Para una breve descripción del algoritmo GBM mirar el post
Se recomienda leer:
Boehmke,B.C. Gradient Boosting Machines
Gil,C. Árboles de decisión y métodos de ensemble
Hernández, F. Gradient Boost
Ridgeway,G. Generalized Boosted Models: A guide to the gbm package
El caso empleado en este análisis es el ‘German Credit Data’, que puede descargarse el dataset original desde UCI. Este dataset ha sido previamente trabajado en cuanto a:
análisis descriptivo
limpieza de anomalías, missing y outliers
peso predictivo de las variables mediante random forest
discretización de las variables continuas para facilitar la interpretación posterior
Por lo que finalmente se emplea en este caso un dataset preparado para iniciar el análisis, que puede descargarse de GitHub.
El objetivo del caso es predecir la probabilidad de que un determinado cliente puede incluir un crédito bancario. La explicación de esta conducta estará basada en toda una serie de variables predictoras que se explicarán posteriormente.
En este post se va a seguir el proceso seguido por Boehmke y Hernández ajustando todos los hiperparámetros.
Boehmke,B.C. Gradient Boosting Machines
Hernández, F. Gradient Boost
library(dplyr) # Manipulación de datos
library(knitr) # Para formato de tablas
library(ROCR) # Rendimiento del modelo y curva ROC
library(caret) # División de muestra, Clasificación y regresión
library(DataExplorer)# Análisis descriptivo con gráficos
library(gbm) #para algoritmo Gradient Boosting Machine
options(scipen=999)
#Desactiva la notación científica
Como el dataset ha sido peviamente trabajado para poder modelizar directamente, si deseas seguir este tutorial, lo puedes descargar de GitHub.
df <- read.csv("CreditBank")
