Problem 1

Using R, generate a random variable X that has 10,000 random uniform numbers from 1 to N, where N can be any number of your choosing greater than or equal to 6. Then generate a random variable Y that has 10,000 random normal numbers with a mean of μ=σ=(N+1)/2.
Probability. Calculate as a minimum the below probabilities a through c. Assume the small letter “x” is estimated as the median of the X variable, and the small letter “y” is estimated as the 1st quartile of the Y variable. Interpret the meaning of all probabilities. 5 points a. P(X>x | X>y) b. P(X>x, Y>y) c. P(X<x | X>y)

a P(X>x | X>y)

This reads as the probability X is greater than x, the median, given X is greater than y, the first quartile value.

We know this formula is the same as calculating the intersection of X greater than x and X greater than y divided by X greater than y. \(P(X>x|X>y)=\frac{P(X>x \bigcap X>y)}{P(X>y)}\)

Here we see that 92% of the values are greater than the median, given that they are greater than the first quartile value, y.

## [1] 0.9191176

b P(X>x, Y>y)

Here’s we’re looking to find the probability that X is greater than the median multiplied by the probability that Y is greater than the first quartile value, y. \(P(X>x, Y>y) = P(X>x)P(Y>y)\)

## [1] 0.375

c (X<x | X>y)

This reads as X less than x given X greater than y. Again, we know this equates to the following equation: \(P(X<x)=\frac{P(X<x \bigcap X>y)}{P(X>y)}\)

6% values of X are less than the median given that we know X is greater than the first quartile value, y.

## [1] 0.05866667

Check to see if independence holds by using Fisher’s Exact Test and the Chi Square Test. What is the difference between the two? Which is most appropriate?

Both tests are used to determine if two categorical variables have an association. Fishers test is used in small sample sizes and is exact while Chi-Square is an approximation and used in larger sample sizes. Since we have a large sample size we should use the Chi-Square test.

Both test have a p-value of 0.8354. Since this value is greater than 0.05, we cannot reject the null hypothesis that there is no association between the two categorical variables Y and X.

## 
##  Fisher's Exact Test for Count Data
## 
## data:  sub
## p-value = 0.8354
## alternative hypothesis: true odds ratio is not equal to 1
## 95 percent confidence interval:
##  0.9222661 1.1076494
## sample estimates:
## odds ratio 
##   1.010724
## 
##  Pearson's Chi-squared test with Yates' continuity correction
## 
## data:  sub
## X-squared = 0.0432, df = 1, p-value = 0.8353

Problem 2

You are to register for Kaggle.com (free) and compete in the House Prices: Advanced Regression Techniques competition. https://www.kaggle.com/c/house-prices-advanced-regression-techniques.

## Parsed with column specification:
## cols(
##   .default = col_character(),
##   Id = col_double(),
##   MSSubClass = col_double(),
##   LotFrontage = col_double(),
##   LotArea = col_double(),
##   OverallQual = col_double(),
##   OverallCond = col_double(),
##   YearBuilt = col_double(),
##   YearRemodAdd = col_double(),
##   MasVnrArea = col_double(),
##   BsmtFinSF1 = col_double(),
##   BsmtFinSF2 = col_double(),
##   BsmtUnfSF = col_double(),
##   TotalBsmtSF = col_double(),
##   `1stFlrSF` = col_double(),
##   `2ndFlrSF` = col_double(),
##   LowQualFinSF = col_double(),
##   GrLivArea = col_double(),
##   BsmtFullBath = col_double(),
##   BsmtHalfBath = col_double(),
##   FullBath = col_double()
##   # ... with 18 more columns
## )
## See spec(...) for full column specifications.

5 points. Descriptive and Inferential Statistics. Provide univariate descriptive statistics and appropriate plots for the training data set. Provide a scatterplot matrix for at least two of the independent variables and the dependent variable.

