title: "Scat soil models_RM" author: "PAUL OJO" date: "December 20, 2020" output: html_document

rm(list = ls())
#Load in libraries
library(readr)
library(lme4)
## Loading required package: Matrix
library(car)
## Loading required package: carData
## Registered S3 methods overwritten by 'car':
##   method                          from
##   influence.merMod                lme4
##   cooks.distance.influence.merMod lme4
##   dfbeta.influence.merMod         lme4
##   dfbetas.influence.merMod        lme4
library(emmeans)
setwd("c:/users/Paul/Documents/Rwork")
scatted_soilsdata<- read.csv(file="scatted_soilsdata.csv")
scatted_soilsdata$ScatF<-as.factor(scatted_soilsdata$Scat)
scatted_soilsdata$TimeF<-as.factor(scatted_soilsdata$Time)
library(MANOVA.RM)
str(scatted_soilsdata)
## 'data.frame':    96 obs. of  12 variables:
##  $ Time              : int  1 2 3 4 5 6 7 8 9 10 ...
##  $ Scat              : chr  "P" "P" "P" "P" ...
##  $ Honeysuckle       : int  1 1 1 1 1 1 1 1 1 1 ...
##  $ Subject           : int  1 1 1 1 1 1 1 1 1 1 ...
##  $ TotalN            : num  2.19 2.11 3.99 5.87 7.3 ...
##  $ TotalNO3          : num  1.05 1.66 3.49 5.32 6.76 ...
##  $ Ncummulative      : num  2.19 6.09 11.66 20.56 32.33 ...
##  $ Nitratecummulative: num  1.05 3.37 7.98 15.8 26.45 ...
##  $ Nmin              : num  2.19 3.05 3.89 5.14 6.47 ...
##  $ NNitr             : num  1.05 1.69 2.66 3.95 5.29 ...
##  $ ScatF             : Factor w/ 2 levels "A","P": 2 2 2 2 2 2 2 2 2 2 ...
##  $ TimeF             : Factor w/ 24 levels "1","2","3","4",..: 1 2 3 4 5 6 7 8 9 10 ...
model1 <- RM(Nmin ~ ScatF*TimeF, data=scatted_soilsdata,subject="Subject",no.subf = 2,iter=1,resampling="Perm",CPU=1,seed=1234)
## Warning in RM(Nmin ~ ScatF * TimeF, data = scatted_soilsdata, subject =
## "Subject", : The covariance matrix is singular. The WTS provides no valid test
## statistic!
summary(model1)
## Call: 
## Nmin ~ ScatF * TimeF
## A repeated measures analysis with 2 within-subject factor(s) ( ScatF,TimeF ) and 0 between-subject factor(s). 
## 
## Descriptive:
##    ScatF TimeF n  Means Lower 95 % CI Upper 95 % CI
## 1      A     1 2  4.935        -2.272        12.142
## 3      A     2 2  6.605         1.549        11.661
## 5      A     3 2  8.805         3.319        14.291
## 7      A     4 2 11.340         5.660        17.020
## 9      A     5 2 12.985         8.575        17.395
## 11     A     6 2 13.910        10.382        17.438
## 13     A     7 2 14.420        11.494        17.346
## 15     A     8 2 14.680        12.227        17.133
## 17     A     9 2 15.330        12.404        18.256
## 19     A    10 2 16.435        13.143        19.727
## 21     A    11 2 17.865        14.272        21.458
## 23     A    12 2 19.535        15.684        23.386
## 25     A    13 2 21.040        17.469        24.611
## 27     A    14 2 22.300        18.987        25.613
## 29     A    15 2 23.370        20.272        26.468
## 31     A    16 2 24.285        21.381        27.189
## 33     A    17 2 25.075        22.343        27.807
## 35     A    18 2 25.765        23.205        28.325
## 37     A    19 2 26.365        23.977        28.753
## 39     A    20 2 26.890        24.610        29.170
## 41     A    21 2 27.405        25.189        29.621
## 43     A    22 2 27.935        25.719        30.151
## 45     A    23 2 28.475        26.302        30.648
## 47     A    24 2 29.025        26.895        31.155
## 2      P     1 2  3.090        -0.782         6.962
## 4      P     2 2  3.445         1.745         5.145
## 6      P     3 2  4.395         2.222         6.568
## 8      P     4 2  5.700         3.291         8.109
## 10     P     5 2  7.170         4.158        10.182
## 12     P     6 2  8.820         5.378        12.262
## 14     P     7 2 10.570         6.827        14.313
## 16     P     8 2 12.380         8.422        16.338
## 18     P     9 2 14.615        10.162        19.068
## 20     P    10 2 17.215        12.331        22.099
## 22     P    11 2 20.080        14.874        25.286
## 24     P    12 2 23.150        17.686        28.614
## 26     P    13 2 26.105        20.705        31.505
