x_date(date_labels = "%b",
breaks = seq.Date(from = as.Date("2020-03-01"),
to = as.Date("2020-09-01"),
by = "month")) +
scale_y_continuous(labels = scales::comma) +
facet_wrap(~COUNTRY) +
custom_theme +
theme(strip.text = element_text(size = 15))covid_tbl %>%
filter(COUNTRY == "URUGUAY",
FECHA <= date("2020-08-28")) %>%
ggplot(aes(x = FECHA, y = R0_14)) +
geom_point() +
geom_smooth(se = FALSE) +
facet_wrap(~COUNTRY) +
scale_x_date(limit = c(as.Date("2020-03-25"), as.Date("2020-08-23"))) +
scale_y_continuous(limit = c(0, 25)) +
labs(y = "R0") +
custom_theme +
theme(strip.text = element_text(size = 15))covid_tbl %>%
filter(COUNTRY %in% c("EL SALVADOR", "PUERTO RICO", "PARAGUAY"),
FECHA <= date("2020-08-28")) %>%
ggplot(aes(x = FECHA, y = R0_14)) +
geom_point() +
geom_smooth(se = FALSE) +
facet_wrap(~COUNTRY, nrow = 2) +
scale_x_date(limit = c(as.Date("2020-03-25"), as.Date("2020-08-23"))) +
scale_y_continuous(limit = c(0, 25)) +
labs(y = "R0") +
custom_theme +
theme(strip.text = element_text(size = 15))covid_tbl %>%
filter(COUNTRY %in% c("GUATEMALA", "NETHERLAND", "BOLIVIA",
"ECUADOR"),
FECHA <= date("2020-08-28")) %>%
ggplot(aes(x = FECHA, y = R0_14)) +
geom_point() +
geom_smooth(se = FALSE) +
facet_wrap(~COUNTRY) +
scale_x_date(limit = c(as.Date("2020-03-25"), as.Date("2020-08-23"))) +
scale_y_continuous(limit = c(0, 25)) +
labs(y = "R0") +
custom_theme +
theme(strip.text = element_text(size = 15))covid_tbl %>%
filter(COUNTRY %in% c("CHILE", "SPAIN", "MEXICO", "COLOMBIA",
"PERU"),
FECHA <= date("2020-08-28")) %>%
ggplot(aes(x = FECHA, y = R0_14)) +
geom_point() +
geom_smooth(se = FALSE) +
facet_wrap(~COUNTRY) +
scale_x_date(limit = c(as.Date("2020-03-25"), as.Date("2020-08-23"))) +
scale_y_continuous(limit = c(0, 25)) +
labs(y = "R0") +
custom_theme +
theme(strip.text = element_text(size = 15))covid_tbl %>%
filter(COUNTRY == "BRAZIL",
FECHA <= date("2020-08-28")) %>%
ggplot(aes(x = FECHA, y = R0_14)) +
geom_point() +
geom_smooth(se = FALSE) +
facet_wrap(~COUNTRY) +
scale_x_date(limit = c(as.Date("2020-03-25"), as.Date("2020-08-23"))) +
scale_y_continuous(limit = c(0, 25)) +
labs(y = "R0") +
custom_theme +
theme(strip.text = element_text(size = 15))