##        Id           MSSubClass      MSZoning          LotFrontage    
##  Min.   :   1.0   Min.   : 20.0   Length:1460        Min.   : 21.00  
##  1st Qu.: 365.8   1st Qu.: 20.0   Class :character   1st Qu.: 59.00  
##  Median : 730.5   Median : 50.0   Mode  :character   Median : 69.00  
##  Mean   : 730.5   Mean   : 56.9                      Mean   : 70.05  
##  3rd Qu.:1095.2   3rd Qu.: 70.0                      3rd Qu.: 80.00  
##  Max.   :1460.0   Max.   :190.0                      Max.   :313.00  
##                                                      NA's   :259     
##     LotArea          Street             Alley             LotShape        
##  Min.   :  1300   Length:1460        Length:1460        Length:1460       
##  1st Qu.:  7554   Class :character   Class :character   Class :character  
##  Median :  9478   Mode  :character   Mode  :character   Mode  :character  
##  Mean   : 10517                                                           
##  3rd Qu.: 11602                                                           
##  Max.   :215245                                                           
##                                                                           
##  LandContour         Utilities          LotConfig          LandSlope        
##  Length:1460        Length:1460        Length:1460        Length:1460       
##  Class :character   Class :character   Class :character   Class :character  
##  Mode  :character   Mode  :character   Mode  :character   Mode  :character  
##                                                                             
##                                                                             
##                                                                             
##                                                                             
##  Neighborhood        Condition1         Condition2          BldgType        
##  Length:1460        Length:1460        Length:1460        Length:1460       
##  Class :character   Class :character   Class :character   Class :character  
##  Mode  :character   Mode  :character   Mode  :character   Mode  :character  
##                                                                             
##                                                                             
##                                                                             
##                                                                             
##   HouseStyle         OverallQual      OverallCond      YearBuilt   
##  Length:1460        Min.   : 1.000   Min.   :1.000   Min.   :1872  
##  Class :character   1st Qu.: 5.000   1st Qu.:5.000   1st Qu.:1954  
##  Mode  :character   Median : 6.000   Median :5.000   Median :1973  
##                     Mean   : 6.099   Mean   :5.575   Mean   :1971  
##                     3rd Qu.: 7.000   3rd Qu.:6.000   3rd Qu.:2000  
##                     Max.   :10.000   Max.   :9.000   Max.   :2010  
##                                                                    
##   YearRemodAdd   RoofStyle           RoofMatl         Exterior1st       
##  Min.   :1950   Length:1460        Length:1460        Length:1460       
##  1st Qu.:1967   Class :character   Class :character   Class :character  
##  Median :1994   Mode  :character   Mode  :character   Mode  :character  
##  Mean   :1985                                                           
##  3rd Qu.:2004                                                           
##  Max.   :2010                                                           
##                                                                         
##  Exterior2nd         MasVnrType          MasVnrArea      ExterQual        
##  Length:1460        Length:1460        Min.   :   0.0   Length:1460       
##  Class :character   Class :character   1st Qu.:   0.0   Class :character  
##  Mode  :character   Mode  :character   Median :   0.0   Mode  :character  
##                                        Mean   : 103.7                     
##                                        3rd Qu.: 166.0                     
##                                        Max.   :1600.0                     
##                                        NA's   :8                          
##   ExterCond          Foundation          BsmtQual           BsmtCond        
##  Length:1460        Length:1460        Length:1460        Length:1460       
##  Class :character   Class :character   Class :character   Class :character  
##  Mode  :character   Mode  :character   Mode  :character   Mode  :character  
##                                                                             
##                                                                             
##                                                                             
##                                                                             
##  BsmtExposure       BsmtFinType1         BsmtFinSF1     BsmtFinType2      
##  Length:1460        Length:1460        Min.   :   0.0   Length:1460       
##  Class :character   Class :character   1st Qu.:   0.0   Class :character  
##  Mode  :character   Mode  :character   Median : 383.5   Mode  :character  
##                                        Mean   : 443.6                     
##                                        3rd Qu.: 712.2                     
##                                        Max.   :5644.0                     
##                                                                           
##    BsmtFinSF2        BsmtUnfSF       TotalBsmtSF       Heating         
##  Min.   :   0.00   Min.   :   0.0   Min.   :   0.0   Length:1460       
##  1st Qu.:   0.00   1st Qu.: 223.0   1st Qu.: 795.8   Class :character  
##  Median :   0.00   Median : 477.5   Median : 991.5   Mode  :character  
##  Mean   :  46.55   Mean   : 567.2   Mean   :1057.4                     
##  3rd Qu.:   0.00   3rd Qu.: 808.0   3rd Qu.:1298.2                     
##  Max.   :1474.00   Max.   :2336.0   Max.   :6110.0                     
##                                                                        
##   HeatingQC          CentralAir         Electrical           1stFlrSF   
##  Length:1460        Length:1460        Length:1460        Min.   : 334  
##  Class :character   Class :character   Class :character   1st Qu.: 882  
##  Mode  :character   Mode  :character   Mode  :character   Median :1087  
##                                                           Mean   :1163  
##                                                           3rd Qu.:1391  
##                                                           Max.   :4692  
##                                                                         
##     2ndFlrSF     LowQualFinSF       GrLivArea     BsmtFullBath   
##  Min.   :   0   Min.   :  0.000   Min.   : 334   Min.   :0.0000  
##  1st Qu.:   0   1st Qu.:  0.000   1st Qu.:1130   1st Qu.:0.0000  
##  Median :   0   Median :  0.000   Median :1464   Median :0.0000  
##  Mean   : 347   Mean   :  5.845   Mean   :1515   Mean   :0.4253  
##  3rd Qu.: 728   3rd Qu.:  0.000   3rd Qu.:1777   3rd Qu.:1.0000  
##  Max.   :2065   Max.   :572.000   Max.   :5642   Max.   :3.0000  
##                                                                  
##   BsmtHalfBath        FullBath        HalfBath       BedroomAbvGr  
##  Min.   :0.00000   Min.   :0.000   Min.   :0.0000   Min.   :0.000  
##  1st Qu.:0.00000   1st Qu.:1.000   1st Qu.:0.0000   1st Qu.:2.000  
##  Median :0.00000   Median :2.000   Median :0.0000   Median :3.000  
##  Mean   :0.05753   Mean   :1.565   Mean   :0.3829   Mean   :2.866  
##  3rd Qu.:0.00000   3rd Qu.:2.000   3rd Qu.:1.0000   3rd Qu.:3.000  
##  Max.   :2.00000   Max.   :3.000   Max.   :2.0000   Max.   :8.000  
##                                                                    
##   KitchenAbvGr   KitchenQual         TotRmsAbvGrd     Functional       
##  Min.   :0.000   Length:1460        Min.   : 2.000   Length:1460       
##  1st Qu.:1.000   Class :character   1st Qu.: 5.000   Class :character  
##  Median :1.000   Mode  :character   Median : 6.000   Mode  :character  
##  Mean   :1.047                      Mean   : 6.518                     
##  3rd Qu.:1.000                      3rd Qu.: 7.000                     
##  Max.   :3.000                      Max.   :14.000                     
##                                                                        
##    Fireplaces    FireplaceQu         GarageType         GarageYrBlt  
##  Min.   :0.000   Length:1460        Length:1460        Min.   :1900  
##  1st Qu.:0.000   Class :character   Class :character   1st Qu.:1961  
##  Median :1.000   Mode  :character   Mode  :character   Median :1980  
##  Mean   :0.613                                         Mean   :1979  
##  3rd Qu.:1.000                                         3rd Qu.:2002  
##  Max.   :3.000                                         Max.   :2010  
##                                                        NA's   :81    
##  GarageFinish         GarageCars      GarageArea      GarageQual       
##  Length:1460        Min.   :0.000   Min.   :   0.0   Length:1460       
##  Class :character   1st Qu.:1.000   1st Qu.: 334.5   Class :character  
##  Mode  :character   Median :2.000   Median : 480.0   Mode  :character  
##                     Mean   :1.767   Mean   : 473.0                     
##                     3rd Qu.:2.000   3rd Qu.: 576.0                     
##                     Max.   :4.000   Max.   :1418.0                     
##                                                                        
##   GarageCond         PavedDrive          WoodDeckSF      OpenPorchSF    
##  Length:1460        Length:1460        Min.   :  0.00   Min.   :  0.00  
##  Class :character   Class :character   1st Qu.:  0.00   1st Qu.:  0.00  
##  Mode  :character   Mode  :character   Median :  0.00   Median : 25.00  
##                                        Mean   : 94.24   Mean   : 46.66  
##                                        3rd Qu.:168.00   3rd Qu.: 68.00  
##                                        Max.   :857.00   Max.   :547.00  
##                                                                         
##  EnclosedPorch      3SsnPorch       ScreenPorch        PoolArea      
##  Min.   :  0.00   Min.   :  0.00   Min.   :  0.00   Min.   :  0.000  
##  1st Qu.:  0.00   1st Qu.:  0.00   1st Qu.:  0.00   1st Qu.:  0.000  
##  Median :  0.00   Median :  0.00   Median :  0.00   Median :  0.000  
##  Mean   : 21.95   Mean   :  3.41   Mean   : 15.06   Mean   :  2.759  
##  3rd Qu.:  0.00   3rd Qu.:  0.00   3rd Qu.:  0.00   3rd Qu.:  0.000  
##  Max.   :552.00   Max.   :508.00   Max.   :480.00   Max.   :738.000  
##                                                                      
##     PoolQC             Fence           MiscFeature           MiscVal        
##  Length:1460        Length:1460        Length:1460        Min.   :    0.00  
##  Class :character   Class :character   Class :character   1st Qu.:    0.00  
##  Mode  :character   Mode  :character   Mode  :character   Median :    0.00  
##                                                           Mean   :   43.49  
##                                                           3rd Qu.:    0.00  
##                                                           Max.   :15500.00  
##                                                                             
##      MoSold           YrSold       SaleType         SaleCondition     
##  Min.   : 1.000   Min.   :2006   Length:1460        Length:1460       
##  1st Qu.: 5.000   1st Qu.:2007   Class :character   Class :character  
##  Median : 6.000   Median :2008   Mode  :character   Mode  :character  
##  Mean   : 6.322   Mean   :2008                                        
##  3rd Qu.: 8.000   3rd Qu.:2009                                        
##  Max.   :12.000   Max.   :2010                                        
##                                                                       
##    SalePrice     
##  Min.   : 34900  
##  1st Qu.:129975  
##  Median :163000  
##  Mean   :180921  
##  3rd Qu.:214000  
##  Max.   :755000  
## 
  • There appears to be some type of positive relationship between gross living area and sale price. There is a definite cone shape happening with this relationship.
  • Year Built and sales price may have a weak positive relationship.
  • Lot area and sale price doesn’t appear to have a strong relationship
  • All other independent variables appear to have wear relationships with one another

Let’s view the sales price alone:
* The housing sales price is right skewed,which makes sense. There are some outlier mansions that are probably very expensive.