head(df) #ver los primeros 6 casos
## X chk_ac_status_1 credit_history_3 duration_month_2 savings_ac_bond_6
## 1 1 A11 04.A34 00-06 A65
## 2 2 A12 03.A32.A33 42+ A61
## 3 3 A14 04.A34 06-12 A61
## 4 4 A11 03.A32.A33 36-42 A61
## 5 5 A11 03.A32.A33 12-24 A61
## 6 6 A14 03.A32.A33 30-36 A65
## purpose_4 property_type_12 age_in_yrs_13 credit_amount_5 p_employment_since_7
## 1 A43 A121 60+ 0-1400 A75
## 2 A43 A121 0-25 5500+ A73
## 3 A46 A121 45-50 1400-2500 A74
## 4 A42 A122 40-45 5500+ A74
## 5 A40 A124 50-60 4500-5500 A73
## 6 A46 A124 30-35 5500+ A73
## housing_type_15 other_instalment_type_14 personal_status_9 foreign_worker_20
## 1 A152 A143 A93 A201
## 2 A152 A143 A92 A201
## 3 A152 A143 A93 A201
## 4 A153 A143 A93 A201
## 5 A153 A143 A93 A201
## 6 A153 A143 A93 A201
## other_debtors_or_grantors_10 instalment_pct_8 good_bad_21
## 1 A101 4 Good
## 2 A101 2 Bad
## 3 A101 2 Good
## 4 A103 2 Good
## 5 A101 3 Bad
## 6 A101 2 Good
str(df) #mostrar la estructura del dataset y los tipos de variables
## 'data.frame': 1000 obs. of 17 variables:
## $ X : int 1 2 3 4 5 6 7 8 9 10 ...
## $ chk_ac_status_1 : chr "A11" "A12" "A14" "A11" ...
## $ credit_history_3 : chr "04.A34" "03.A32.A33" "04.A34" "03.A32.A33" ...
## $ duration_month_2 : chr "00-06" "42+" "06-12" "36-42" ...
## $ savings_ac_bond_6 : chr "A65" "A61" "A61" "A61" ...
## $ purpose_4 : chr "A43" "A43" "A46" "A42" ...
## $ property_type_12 : chr "A121" "A121" "A121" "A122" ...
## $ age_in_yrs_13 : chr "60+" "0-25" "45-50" "40-45" ...
## $ credit_amount_5 : chr "0-1400" "5500+" "1400-2500" "5500+" ...
## $ p_employment_since_7 : chr "A75" "A73" "A74" "A74" ...
## $ housing_type_15 : chr "A152" "A152" "A152" "A153" ...
## $ other_instalment_type_14 : chr "A143" "A143" "A143" "A143" ...
## $ personal_status_9 : chr "A93" "A92" "A93" "A93" ...
## $ foreign_worker_20 : chr "A201" "A201" "A201" "A201" ...
## $ other_debtors_or_grantors_10: chr "A101" "A101" "A101" "A103" ...
## $ instalment_pct_8 : int 4 2 2 2 3 2 3 2 2 4 ...
## $ good_bad_21 : chr "Good" "Bad" "Good" "Good" ...
Puede observarse que todas son “chr”, esto es, “character”, por tanto, vamos a pasarlas a Factor. Además, instalment_pct_8 aparece como “entero” cuando es factor. También la transformamos.
df <- mutate_if(df, is.character, as.factor) #identifica todas las character y las pasa a factores
#Sacamos la esructura
df$instalment_pct_8 <- as.factor(df$instalment_pct_8 )
str(df)
## 'data.frame': 1000 obs. of 17 variables:
## $ X : int 1 2 3 4 5 6 7 8 9 10 ...
## $ chk_ac_status_1 : Factor w/ 4 levels "A11","A12","A13",..: 1 2 4 1 1 4 4 2 4 2 ...
## $ credit_history_3 : Factor w/ 4 levels "01.A30","02.A31",..: 4 3 4 3 3 3 3 3 3 4 ...
## $ duration_month_2 : Factor w/ 7 levels "00-06","06-12",..: 1 7 2 6 3 5 3 5 2 4 ...
## $ savings_ac_bond_6 : Factor w/ 5 levels "A61","A62","A63",..: 5 1 1 1 1 5 3 1 4 1 ...
## $ purpose_4 : Factor w/ 10 levels "A40","A41","A410",..: 5 5 8 4 1 8 4 2 5 1 ...
## $ property_type_12 : Factor w/ 4 levels "A121","A122",..: 1 1 1 2 4 4 2 3 1 3 ...
## $ age_in_yrs_13 : Factor w/ 8 levels "0-25","25-30",..: 8 1 6 5 7 3 7 3 8 2 ...
## $ credit_amount_5 : Factor w/ 6 levels "0-1400","1400-2500",..: 1 6 2 6 5 6 3 6 3 5 ...
## $ p_employment_since_7 : Factor w/ 5 levels "A71","A72","A73",..: 5 3 4 4 3 3 5 3 4 1 ...
## $ housing_type_15 : Factor w/ 3 levels "A151","A152",..: 2 2 2 3 3 3 2 1 2 2 ...
## $ other_instalment_type_14 : Factor w/ 3 levels "A141","A142",..: 3 3 3 3 3 3 3 3 3 3 ...
## $ personal_status_9 : Factor w/ 4 levels "A91","A92","A93",..: 3 2 3 3 3 3 3 3 1 4 ...
## $ foreign_worker_20 : Factor w/ 2 levels "A201","A202": 1 1 1 1 1 1 1 1 1 1 ...
## $ other_debtors_or_grantors_10: Factor w/ 3 levels "A101","A102",..: 1 1 1 3 1 1 1 1 1 1 ...
## $ instalment_pct_8 : Factor w/ 4 levels "1","2","3","4": 4 2 2 2 3 2 3 2 2 4 ...
## $ good_bad_21 : Factor w/ 2 levels "Bad","Good": 2 1 2 2 1 2 2 2 2 1 ...
Ahora se puede observar que todas las variables son de tipo “Factor”
Para los siguientes análisis:
Eliminamos a la variable X (número de cliente) del df.
Renombramos la variable good_bad_21 como “target”.