## 28     P    14 2 28.905        23.591        34.219
## 30     P    15 2 31.580        26.331        36.829
## 32     P    16 2 34.150        28.944        39.356
## 34     P    17 2 36.435        31.551        41.319
## 36     P    18 2 38.425        33.843        43.007
## 38     P    19 2 40.155        35.831        44.479
## 40     P    20 2 41.670        37.582        45.758
## 42     P    21 2 43.035        39.227        46.843
## 44     P    22 2 44.260        40.732        47.788
## 46     P    23 2 45.355        42.063        48.647
## 48     P    24 2 46.335        43.259        49.411
## 
## Wald-Type Statistic (WTS):
##             Test statistic df   p-value 
## ScatF       "1216.825"     "1"  "<0.001"
## TimeF       "1138.409"     "23" "<0.001"
## ScatF:TimeF "126.316"      "23" "<0.001"
## 
## ANOVA-Type Statistic (ATS):
##             Test statistic df1 df2   p-value 
## ScatF       "1216.825"     "1" "Inf" "<0.001"
## TimeF       "5097.093"     "1" "Inf" "<0.001"
## ScatF:TimeF "326.315"      "1" "Inf" "<0.001"
## 
## p-values resampling:
##             Perm (WTS)
## ScatF       "<0.001"  
## TimeF       "<0.001"  
## ScatF:TimeF "<0.001"
model2 <- RM(NNitr ~ ScatF*TimeF, data=scatted_soilsdata,subject="Subject",no.subf = 2,iter=1000,resampling="Perm",CPU=1,seed=1234)
## Warning in RM(NNitr ~ ScatF * TimeF, data = scatted_soilsdata, subject =
## "Subject", : The covariance matrix is singular. The WTS provides no valid test
## statistic!
summary(model2)
## Call: 
## NNitr ~ ScatF * TimeF
## A repeated measures analysis with 2 within-subject factor(s) ( ScatF,TimeF ) and 0 between-subject factor(s). 
## 
## Descriptive:
##    ScatF TimeF n  Means Lower 95 % CI Upper 95 % CI
## 1      A     1 2  3.220        -1.599         8.039
## 3      A     2 2  5.120         0.516         9.724
## 5      A     3 2  7.490         2.370        12.610
## 7      A     4 2 10.075         4.718        15.432
## 9      A     5 2 11.745         7.593        15.897
## 11     A     6 2 12.685         9.350        16.020
## 13     A     7 2 13.210        10.456        15.964
## 15     A     8 2 13.480        11.157        15.803
## 17     A     9 2 14.150        11.353        16.947
## 19     A    10 2 15.260        12.076        18.444
## 21     A    11 2 16.705        13.198        20.212
## 23     A    12 2 18.400        14.614        22.186
## 25     A    13 2 19.910        16.425        23.395
## 27     A    14 2 21.165        17.960        24.370
## 29     A    15 2 22.215        19.225        25.205
## 31     A    16 2 23.100        20.303        25.897
## 33     A    17 2 23.865        21.262        26.468
## 35     A    18 2 24.530        22.077        26.983
## 37     A    19 2 25.110        22.787        27.433
## 39     A    20 2 25.615        23.442        27.788
## 41     A    21 2 26.115        23.985        28.245
## 43     A    22 2 26.630        24.522        28.738
## 45     A    23 2 27.155        25.068        29.242
## 47     A    24 2 27.690        25.625        29.755
## 2      P     1 2  1.380        -0.040         2.800
## 4      P     2 2  1.970         0.765         3.175
## 6      P     3 2  3.075         1.289         4.861
## 8      P     4 2  4.435         2.348         6.522
## 10     P     5 2  5.940         3.143         8.737
## 12     P     6 2  7.615         4.366        10.864
## 14     P     7 2  9.385         5.792        12.978
## 16     P     8 2 11.225         7.374        15.076
## 18     P     9 2 13.480         9.134        17.826
## 20     P    10 2 16.095        11.341        20.849
## 22     P    11 2 18.975        13.876        24.074
## 24     P    12 2 22.050        16.672        27.428
## 26     P    13 2 25.000        19.708        30.292
## 28     P    14 2 27.780        22.574        32.986
## 30     P    15 2 30.435        25.293        35.577
## 32     P    16 2 32.970        27.893        38.047
## 34     P    17 2 35.225        30.471        39.979
## 36     P    18 2 37.180        32.705        41.655
## 38     P    19 2 38.880        34.663        43.097
## 40     P    20 2 40.375        36.395        44.355
## 