Using the Shapiro test we see the p-value is under 0.05. This tells us that we have to reject the null hypothesis, which is that the SalePrice is normally distributed.

Using the powerTransform,we still the optimal transformtion raises SalePrice to approximately by -0.07692374. With this transformation, SalePrice still does not pass the Shapiro test.

For the purposes of our analysis, we will move forward using the untransformed SalePrice

## 
##  Shapiro-Wilk normality test
## 
## data:  train$SalePrice
## W = 0.86967, p-value < 2.2e-16
## train$SalePrice 
##     -0.07692374
## 
##  Shapiro-Wilk normality test
## 
## data:  train$SalePrice_trans
## W = 0.99153, p-value = 1.905e-07

Derive a correlation matrix for any three quantitative variables in the dataset. Test the hypotheses that the correlations between each pairwise set of variables is 0 and provide an 80% confidence interval. Discuss the meaning of your analysis. Would you be worried about familywise error? Why or why not?

Since our confidence level is 80%, if the p-value is less than 0.2 then we reject the null hypothesis that there is nothing going on between the two variables. If the p-value is less than 0.2 then the two variables have a relationship From our correlations tests we see:
* YearBuilt and Gross Living Area are correlated with a p-value of 1.66e-14 * YearBuilt and LotArea are not correlated with a p-value of 0.587 * Gross Living Area and Lot Area are correlated with a p-value of 2.2e-16

Our correlation plot above supports this.

I would be slightly worried about familywise error. The family wise error rate means we are making a Type 1 error. A Type 1 error is when we reject the null hypothesis when the null hypothesis is actually true. The probability this wouldn happen is 1 - (0.8)^3, which equals 0.488. As the number of tests increase, a type 1 error more likely to occur to happen. There are ways to control for this like Bonferri correction, but I won’t go into that here.

## 
##  Pearson's product-moment correlation
## 
## data:  train$YearBuilt and train$GrLivArea
## t = 7.754, df = 1458, p-value = 1.66e-14
## alternative hypothesis: true correlation is not equal to 0
## 80 percent confidence interval:
##  0.1665605 0.2310283
## sample estimates:
##       cor 
## 0.1990097
## 
##  Pearson's product-moment correlation
## 
## data:  train$YearBuilt and train$LotArea
## t = 0.54332, df = 1458, p-value = 0.587
## alternative hypothesis: true correlation is not equal to 0
## 80 percent confidence interval:
##  -0.01934322  0.04776648
## sample estimates:
##        cor 
## 0.01422765
## 
##  Pearson's product-moment correlation
## 
## data:  train$GrLivArea and train$LotArea
## t = 10.414, df = 1458, p-value < 2.2e-16
## alternative hypothesis: true correlation is not equal to 0
## 80 percent confidence interval:
##  0.2315997 0.2940809
## sample estimates:
##       cor 
## 0.2631162

5 points. Linear Algebra and Correlation. Invert your correlation matrix from above. (This is known as the precision matrix and contains variance inflation factors on the diagonal.) Multiply the correlation matrix by the precision matrix, and then multiply the precision matrix by the correlation matrix. Conduct LU decomposition on the matrix.

##             YearBuilt  GrLivArea     LotArea
## YearBuilt  1.04293483 -0.2187973  0.04273059
## GrLivArea -0.21879727  1.1202809 -0.29165104
## LotArea    0.04273059 -0.2916510  1.07613015
##               [,1]          [,2] [,3]
## [1,]  1.000000e+00  0.000000e+00    0
## [2,]  8.673617e-18  1.000000e+00    0
## [3,] -1.734723e-18 -2.708339e-35    1
##      [,1]          [,2]          [,3]
## [1,]    1 -1.561251e-17 -6.938894e-18
## [2,]    0  1.000000e+00  5.551115e-17
## [3,]    0  0.000000e+00  1.000000e+00

\(B = L*U\)

##               YearBuilt     GrLivArea       LotArea
## YearBuilt  1.000000e+00 -1.561251e-17 -6.938894e-18
## GrLivArea  8.673617e-18  1.000000e+00  5.551115e-17
## LotArea   -1.734723e-18  0.000000e+00  1.000000e+00
##               [,1]          [,2]          [,3]
## [1,]  1.000000e+00 -1.561251e-17 -6.938894e-18
## [2,]  8.673617e-18  1.000000e+00  5.551115e-17
## [3,] -1.734723e-18  0.000000e+00  1.000000e+00

5 points. Calculus-Based Probability & Statistics. Many times, it makes sense to fit a closed form distribution to data. Select a variable in the Kaggle.com training dataset that is skewed to the right, shift it so that the minimum value is absolutely above zero if necessary. Then load the MASS package and run fitdistr to fit an exponential probability density function. (See https://stat.ethz.ch/R-manual/R-devel/library/MASS/html/fitdistr.html ). Find the optimal value of λ for this distribution, and then take 1000 samples from this exponential distribution using this value (e.g., rexp(1000, λ)). Plot a histogram and compare it with a histogram of your original variable. Using the exponential pdf, find the 5th and 95th percentiles using the cumulative distribution function (CDF). Also generate a 95% confidence interval from the empirical data, assuming normality. Finally, provide the empirical 5th percentile and 95th percentile of the data. Discuss.

## 
## Attaching package: 'MASS'
## The following object is masked from 'package:dplyr':
## 
##     select
## [1] "Empirical data 5th and 95th percentiles are:651.13and 2379.8"

## [1] "Exponential data 5th and 95th percentiles are:76.85and 4388.83"

10 points. Modeling. Build some type of multiple regression model and submit your model to the competition board. Provide your complete model summary and results with analysis. Report your Kaggle.com user name and score.

Let’s start with backwards elimination method of removing of variables from our multiple regression model. We’ll begin with a subset of the original columns since there are too many columns to manually remove 1 at a time. There are also a lot of columsn that likely will not make much sense or are far too specific like Street name.