#Creamos la variable "target"
df$target <- as.factor(df$good_bad_21)
#Eliminamos la variable "good_bad_21" y eliminamos x
df <- select(df,-good_bad_21, -X)
str(df)
## 'data.frame': 1000 obs. of 16 variables:
## $ chk_ac_status_1 : Factor w/ 4 levels "A11","A12","A13",..: 1 2 4 1 1 4 4 2 4 2 ...
## $ credit_history_3 : Factor w/ 4 levels "01.A30","02.A31",..: 4 3 4 3 3 3 3 3 3 4 ...
## $ duration_month_2 : Factor w/ 7 levels "00-06","06-12",..: 1 7 2 6 3 5 3 5 2 4 ...
## $ savings_ac_bond_6 : Factor w/ 5 levels "A61","A62","A63",..: 5 1 1 1 1 5 3 1 4 1 ...
## $ purpose_4 : Factor w/ 10 levels "A40","A41","A410",..: 5 5 8 4 1 8 4 2 5 1 ...
## $ property_type_12 : Factor w/ 4 levels "A121","A122",..: 1 1 1 2 4 4 2 3 1 3 ...
## $ age_in_yrs_13 : Factor w/ 8 levels "0-25","25-30",..: 8 1 6 5 7 3 7 3 8 2 ...
## $ credit_amount_5 : Factor w/ 6 levels "0-1400","1400-2500",..: 1 6 2 6 5 6 3 6 3 5 ...
## $ p_employment_since_7 : Factor w/ 5 levels "A71","A72","A73",..: 5 3 4 4 3 3 5 3 4 1 ...
## $ housing_type_15 : Factor w/ 3 levels "A151","A152",..: 2 2 2 3 3 3 2 1 2 2 ...
## $ other_instalment_type_14 : Factor w/ 3 levels "A141","A142",..: 3 3 3 3 3 3 3 3 3 3 ...
## $ personal_status_9 : Factor w/ 4 levels "A91","A92","A93",..: 3 2 3 3 3 3 3 3 1 4 ...
## $ foreign_worker_20 : Factor w/ 2 levels "A201","A202": 1 1 1 1 1 1 1 1 1 1 ...
## $ other_debtors_or_grantors_10: Factor w/ 3 levels "A101","A102",..: 1 1 1 3 1 1 1 1 1 1 ...
## $ instalment_pct_8 : Factor w/ 4 levels "1","2","3","4": 4 2 2 2 3 2 3 2 2 4 ...
## $ target : Factor w/ 2 levels "Bad","Good": 2 1 2 2 1 2 2 2 2 1 ...
lapply(df,summary) #mostrar la distribución de frecuencias en cada categoría de todas las variables
## $chk_ac_status_1
## A11 A12 A13 A14
## 274 269 63 394
##
## $credit_history_3
## 01.A30 02.A31 03.A32.A33 04.A34
## 40 49 618 293
##
## $duration_month_2
## 00-06 06-12 12-24 24-30 30-36 36-42 42+
## 82 277 411 57 86 17 70
##
## $savings_ac_bond_6
## A61 A62 A63 A64 A65
## 603 103 63 48 183
##
## $purpose_4
## A40 A41 A410 A42 A43 A44 A45 A46 A48 A49
## 234 103 12 181 280 12 22 50 9 97
##
## $property_type_12
## A121 A122 A123 A124
## 282 232 332 154
##
## $age_in_yrs_13
## 0-25 25-30 30-35 35-40 40-45 45-50 50-60 60+
## 190 221 177 138 88 73 68 45
##
## $credit_amount_5
## 0-1400 1400-2500 2500-3500 3500-4500 4500-5500 5500+
## 267 270 149 98 48 168
##
## $p_employment_since_7
## A71 A72 A73 A74 A75
## 62 172 339 174 253
##
## $housing_type_15
## A151 A152 A153
## 179 713 108
##
## $other_instalment_type_14
## A141 A142 A143
## 139 47 814
##
## $personal_status_9
## A91 A92 A93 A94
## 50 310 548 92
##
## $foreign_worker_20
## A201 A202
## 963 37
##
## $other_debtors_or_grantors_10
## A101 A102 A103
## 907 41 52
##
## $instalment_pct_8
## 1 2 3 4
## 136 231 157 476
##
## $target
## Bad Good
## 300 700
plot_intro(df) #gráfico para observar la distribución de variables y los casos missing por columnas, observaciones y filas
plot_bar(df) #gráfico para observar la distribución de frecuencias en variables categóricas
De las gráficas anteriores se puede observar:
La distribución de la target es adecuada y no necesita trabajo posterior.