42     P    21 2 41.720        38.020        45.420
## 44     P    22 2 42.925        39.461        46.389
## 46     P    23 2 44.005        40.800        47.210
## 48     P    24 2 44.975        41.985        47.965
## 
## Wald-Type Statistic (WTS):
##             Test statistic df   p-value 
## ScatF       "1248.954"     "1"  "<0.001"
## TimeF       "179.569"      "23" "<0.001"
## ScatF:TimeF "124.499"      "23" "<0.001"
## 
## ANOVA-Type Statistic (ATS):
##             Test statistic df1 df2   p-value 
## ScatF       "1248.954"     "1" "Inf" "<0.001"
## TimeF       "7268.208"     "1" "Inf" "<0.001"
## ScatF:TimeF "322.809"      "1" "Inf" "<0.001"
## 
## p-values resampling:
##             Perm (WTS)
## ScatF       "0.013"   
## TimeF       "<0.001"  
## ScatF:TimeF "<0.001"
plot(model1, factor="ScatF", "main= Effect of Deer scat on NNitr")

plot(model1, factor="ScatF:TimeF", legendpos="topleft", col=c(2,4))

plot(model2, factor="ScatF", "main= Effect of Deer scat on NNitr")

plot(model2, factor="ScatF:TimeF", legendpos="topleft", col=c(2,4))

attach(scatted_soilsdata)
results1<-aov(Nmin~TimeF+Error(ScatF/TimeF))
summary(results1)
## 
## Error: ScatF
##           Df Sum Sq Mean Sq F value Pr(>F)
## Residuals  1  622.9   622.9               
## 
## Error: ScatF:TimeF
##           Df Sum Sq Mean Sq F value   Pr(>F)    
## TimeF     23  11716   509.4   7.472 4.42e-06 ***
## Residuals 23   1568    68.2                     
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Error: Within
##           Df Sum Sq Mean Sq F value Pr(>F)
## Residuals 48  79.77   1.662
results2<-aov(NNitr~TimeF+Error(ScatF/TimeF))
summary(results2)
## 
## Error: ScatF
##           Df Sum Sq Mean Sq F value Pr(>F)
## Residuals  1  624.8   624.8               
## 
## Error: ScatF:TimeF
##           Df Sum Sq Mean Sq F value   Pr(>F)    
## TimeF     23  11775   512.0   7.541 4.06e-06 ***
## Residuals 23   1561    67.9                     
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Error: Within
##           Df Sum Sq Mean Sq F value Pr(>F)
## Residuals 48  69.89   1.456
reslt1<-tapply(Nmin,TimeF, mean)
plot(reslt1, type ="o", xlab= "Time", ylab="Nmin")

reslt2<-tapply(NNitr,TimeF, mean)
plot(reslt2, type ="o", xlab= "Time", ylab="NNitr")

require(stats)
pairwise.t.test(Nmin, TimeF, p.adjust.method="bonferroni")
## 
##  Pairwise comparisons using t tests with pooled SD 
## 
## data:  Nmin and TimeF 
## 
##    1       2       3       4       5       6       7       8       9      
## 2  1.00000 -       -       -       -       -       -       -       -      
## 3  1.00000 1.00000 -       -       -       -       -       -       -      
## 4  1.00000 1.00000 1.00000 -       -       -       -       -       -      
## 5  1.00000 1.00000 1.00000 1.00000 -       -       -       -       -      
## 6  1.00000 1.00000 1.00000 1.00000 1.00000 -       -       -       -      
## 7  1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 -       -       -      
## 8  1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 -       -      
## 9  1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 -      
## 10 0.52063 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000
## 11 0.09235 0.21286 0.72721 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000
## 12 0.01156 0.02865 0.11080 0.51665 1.00000 1.00000 1.00000 1.00000 1.00000
## 13 0.00143 0.00375 0.01598 0.08542 0.30573 0.82276 1.00000 1.00000 1.00000
## 14 0.00019 0.00053 0.00244 0.01447 0.05712 0.16816 0.41447 0.90949 1.00000
## 15 2.9e-05 8.2e-05 0.00040 0.00255 0.01087 0.03439 0.09080 0.21329 0.65934
## 16 4.8e-06 1.4e-05 6.9e-05 0.00047 0.00214 0.00716 0.02000 0.04966 0.16713
## 17 9.4e-07 2.7e-06 1.4e-05 0.00010 0.00048 0.00168 0.00491 0.01272 0.04574
## 18 2.2e-07 6.6e-07 3.5e-06 2.6e-05 0.00013 0.00046 0.00138 0.00369 0.01396
## 19 6.4e-08 1.9e-07 1.0e-06 7.7e-06 3.9e-05 0.00014 0.00044 0.00121 0.00478
## 20 2.1e-08 6.4e-08 3.5e-07 2.7e-06 1.4e-05 5.1e-05 0.00016 0.00045 0.00182
## 21 7.8e-09 2.3e-08 1.3e-07 9.8e-07 5.1e-06 1.9e-05 6.2e-05 0.00018 0.00073
## 22 3.0e-09 9.0e-09 4.9e-08 3.9e-07 2.0e-06 7.8e-06 2.5e-05 7.3e-05 0.00031
## 