## 
## Call:
## lm(formula = SalePrice ~ LotFrontage + LotArea + OverallQual + 
##     OverallCond + YearBuilt + RoofStyle + ExterQual + Foundation + 
##     BsmtQual + TotalBsmtSF + Heating + CentralAir + GrLivArea + 
##     BsmtFullBath + FullBath + HalfBath + BedroomAbvGr + KitchenAbvGr + 
##     KitchenQual + TotRmsAbvGrd + Functional + Fireplaces + GarageType + 
##     GarageArea + PavedDrive + WoodDeckSF + PoolArea + Fence + 
##     MiscVal + SaleType, data = train)
## 
## Residuals:
##    Min     1Q Median     3Q    Max 
## -95079  -9461    737  10029  95079 
## 
## Coefficients:
##                     Estimate Std. Error t value Pr(>|t|)    
## (Intercept)       -8.428e+05  2.913e+05  -2.893 0.004358 ** 
## LotFrontage       -1.084e+02  1.415e+02  -0.766 0.445003    
## LotArea            1.830e+00  8.233e-01   2.223 0.027653 *  
## OverallQual        1.076e+04  2.998e+03   3.590 0.000442 ***
## OverallCond        9.744e+03  1.663e+03   5.859 2.65e-08 ***
## YearBuilt          4.453e+02  1.454e+02   3.062 0.002584 ** 
## RoofStyleGable     1.341e+04  2.399e+04   0.559 0.576958    
## RoofStyleGambrel   1.943e+04  2.654e+04   0.732 0.465059    
## RoofStyleHip       1.009e+04  2.425e+04   0.416 0.677745    
## RoofStyleMansard   1.768e+04  3.497e+04   0.505 0.613921    
## ExterQualFa       -2.140e+04  4.984e+04  -0.429 0.668286    
## ExterQualGd       -2.509e+04  3.935e+04  -0.638 0.524598    
## ExterQualTA       -3.197e+04  4.057e+04  -0.788 0.431953    
## FoundationCBlock  -1.051e+03  7.166e+03  -0.147 0.883624    
## FoundationPConc    5.351e+03  7.229e+03   0.740 0.460266    
## FoundationStone    1.228e+04  2.637e+04   0.466 0.642101    
## FoundationWood    -2.842e+04  2.742e+04  -1.036 0.301564    
## BsmtQualFa        -1.027e+05  2.391e+04  -4.294 3.06e-05 ***
## BsmtQualGd        -1.039e+05  1.972e+04  -5.267 4.51e-07 ***
## BsmtQualTA        -9.966e+04  2.029e+04  -4.912 2.25e-06 ***
## TotalBsmtSF        3.086e+01  8.277e+00   3.728 0.000269 ***
## HeatingGasW        7.804e+03  1.804e+04   0.433 0.665851    
## HeatingGrav        2.048e+04  2.135e+04   0.959 0.338890    
## CentralAirY        1.629e+04  9.392e+03   1.735 0.084789 .  
## GrLivArea          6.104e+01  1.021e+01   5.979 1.46e-08 ***
## BsmtFullBath       4.223e+03  3.876e+03   1.090 0.277555    
## FullBath           1.053e+04  5.565e+03   1.892 0.060266 .  
## HalfBath           4.735e+03  5.005e+03   0.946 0.345587    
## BedroomAbvGr      -5.813e+03  3.790e+03  -1.534 0.127114    
## KitchenAbvGr      -6.020e+03  1.244e+04  -0.484 0.629138    
## KitchenQualFa     -7.253e+04  1.762e+04  -4.116 6.21e-05 ***
## KitchenQualGd     -7.011e+04  1.273e+04  -5.506 1.47e-07 ***
## KitchenQualTA     -6.786e+04  1.343e+04  -5.054 1.19e-06 ***
## TotRmsAbvGrd      -5.247e+03  2.786e+03  -1.883 0.061519 .  
## FunctionalMin1     5.810e+02  1.756e+04   0.033 0.973656    
## FunctionalMin2    -5.148e+03  1.917e+04  -0.269 0.788582    
## FunctionalMod     -1.085e+04  2.674e+04  -0.406 0.685528    
## FunctionalTyp      5.184e+03  1.636e+04   0.317 0.751712    
## Fireplaces         2.064e+02  3.342e+03   0.062 0.950841    
## GarageTypeAttchd   5.646e+04  2.937e+04   1.922 0.056398 .  
## GarageTypeBasment  3.549e+04  3.192e+04   1.112 0.267985    
## GarageTypeBuiltIn  6.155e+04  3.343e+04   1.841 0.067486 .  
## GarageTypeDetchd   5.631e+04  2.963e+04   1.901 0.059198 .  
## GarageArea         1.489e+01  1.362e+01   1.093 0.276013    
## PavedDriveP       -2.804e+03  1.258e+04  -0.223 0.823969    
## PavedDriveY       -5.633e+01  9.315e+03  -0.006 0.995182    
## WoodDeckSF        -1.487e+00  1.408e+01  -0.106 0.916014    
## PoolArea           4.490e+01  2.230e+01   2.013 0.045771 *  
## FenceGdWo          8.897e+03  6.203e+03   1.434 0.153473    
## FenceMnPrv         9.178e+03  4.823e+03   1.903 0.058883 .  
## FenceMnWw          5.153e+03  9.700e+03   0.531 0.595993    
## MiscVal           -1.647e+00  7.664e+00  -0.215 0.830066    
## SaleTypeConLI     -4.891e+02  2.688e+04  -0.018 0.985507    
## SaleTypeCWD       -1.900e+03  2.271e+04  -0.084 0.933412    
## SaleTypeWD         1.572e+04  9.797e+03   1.604 0.110644    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 22720 on 157 degrees of freedom
##   (1248 observations deleted due to missingness)
## Multiple R-squared:  0.904,  Adjusted R-squared:  0.871 
## F-statistic: 27.39 on 54 and 157 DF,  p-value: < 2.2e-16

Next, let’s remove variables with high p-values that have no impact on our model: * Removing SaleType, MiscVal, PavedDrive, Fireplaces and Functional * From our first try, our R-squared was over 90% but this may be due to overfitting