Se puede observar que varias variables tienen algunas categorías con poca frecuencia. Sería oportuno analizar la conveniencia de recodificar en categorías con mayor representación.
Se segmenta la muestra en dos partes (train y test) empleando el programa Caret.
Training o entrenamiento (70% de la muestra): servirá para entrenar al modelo de clasificación.
Test (30%): servirá para validar el modelo. La característica fundamental es que esta muestra no debe haber tenido contacto previamente con el funcionamiento del modelo.
set.seed(100) # Para reproducir los mismos resultados
partition <- createDataPartition(y = df$target, p = 0.7, list = FALSE)
train <- df[partition,]
test <- df[-partition,]
Comprobamos la distribución de la TARGET en las dos muestras.
table(train$target)
##
## Bad Good
## 210 490
table(test$target)
##
## Bad Good
## 90 210
Eliminamos la variable con nulo poder predictivo (observado en análisis previos).
#Eliminamos del df de trabajo la variable.
train <- select(train, -foreign_worker_20)
test <- select(test, -foreign_worker_20)
#library(gbm)
#Para casos de clasificación binaria resulta necesario recodificar la variable TARGET a numérica con valores 0 y 1.
#Además, para este tipo de casos de clasificación binaria se debe especificar la distribution = "bernoulli".
# Se convierte TARGET 1 (Good) y 0 (Bad).
train$target <- ifelse(train$target == "Good", 1, 0)
set.seed(123)
# Entrenamos el modelo
gbm.fit <- gbm(
formula = target ~ .,
distribution = "bernoulli",
data = train,
n.trees = 5000,
interaction.depth = 1,
shrinkage = 0.001,
cv.folds = 5,
n.cores = NULL, # will use all cores by default
verbose = FALSE
)
# Imprimimos resultados
print(gbm.fit)
## gbm(formula = target ~ ., distribution = "bernoulli", data = train,
## n.trees = 5000, interaction.depth = 1, shrinkage = 0.001,
## cv.folds = 5, verbose = FALSE, n.cores = NULL)
## A gradient boosted model with bernoulli loss function.
## 5000 iterations were performed.
## The best cross-validation iteration was 5000.
## There were 14 predictors of which 14 had non-zero influence.
# Obtenemos el RMSE (root mean square error)
sqrt(min(gbm.fit$cv.error))
## [1] 1.014304
# Preparamos el ajuste de los hiperparámetros
hyper_grid <- expand.grid(
shrinkage = c(0.01, 0.1, 0.3),
interaction.depth = c(1, 3, 5),
n.minobsinnode = c(5, 10, 15),
bag.fraction = c(0.65, 0.8, 1),
optimal_trees = 0,
min_RMSE = 0,
min_cor = 0
)
nrow(hyper_grid) # Número total de combinaciones
## [1] 81
# Para hacer una búsqueda automática de los huperparámetros, aleatorizamos los datos
random_index <- sample(1:nrow(train), nrow(train))
random_train <- train[random_index, ]
for(i in 1:nrow(hyper_grid)) {
set.seed(123)
gbm.tune <- gbm(
formula = target ~ .,
distribution = "bernoulli",
data = train,
n.trees = 5000,
interaction.depth = hyper_grid$interaction.depth[i],
shrinkage = hyper_grid$shrinkage[i],
n.minobsinnode = hyper_grid$n.minobsinnode[i],
bag.fraction = hyper_grid$bag.fraction[i],
train.fraction = 0.75,
n.cores = NULL,
verbose = FALSE
)
# Agregamos a hyper_grid la información que nos interesa que nos interesa
hyper_grid$optimal_trees[i] <- which.min(gbm.tune$valid.error)
hyper_grid$min_RMSE[i] <- sqrt(min(gbm.tune$valid.error))
hyper_grid$min_cor[i] <- cor(random_train$target, predict(gbm.tune))