23 1.2e-09 3.7e-09 2.0e-08 1.6e-07 8.5e-07 3.3e-06 1.1e-05 3.1e-05 0.00014
## 24 5.4e-10 1.6e-09 8.9e-09 7.1e-08 3.8e-07 1.5e-06 4.9e-06 1.4e-05 6.3e-05
##    10      11      12      13      14      15      16      17      18     
## 2  -       -       -       -       -       -       -       -       -      
## 3  -       -       -       -       -       -       -       -       -      
## 4  -       -       -       -       -       -       -       -       -      
## 5  -       -       -       -       -       -       -       -       -      
## 6  -       -       -       -       -       -       -       -       -      
## 7  -       -       -       -       -       -       -       -       -      
## 8  -       -       -       -       -       -       -       -       -      
## 9  -       -       -       -       -       -       -       -       -      
## 10 -       -       -       -       -       -       -       -       -      
## 11 1.00000 -       -       -       -       -       -       -       -      
## 12 1.00000 1.00000 -       -       -       -       -       -       -      
## 13 1.00000 1.00000 1.00000 -       -       -       -       -       -      
## 14 1.00000 1.00000 1.00000 1.00000 -       -       -       -       -      
## 15 1.00000 1.00000 1.00000 1.00000 1.00000 -       -       -       -      
## 16 0.71636 1.00000 1.00000 1.00000 1.00000 1.00000 -       -       -      
## 17 0.21589 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 -       -      
## 18 0.07104 0.40966 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 -      
## 19 0.02582 0.16142 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000
## 20 0.01032 0.06881 0.47286 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000
## 21 0.00432 0.03047 0.22523 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000
## 22 0.00188 0.01392 0.10965 0.64821 1.00000 1.00000 1.00000 1.00000 1.00000
## 23 0.00086 0.00659 0.05484 0.34484 1.00000 1.00000 1.00000 1.00000 1.00000
## 24 0.00040 0.00322 0.02815 0.18697 0.90614 1.00000 1.00000 1.00000 1.00000
##    19      20      21      22      23     
## 2  -       -       -       -       -      
## 3  -       -       -       -       -      
## 4  -       -       -       -       -      
## 5  -       -       -       -       -      
## 6  -       -       -       -       -      
## 7  -       -       -       -       -      
## 8  -       -       -       -       -      
## 9  -       -       -       -       -      
## 10 -       -       -       -       -      
## 11 -       -       -       -       -      
## 12 -       -       -       -       -      
## 13 -       -       -       -       -      
## 14 -       -       -       -       -      
## 15 -       -       -       -       -      
## 16 -       -       -       -       -      
## 17 -       -       -       -       -      
## 18 -       -       -       -       -      
## 19 -       -       -       -       -      
## 20 1.00000 -       -       -       -      
## 21 1.00000 1.00000 -       -       -      
## 22 1.00000 1.00000 1.00000 -       -      
## 23 1.00000 1.00000 1.00000 1.00000 -      
## 24 1.00000 1.00000 1.00000 1.00000 1.00000
## 
## P value adjustment method: bonferroni
pairwise.t.test(NNitr, TimeF, p.adjust.method="bonferroni")
## 
##  Pairwise comparisons using t tests with pooled SD 
## 
## data:  NNitr and TimeF 
## 
##    1       2       3       4       5       6       7       8       9      
## 2  1.00000 -       -       -       -       -       -       -       -      
## 3  1.00000 1.00000 -       -       -       -       -       -       -      
## 4  1.00000 1.00000 1.00000 -       -       -       -       -       -      
## 5  1.00000 1.00000 1.00000 1.00000 -       -       -       -       -      
## 6  1.00000 1.00000 1.00000 1.00000 1.00000 -       -       -       -      
## 7  1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 -       -       -      
## 8  1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 -       -      
## 9  1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 -      
## 10 0.32431 0.84517 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000
## 11 0.05403 