## 
## Call:
## lm(formula = SalePrice ~ LotFrontage + LotArea + OverallQual + 
##     OverallCond + YearBuilt + RoofStyle + ExterQual + Foundation + 
##     BsmtQual + TotalBsmtSF + Heating + CentralAir + GrLivArea + 
##     BsmtFullBath + FullBath + HalfBath + BedroomAbvGr + KitchenAbvGr + 
##     KitchenQual + TotRmsAbvGrd + GarageType + GarageArea + WoodDeckSF + 
##     PoolArea + Fence, data = train)
## 
## Residuals:
##    Min     1Q Median     3Q    Max 
## -96850  -9435    554  10089  96850 
## 
## Coefficients:
##                     Estimate Std. Error t value Pr(>|t|)    
## (Intercept)       -8.204e+05  2.814e+05  -2.916 0.004035 ** 
## LotFrontage       -1.097e+02  1.342e+02  -0.817 0.415051    
## LotArea            1.960e+00  7.888e-01   2.485 0.013931 *  
## OverallQual        1.218e+04  2.722e+03   4.475 1.40e-05 ***
## OverallCond        9.270e+03  1.597e+03   5.805 3.14e-08 ***
## YearBuilt          4.424e+02  1.392e+02   3.178 0.001767 ** 
## RoofStyleGable     1.260e+04  2.356e+04   0.535 0.593493    
## RoofStyleGambrel   2.145e+04  2.604e+04   0.824 0.411105    
## RoofStyleHip       8.933e+03  2.381e+04   0.375 0.707955    
## RoofStyleMansard   1.333e+04  3.332e+04   0.400 0.689668    
## ExterQualFa       -2.617e+04  4.486e+04  -0.583 0.560457    
## ExterQualGd       -2.938e+04  3.402e+04  -0.864 0.388942    
## ExterQualTA       -3.657e+04  3.548e+04  -1.031 0.304174    
## FoundationCBlock  -3.594e+02  6.928e+03  -0.052 0.958684    
## FoundationPConc    7.545e+03  6.912e+03   1.091 0.276633    
## FoundationStone    1.183e+04  2.583e+04   0.458 0.647584    
## FoundationWood    -2.748e+04  2.608e+04  -1.054 0.293491    
## BsmtQualFa        -1.049e+05  2.304e+04  -4.553 1.01e-05 ***
## BsmtQualGd        -1.063e+05  1.921e+04  -5.535 1.18e-07 ***
## BsmtQualTA        -1.010e+05  1.982e+04  -5.094 9.35e-07 ***
## TotalBsmtSF        2.776e+01  7.666e+00   3.622 0.000387 ***
## HeatingGasW        3.551e+03  1.495e+04   0.237 0.812594    
## HeatingGrav        2.391e+04  2.043e+04   1.171 0.243436    
## CentralAirY        1.941e+04  8.832e+03   2.197 0.029386 *  
## GrLivArea          5.573e+01  9.033e+00   6.170 4.94e-09 ***
## BsmtFullBath       5.010e+03  3.722e+03   1.346 0.180043    
## FullBath           1.090e+04  5.353e+03   2.037 0.043209 *  
## HalfBath           6.421e+03  4.706e+03   1.365 0.174225    
## BedroomAbvGr      -5.745e+03  3.538e+03  -1.624 0.106288    
## KitchenAbvGr      -3.196e+03  1.142e+04  -0.280 0.779979    
## KitchenQualFa     -7.609e+04  1.712e+04  -4.446 1.59e-05 ***
## KitchenQualGd     -7.479e+04  1.196e+04  -6.253 3.22e-09 ***
## KitchenQualTA     -7.278e+04  1.241e+04  -5.863 2.35e-08 ***
## TotRmsAbvGrd      -4.805e+03  2.524e+03  -1.904 0.058673 .  
## GarageTypeAttchd   6.234e+04  2.849e+04   2.188 0.030022 *  
## GarageTypeBasment  4.099e+04  3.082e+04   1.330 0.185222    
## GarageTypeBuiltIn  6.886e+04  3.235e+04   2.128 0.034780 *  
## GarageTypeDetchd   6.264e+04  2.864e+04   2.187 0.030103 *  
## GarageArea         1.550e+01  1.283e+01   1.208 0.228751    
## WoodDeckSF         3.180e-01  1.325e+01   0.024 0.980883    
## PoolArea           4.832e+01  2.091e+01   2.311 0.022050 *  
## FenceGdWo          9.777e+03  5.834e+03   1.676 0.095654 .  
## FenceMnPrv         1.016e+04  4.492e+03   2.262 0.024974 *  
## FenceMnWw          7.974e+03  9.320e+03   0.856 0.393413    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 22390 on 168 degrees of freedom
##   (1248 observations deleted due to missingness)
## Multiple R-squared:  0.9003, Adjusted R-squared:  0.8748 
## F-statistic:  35.3 on 43 and 168 DF,  p-value: < 2.2e-16

Now our second try, we have an R-squared value of 90.003%. There are still variables to remove:
* Remove WoodDeckSF and KitchenAbvGr

## 
## Call:
## lm(formula = SalePrice ~ LotFrontage + LotArea + OverallQual + 
##     OverallCond + YearBuilt + RoofStyle + ExterQual + Foundation + 
##     BsmtQual + TotalBsmtSF + Heating + CentralAir + GrLivArea + 
##     BsmtFullBath + FullBath + HalfBath + BedroomAbvGr + KitchenQual + 
##     TotRmsAbvGrd + GarageType + GarageArea + PoolArea + Fence, 
##     data = train)
## 
## Residuals:
##    Min     1Q Median     3Q    Max 
## -96992  -9500    484  10252  96992 
## 
## Coefficients:
##                     Estimate Std. Error t value Pr(>|t|)    
## (Intercept)       -8.326e+05  2.670e+05  -3.118 0.002138 ** 
## LotFrontage       -1.168e+02  1.277e+02  -0.914 0.361853    
## LotArea            2.002e+00  7.669e-01   2.610 0.009850 ** 
## OverallQual        1.228e+04  2.682e+03   4.580 8.97e-06 ***
## OverallCond        9.262e+03  1.588e+03   5.834 2.67e-08 ***
## YearBuilt          4.465e+02  1.332e+02   3.351 0.000994 ***
## RoofStyleGable     1.278e+04  2.341e+04   0.546 0.585771    
## RoofStyleGambrel   2.190e+04  2.584e+04   0.847 0.397934    
## RoofStyleHip       9.062e+03  2.364e+04   0.383 0.701881    
## RoofStyleMansard   1.327e+04  3.306e+04   0.401 0.688568    
## ExterQualFa       -2.887e+04  4.355e+04  -0.663 0.508231    
## ExterQualGd       -2.959e+04  3.370e+04  -0.878 0.381106    
## ExterQualTA       -3.666e+04  3.512e+04  -1.044 0.298091    
## FoundationCBlock  -5.236e+02  6.815e+03  -0.077 0.938852    
## FoundationPConc    7.260e+03  6.780e+03   1.071 0.285797    
## FoundationStone    1.170e+04  2.566e+04   0.456 0.648852    
## FoundationWood    -2.725e+04  2.576e+04  -1.058 0.291537    
## BsmtQualFa        -1.043e+05  2.269e+04  -4.598 8.30e-06 ***
## BsmtQualGd        -1.065e+05  1.903e+04  -5.593 8.76e-08 ***
## BsmtQualTA        -1.010e+05  1.968e+04  -5.134 7.68e-07 ***
## TotalBsmtSF        2.807e+01  7.487e+00   3.749 0.000243 ***
## HeatingGasW        3.577e+03  1.478e+04   0.242 0.809002    
## HeatingGrav        2.447e+04  2.017e+04   1.213 0.226767    
## CentralAirY        1.981e+04  8.630e+03   2.296 0.022918 *  
## GrLivArea          5.565e+01  8.867e+00   6.276 2.79e-09 ***
## BsmtFullBath       4.952e+03  3.616e+03   1.369 0.172673    
## FullBath           1.086e+04  5.313e+03   2.044 0.042469 *  
## HalfBath           6.545e+03  4.658e+03   1.405 0.161806    
## BedroomAbvGr      -5.351e+03  3.185e+03  -1.680 0.094746 .  
## KitchenQualFa     -7.652e+04  1.687e+04  -4.536 1.08e-05 ***
## KitchenQualGd     -7.495e+04  1.188e+04  -6.308 2.36e-09 ***
## KitchenQualTA     -7.305e+04  1.230e+04  -5.937 1.59e-08 ***
## TotRmsAbvGrd      -5.037e+03  2.357e+03  -2.137 0.033995 *  
## GarageTypeAttchd   6.306e+04  2.818e+04   2.238 0.026529 *  
## GarageTypeBasment  4.167e+04  3.053e+04   1.365 0.174120    
## GarageTypeBuiltIn  6.969e+04  3.204e+04   2.175 0.030995 *  
## GarageTypeDetchd   6.338e+04  2.832e+04   2.238 0.026551 *  
## GarageArea         1.552e+01  1.274e+01   1.218 0.224934    
## PoolArea           4.821e+01  2.078e+01   2.320 0.021533 *  
## FenceGdWo          9.878e+03  5.787e+03   1.707 0.089682 .  
## FenceMnPrv         1.013e+04  4.465e+03   2.269 0.024526 *  
## FenceMnWw          8.284e+03  9.156e+03   0.905 0.366910    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 22260 on 170 degrees of freedom
##   (1248 observations deleted due to missingness)
## Multiple R-squared:  0.9003, Adjusted R-squared:  0.8762 
## F-statistic: 37.44 on 41 and 170 DF,  p-value: < 2.2e-16

Now our let’s remove a few more variables to see if we can make our model better with fewer variables:
* Remove RoofStyle, Lot Frontage, GarageArea and BsmtFullBath

## # A tibble: 6 x 82
##      Id MSSubClass MSZoning LotFrontage LotArea Street Alley LotShape
##   <dbl>      <dbl> <chr>          <dbl>   <dbl> <chr>  <chr> <chr>   
## 1     1         60 RL                65    8450 Pave   <NA>  Reg     
## 2     2         20 RL                80    9600 Pave   <NA>  Reg     
## 3     3         60 RL                68   11250 Pave   <NA>  IR1     
## 4     4         70 RL                60    9550 Pave   <NA>  IR1     
## 5     5         60 RL                84   14260 Pave   <NA>  IR1     
## 6     6         50 RL                85   14115 Pave   <NA>  IR1     
## # … with 74 more variables: LandContour <chr>, Utilities <chr>,
## #   LotConfig <chr>, LandSlope <chr>, Neighborhood <chr>, Condition1 <chr>,
## #   Condition2 <chr>, BldgType <chr>, HouseStyle <chr>, OverallQual <dbl>,
## #   OverallCond <dbl>, YearBuilt <dbl>, YearRemodAdd <dbl>, RoofStyle <chr>,
## #   RoofMatl <chr>, Exterior1st <chr>, Exterior2nd <chr>, MasVnrType <chr>,
## #   MasVnrArea <dbl>, ExterQual <chr>, ExterCond <chr>, Foundation <chr>,
## #   BsmtQual <chr>, BsmtCond <chr>, BsmtExposure <chr>, BsmtFinType1 <chr>,
## #   BsmtFinSF1 <dbl>, BsmtFinType2 <chr>, BsmtFinSF2 <dbl>, BsmtUnfSF <dbl>,
## #   TotalBsmtSF <dbl>, Heating <chr>, HeatingQC <chr>, CentralAir <chr>,
## #   Electrical <chr>, `1stFlrSF` <dbl>, `2ndFlrSF` <dbl>, LowQualFinSF <dbl>,
## #   GrLivArea <dbl>, BsmtFullBath <dbl>, BsmtHalfBath <dbl>, FullBath <dbl>,
## #   HalfBath <dbl>, BedroomAbvGr <dbl>, KitchenAbvGr <dbl>, KitchenQual <chr>,
## #   TotRmsAbvGrd <dbl>, Functional <chr>, Fireplaces <dbl>, FireplaceQu <chr>,
## #   GarageType <chr>, GarageYrBlt <dbl>, GarageFinish <chr>, GarageCars <dbl>,
## #   GarageArea <dbl>, GarageQual <chr>, GarageCond <chr>, PavedDrive <chr>,
## #   WoodDeckSF <dbl>, OpenPorchSF <dbl>, EnclosedPorch <dbl>,
## #   `3SsnPorch` <dbl>, ScreenPorch <dbl>, PoolArea <dbl>, PoolQC <chr>,
## #   Fence <chr>, MiscFeature <chr>, MiscVal <dbl>, MoSold <dbl>, YrSold <dbl>,
## #   SaleType <chr>, SaleCondition <chr>, SalePrice <dbl>, SalePrice_trans <dbl>
## 
## Call:
## lm(formula = SalePrice ~ LotArea + OverallQual + OverallCond + 
##     YearBuilt + ExterQual + Foundation + BsmtQual + TotalBsmtSF + 
##     Heating + CentralAir + GrLivArea + FullBath + HalfBath + 
##     BedroomAbvGr + KitchenQual + TotRmsAbvGrd + GarageType + 
##     PoolArea + Fence, data = train)
## 
## Residuals:
##    Min     1Q Median     3Q    Max 
## -94882  -9795    591   9575  94882 
## 
## Coefficients:
##                     Estimate Std. Error t value Pr(>|t|)    
## (Intercept)       -9.153e+05  2.337e+05  -3.917 0.000119 ***
## LotArea            2.235e+00  5.498e-01   4.065 6.63e-05 ***
## OverallQual        1.119e+04  2.116e+03   5.291 2.87e-07 ***
## OverallCond        9.132e+03  1.365e+03   6.689 1.74e-10 ***
## YearBuilt          4.992e+02  1.161e+02   4.300 2.54e-05 ***
## ExterQualFa       -3.571e+04  4.040e+04  -0.884 0.377589    
## ExterQualGd       -2.928e+04  3.167e+04  -0.924 0.356238    
## ExterQualTA       -3.970e+04  3.252e+04  -1.221 0.223456    
## FoundationCBlock  -9.281e+02  6.125e+03  -0.152 0.879693    
## FoundationPConc    5.674e+03  6.210e+03   0.914 0.361883    
## FoundationStone    1.243e+03  2.381e+04   0.052 0.958412    
## FoundationWood    -7.242e+03  1.757e+04  -0.412 0.680620    
## BsmtQualFa        -1.042e+05  2.086e+04  -4.995 1.18e-06 ***
## BsmtQualGd        -1.022e+05  1.755e+04  -5.824 1.96e-08 ***
## BsmtQualTA        -9.890e+04  1.811e+04  -5.461 1.25e-07 ***
## TotalBsmtSF        2.468e+01  5.971e+00   4.134 5.02e-05 ***
## HeatingGasW       -4.668e+03  1.369e+04  -0.341 0.733408    
## HeatingGrav        2.488e+04  1.897e+04   1.312 0.190925    
## CentralAirY        2.281e+04  8.123e+03   2.808 0.005419 ** 
## GrLivArea          6.010e+01  7.522e+00   7.990 6.86e-14 ***
## FullBath           8.313e+03  4.480e+03   1.856 0.064821 .  
## HalfBath           4.058e+03  3.759e+03   1.080 0.281489    
## BedroomAbvGr      -4.663e+03  2.729e+03  -1.709 0.088821 .  
## KitchenQualFa     -7.016e+04  1.575e+04  -4.454 1.33e-05 ***
## KitchenQualGd     -6.605e+04  1.066e+04  -6.197 2.70e-09 ***
## KitchenQualTA     -6.612e+04  1.105e+04  -5.983 8.51e-09 ***
## TotRmsAbvGrd      -4.705e+03  2.087e+03  -2.254 0.025131 *  
## GarageTypeAttchd   4.825e+04  2.541e+04   1.899 0.058863 .  
## GarageTypeBasment  3.791e+04  2.682e+04   1.414 0.158861    
## GarageTypeBuiltIn  6.033e+04  2.753e+04   2.192 0.029424 *  
## GarageTypeDetchd   4.988e+04  2.563e+04   1.946 0.052859 .  
## PoolArea           4.907e+01  1.685e+01   2.912 0.003951 ** 
## FenceGdWo          1.040e+04  4.812e+03   2.161 0.031785 *  
## FenceMnPrv         1.032e+04  3.789e+03   2.724 0.006954 ** 
## FenceMnWw          6.273e+03  7.974e+03   0.787 0.432267    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 21410 on 226 degrees of freedom
##   (1199 observations deleted due to missingness)
## Multiple R-squared:  0.8952, Adjusted R-squared:  0.8794 
## F-statistic: 56.75 on 34 and 226 DF,  p-value: < 2.2e-16