0.15451 0.61342 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000
## 12 0.00635 0.01980 0.09001 0.44653 1.00000 1.00000 1.00000 1.00000 1.00000
## 13 0.00075 0.00251 0.01269 0.07234 0.26896 0.74269 1.00000 1.00000 1.00000
## 14 0.00010 0.00035 0.00192 0.01218 0.04998 0.15105 0.38046 0.85308 1.00000
## 15 1.5e-05 5.4e-05 0.00031 0.00216 0.00956 0.03103 0.08376 0.20118 0.63600
## 16 2.5e-06 9.3e-06 5.6e-05 0.00041 0.00192 0.00659 0.01881 0.04776 0.16434
## 17 5.0e-07 1.9e-06 1.2e-05 8.9e-05 0.00044 0.00158 0.00470 0.01246 0.04583
## 18 1.2e-07 4.7e-07 3.0e-06 2.3e-05 0.00012 0.00044 0.00135 0.00370 0.01431
## 19 3.6e-08 1.4e-07 8.8e-07 7.1e-06 3.7e-05 0.00014 0.00044 0.00124 0.00501
## 20 1.2e-08 4.7e-08 3.0e-07 2.5e-06 1.3e-05 5.1e-05 0.00016 0.00047 0.00194
## 21 4.5e-09 1.7e-08 1.1e-07 9.3e-07 5.0e-06 2.0e-05 6.4e-05 0.00019 0.00079
## 22 1.8e-09 6.8e-09 4.5e-08 3.7e-07 2.0e-06 8.0e-06 2.6e-05 7.8e-05 0.00034
## 23 7.3e-10 2.8e-09 1.9e-08 1.6e-07 8.6e-07 3.4e-06 1.1e-05 3.4e-05 0.00015
## 24 3.2e-10 1.3e-09 8.3e-09 7.0e-08 3.9e-07 1.6e-06 5.2e-06 1.6e-05 7.1e-05
##    10      11      12      13      14      15      16      17      18     
## 2  -       -       -       -       -       -       -       -       -      
## 3  -       -       -       -       -       -       -       -       -      
## 4  -       -       -       -       -       -       -       -       -      
## 5  -       -       -       -       -       -       -       -       -      
## 6  -       -       -       -       -       -       -       -       -      
## 7  -       -       -       -       -       -       -       -       -      
## 8  -       -       -       -       -       -       -       -       -      
## 9  -       -       -       -       -       -       -       -       -      
## 10 -       -       -       -       -       -       -       -       -      
## 11 1.00000 -       -       -       -       -       -       -       -      
## 12 1.00000 1.00000 -       -       -       -       -       -       -      
## 13 1.00000 1.00000 1.00000 -       -       -       -       -       -      
## 14 1.00000 1.00000 1.00000 1.00000 -       -       -       -       -      
## 15 1.00000 1.00000 1.00000 1.00000 1.00000 -       -       -       -      
## 16 0.71388 1.00000 1.00000 1.00000 1.00000 1.00000 -       -       -      
## 17 0.21906 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 -       -      
## 18 0.07374 0.43116 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 -      
## 19 0.02736 0.17334 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000
## 20 0.01112 0.07516 0.52126 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000
## 21 0.00473 0.03382 0.25225 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000
## 22 0.00210 0.01570 0.12484 0.73297 1.00000 1.00000 1.00000 1.00000 1.00000
## 23 0.00097 0.00754 0.06335 0.39566 1.00000 1.00000 1.00000 1.00000 1.00000
## 24 0.00046 0.00373 0.03294 0.21729 1.00000 1.00000 1.00000 1.00000 1.00000
##    19      20      21      22      23     
## 2  -       -       -       -       -      
## 3  -       -       -       -       -      
## 4  -       -       -       -       -      
## 5  -       -       -       -       -      
## 6  -       -       -       -       -      
## 7  -       -       -       -       -      
## 8  -       -       -       -       -      
## 9  -       -       -       -       -      
## 10 -       -       -       -       -      
## 11 -       -       -       -       -      
## 12 -       -       -       -       -      
## 13 -       -       -       -       -      
## 14 -       -       -       -       -      
## 15 -       -       -       -       -      
## 16 -       -       -       -       -      
## 17 -       -       -       -       -      
## 18 -       -       -       -       -      
## 19 -       -       -       -       -      
## 20 1.00000 -       -       -       -      
## 21 1.00000 1.00000 -       -       -      
## 22 1.00000 1.00000 1.00000 -       -      
## 23 1.00000 1.00000 1.00000 1.00000 -      
## 24 1.00000 1.00000 1.00000 1.00000 1.00000
## 
## P value adjustment method: bonferroni

```