Let’s get rid of:
* Remove ExterQual, Foundation, Heating, HalfBath

## 
## Call:
## lm(formula = SalePrice ~ LotArea + OverallQual + OverallCond + 
##     YearBuilt + BsmtQual + TotalBsmtSF + CentralAir + GrLivArea + 
##     FullBath + BedroomAbvGr + KitchenQual + TotRmsAbvGrd + GarageType + 
##     PoolArea + Fence, data = train)
## 
## Residuals:
##    Min     1Q Median     3Q    Max 
## -93208  -7907    277  10562  93208 
## 
## Coefficients:
##                     Estimate Std. Error t value Pr(>|t|)    
## (Intercept)       -1.007e+06  1.946e+05  -5.177 4.83e-07 ***
## LotArea            2.239e+00  5.367e-01   4.173 4.24e-05 ***
## OverallQual        1.201e+04  2.037e+03   5.895 1.29e-08 ***
## OverallCond        9.119e+03  1.320e+03   6.909 4.51e-11 ***
## YearBuilt          5.323e+02  9.577e+01   5.558 7.34e-08 ***
## BsmtQualFa        -1.111e+05  2.060e+04  -5.392 1.69e-07 ***
## BsmtQualGd        -1.099e+05  1.735e+04  -6.333 1.20e-09 ***
## BsmtQualTA        -1.077e+05  1.774e+04  -6.073 4.98e-09 ***
## TotalBsmtSF        2.430e+01  5.503e+00   4.415 1.54e-05 ***
## CentralAirY        1.881e+04  7.282e+03   2.582  0.01041 *  
## GrLivArea          6.309e+01  6.458e+00   9.769  < 2e-16 ***
## FullBath           6.801e+03  4.204e+03   1.618  0.10708    
## BedroomAbvGr      -4.440e+03  2.665e+03  -1.666  0.09695 .  
## KitchenQualFa     -6.541e+04  1.530e+04  -4.275 2.77e-05 ***
## KitchenQualGd     -6.514e+04  1.050e+04  -6.207 2.41e-09 ***
## KitchenQualTA     -6.871e+04  1.082e+04  -6.352 1.08e-09 ***
## TotRmsAbvGrd      -4.695e+03  2.066e+03  -2.273  0.02395 *  
## GarageTypeAttchd   4.664e+04  2.519e+04   1.852  0.06529 .  
## GarageTypeBasment  3.263e+04  2.652e+04   1.231  0.21971    
## GarageTypeBuiltIn  5.851e+04  2.712e+04   2.157  0.03200 *  
## GarageTypeDetchd   4.829e+04  2.526e+04   1.912  0.05708 .  
## PoolArea           4.548e+01  1.671e+01   2.723  0.00696 ** 
## FenceGdWo          8.979e+03  4.689e+03   1.915  0.05669 .  
## FenceMnPrv         8.914e+03  3.749e+03   2.378  0.01820 *  
## FenceMnWw          3.747e+03  7.952e+03   0.471  0.63791    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 21570 on 236 degrees of freedom
##   (1199 observations deleted due to missingness)
## Multiple R-squared:  0.8889, Adjusted R-squared:  0.8776 
## F-statistic: 78.65 on 24 and 236 DF,  p-value: < 2.2e-16

Let’s remove:
* Full Bath, BedroomAbvGr, Fence

## 
## Call:
## lm(formula = SalePrice ~ LotArea + OverallQual + OverallCond + 
##     YearBuilt + BsmtQual + TotalBsmtSF + CentralAir + GrLivArea + 
##     KitchenQual + TotRmsAbvGrd + GarageType + PoolArea, data = train)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -513298  -15903   -1034   13068  255688 
## 
## Coefficients:
##                     Estimate Std. Error t value Pr(>|t|)    
## (Intercept)       -8.094e+05  1.332e+05  -6.075 1.61e-09 ***
## LotArea            6.933e-01  1.001e-01   6.928 6.62e-12 ***
## OverallQual        1.531e+04  1.292e+03  11.846  < 2e-16 ***
## OverallCond        7.487e+03  1.061e+03   7.058 2.71e-12 ***
## YearBuilt          4.083e+02  6.610e+01   6.177 8.67e-10 ***
## BsmtQualFa        -4.502e+04  8.608e+03  -5.230 1.97e-07 ***
## BsmtQualGd        -4.154e+04  4.278e+03  -9.710  < 2e-16 ***
## BsmtQualTA        -4.573e+04  5.300e+03  -8.629  < 2e-16 ***
## TotalBsmtSF        2.170e+01  3.245e+00   6.688 3.32e-11 ***
## CentralAirY        6.904e+03  5.272e+03   1.310   0.1906    
## GrLivArea          5.233e+01  4.060e+00  12.890  < 2e-16 ***
## KitchenQualFa     -4.131e+04  9.227e+03  -4.477 8.22e-06 ***
## KitchenQualGd     -3.546e+04  4.631e+03  -7.657 3.66e-14 ***
## KitchenQualTA     -4.399e+04  5.185e+03  -8.484  < 2e-16 ***
## TotRmsAbvGrd       3.033e+02  1.107e+03   0.274   0.7841    
## GarageTypeAttchd   1.147e+04  1.469e+04   0.781   0.4349    
## GarageTypeBasment  7.367e+03  1.670e+04   0.441   0.6592    
## GarageTypeBuiltIn  1.213e+04  1.525e+04   0.795   0.4265    
## GarageTypeCarPort  2.254e+03  1.978e+04   0.114   0.9093    
## GarageTypeDetchd   7.481e+03  1.472e+04   0.508   0.6114    
## PoolArea          -4.544e+01  2.361e+01  -1.924   0.0546 .  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 35230 on 1328 degrees of freedom
##   (111 observations deleted due to missingness)
## Multiple R-squared:  0.8041, Adjusted R-squared:  0.8012 
## F-statistic: 272.6 on 20 and 1328 DF,  p-value: < 2.2e-16

Let’s remove:
* GarageType and TotRmsAbvGrd

## 
## Call:
## lm(formula = SalePrice ~ LotArea + OverallQual + OverallCond + 
##     YearBuilt + BsmtQual + TotalBsmtSF + CentralAir + GrLivArea + 
##     KitchenQual + PoolArea, data = train)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -515379  -15222    -342   12610  256221 
## 
## Coefficients:
##                 Estimate Std. Error t value Pr(>|t|)    
## (Intercept)   -8.947e+05  1.150e+05  -7.784 1.36e-14 ***
## LotArea        7.297e-01  9.795e-02   7.450 1.62e-13 ***
## OverallQual    1.492e+04  1.200e+03  12.433  < 2e-16 ***
## OverallCond    7.026e+03  9.902e+02   7.096 2.04e-12 ***
## YearBuilt      4.599e+02  5.755e+01   7.991 2.77e-15 ***
## BsmtQualFa    -4.361e+04  8.201e+03  -5.317 1.22e-07 ***
## BsmtQualGd    -4.288e+04  4.197e+03 -10.216  < 2e-16 ***
## BsmtQualTA    -4.651e+04  5.117e+03  -9.090  < 2e-16 ***
## TotalBsmtSF    2.188e+01  2.976e+00   7.352 3.30e-13 ***
## CentralAirY    6.325e+03  4.629e+03   1.366   0.1721    
## GrLivArea      5.259e+01  2.431e+00  21.634  < 2e-16 ***
## KitchenQualFa -3.949e+04  8.029e+03  -4.919 9.72e-07 ***
## KitchenQualGd -3.393e+04  4.448e+03  -7.628 4.36e-14 ***
## KitchenQualTA -4.354e+04  4.956e+03  -8.785  < 2e-16 ***
## PoolArea      -4.371e+01  2.320e+01  -1.884   0.0598 .  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 34890 on 1408 degrees of freedom
##   (37 observations deleted due to missingness)
## Multiple R-squared:  0.8088, Adjusted R-squared:  0.8069 
## F-statistic: 425.4 on 14 and 1408 DF,  p-value: < 2.2e-16

Let’s remove:
* Pool Area and CentrailAir

## 
## Call:
## lm(formula = SalePrice ~ LotArea + OverallQual + OverallCond + 
##     YearBuilt + BsmtQual + TotalBsmtSF + GrLivArea + KitchenQual, 
##     data = train)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -532988  -15276    -408   12959  240519 
## 
## Coefficients:
##                 Estimate Std. Error t value Pr(>|t|)    
## (Intercept)   -9.461e+05  1.085e+05  -8.720  < 2e-16 ***
## LotArea        7.320e-01  9.798e-02   7.471 1.39e-13 ***
## OverallQual    1.504e+04  1.200e+03  12.535  < 2e-16 ***
## OverallCond    7.360e+03  9.571e+02   7.691 2.73e-14 ***
## YearBuilt      4.879e+02  5.381e+01   9.067  < 2e-16 ***
## BsmtQualFa    -4.310e+04  8.193e+03  -5.260 1.66e-07 ***
## BsmtQualGd    -4.275e+04  4.200e+03 -10.179  < 2e-16 ***
## BsmtQualTA    -4.610e+04  5.100e+03  -9.038  < 2e-16 ***
## TotalBsmtSF    2.155e+01  2.971e+00   7.254 6.64e-13 ***
## GrLivArea      5.206e+01  2.413e+00  21.569  < 2e-16 ***
## KitchenQualFa -4.061e+04  7.988e+03  -5.084 4.20e-07 ***
## KitchenQualGd -3.382e+04  4.452e+03  -7.597 5.50e-14 ***
## KitchenQualTA -4.318e+04  4.957e+03  -8.709  < 2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 34930 on 1410 degrees of freedom
##   (37 observations deleted due to missingness)
## Multiple R-squared:  0.8081, Adjusted R-squared:  0.8064 
## F-statistic: 494.7 on 12 and 1410 DF,  p-value: < 2.2e-16

Let’s remove:
* Pool Area and CentrailAir

## 
## Call:
## lm(formula = SalePrice ~ LotArea + OverallQual + OverallCond + 
##     YearBuilt + TotalBsmtSF + GrLivArea, data = train)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -529020  -18456   -2001   14210  275815 
## 
## Coefficients:
##               Estimate Std. Error t value Pr(>|t|)    
## (Intercept) -1.188e+06  8.907e+04 -13.341  < 2e-16 ***
## LotArea      6.806e-01  1.060e-01   6.421 1.83e-10 ***
## OverallQual  2.132e+04  1.158e+03  18.419  < 2e-16 ***
## OverallCond  6.540e+03  9.907e+02   6.601 5.69e-11 ***
## YearBuilt    5.490e+02  4.555e+01  12.055  < 2e-16 ***
## TotalBsmtSF  2.950e+01  2.862e+00  10.310  < 2e-16 ***
## GrLivArea    5.407e+01  2.543e+00  21.267  < 2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 38050 on 1453 degrees of freedom
## Multiple R-squared:  0.7716, Adjusted R-squared:  0.7706 
## F-statistic:   818 on 6 and 1453 DF,  p-value: < 2.2e-16

This leaves us with the following model:
\(SalePrice = -1.2 + 0.68*LotArea + 21,320*OverallQual + 6540*OverallCond + 549*YearBuilt + 29.5*TotalBsmtSf + 54.07*GrLivArea\)

This model still has a high R-squared value at 77.16% and it has far fewer variables than our original model to avoid overfitting.

Analyzing Residuals And QQPlot

The residuals are pretty close to normally distributed. The distribution is very tight around 0.

There appear to be a few outliers on the right and far left side but the qq plot doesn’t look bad.

Testing our Model

Now we will use our model, lm9, to predict values using the test data. These are the predictions that will be submitted to Kaggle.

## Parsed with column specification:
## cols(
##   .default = col_character(),
##   Id = col_double(),
##   MSSubClass = col_double(),
##   LotFrontage = col_double(),
##   LotArea = col_double(),
##   OverallQual = col_double(),
##   OverallCond = col_double(),
##   YearBuilt = col_double(),
##   YearRemodAdd = col_double(),
##   MasVnrArea = col_double(),
##   BsmtFinSF1 = col_double(),
##   BsmtFinSF2 = col_double(),
##   BsmtUnfSF = col_double(),
##   TotalBsmtSF = col_double(),
##   `1stFlrSF` = col_double(),
##   `2ndFlrSF` = col_double(),
##   LowQualFinSF = col_double(),
##   GrLivArea = col_double(),
##   BsmtFullBath = col_double(),
##   BsmtHalfBath = col_double(),
##   FullBath = col_double()
##   # ... with 17 more columns
## )
## See spec(...) for full column specifications.
## Parsed with column specification:
## cols(
##   Id = col_double(),
##   SalePrice = col_double()
## )

My Kaggle team name is Devin Teran and my score was 0.91739
Link to Youtube Recording here(https://youtu.be/M3MiqqWOt00)