}
## Using 1163 trees...
## Using 116 trees...
## Using 25 trees...
## Using 587 trees...
## Using 67 trees...
## Using 19 trees...
## Using 355 trees...
## Using 27 trees...
## Using 8 trees...
## Using 1163 trees...
## Using 116 trees...
## Using 25 trees...
## Using 576 trees...
## Using 67 trees...
## Using 14 trees...
## Using 443 trees...
## Using 39 trees...
## Using 13 trees...
## Using 1163 trees...
## Using 116 trees...
## Using 27 trees...
## Using 576 trees...
## Using 51 trees...
## Using 20 trees...
## Using 446 trees...
## Using 25 trees...
## Using 13 trees...
## Using 1327 trees...
## Using 136 trees...
## Using 50 trees...
## Using 625 trees...
## Using 49 trees...
## Using 10 trees...
## Using 456 trees...
## Using 45 trees...
## Using 13 trees...
## Using 1327 trees...
## Using 156 trees...
## Using 50 trees...
## Using 588 trees...
## Using 57 trees...
## Using 10 trees...
## Using 400 trees...
## Using 45 trees...
## Using 18 trees...
## Using 1327 trees...
## Using 136 trees...
## Using 52 trees...
## Using 580 trees...
## Using 84 trees...
## Using 10 trees...
## Using 459 trees...
## Using 43 trees...
## Using 16 trees...
## Using 2156 trees...
## Using 230 trees...
## Using 54 trees...
## Using 448 trees...
## Using 61 trees...
## Using 15 trees...
## Using 322 trees...
## Using 60 trees...
## Using 9 trees...
## Using 2156 trees...
## Using 230 trees...
## Using 54 trees...
## Using 746 trees...
## Using 77 trees...
## Using 17 trees...
## Using 356 trees...
## Using 49 trees...
## Using 22 trees...
## Using 2156 trees...
## Using 230 trees...
## Using 54 trees...
## Using 798 trees...
## Using 78 trees...
## Using 12 trees...
## Using 409 trees...
## Using 41 trees...
## Using 11 trees...
Sacamos los resultados obtenidos en hyper_grid (shrinkage, interaction.depth, n.minobsinnode, bag.fraction, optimal_trees, min_RMSE, min_cor)
hyper_grid %>%
dplyr::arrange(min_RMSE) %>%
head(10)
## shrinkage interaction.depth n.minobsinnode bag.fraction optimal_trees
## 1 0.30 1 15 0.65 27
## 2 0.30 1 5 0.65 25
## 3 0.30 1 10 0.65 25
## 4 0.30 1 15 0.80 52
## 5 0.10 3 15 0.80 84
## 6 0.30 1 5 0.80 50
## 7 0.30 1 10 0.80 50
## 8 0.01 3 15 0.65 576
## 9 0.10 1 15 0.65 116
## 10 0.10 1 10 0.65 116
## min_RMSE min_cor
## 1 0.9753025 0.0002388511
## 2 0.9781977 0.0054256153
## 3 0.9781977 0.0054256153
## 4 0.9788572 0.0027679504
## 5 0.9813145 0.0066744948
## 6 0.9835245 -0.0032494533
## 7 0.9835245 -0.0032494533
## 8 0.9835855 0.0001318378
## 9 0.9840560 0.0034281250
## 10 0.9842841 0.0004677813
Se observa en la tabla que el mínimo RMSE es: 0.9753025 (la RMSE del modelo anterior era 1.014). Pasamos estos valores al modelo definitivo.
set.seed(123)
# train GBM modelEntrenamiento del modelo
gbm.fit.final <- gbm(
formula = target ~ .,
distribution = "bernoulli",
data = train,
n.trees = 27,
interaction.depth = 1,
shrinkage = 0.3,
n.minobsinnode = 15,
bag.fraction = 0.65,
train.fraction = 1,
n.cores = NULL,
verbose = FALSE
)
summary(gbm.fit.final, cBars = 10,
method = relative.influence, las = 2)
## var rel.inf
## chk_ac_status_1 chk_ac_status_1 36.951331
## duration_month_2 duration_month_2 13.292565
## credit_history_3 credit_history_3 11.758416
## credit_amount_5 credit_amount_5 7.365959
## purpose_4 purpose_4 7.088495
## instalment_pct_8 instalment_pct_8 4.785093
## p_employment_since_7 p_employment_since_7 3.581935
## savings_ac_bond_6 savings_ac_bond_6 3.476691
## age_in_yrs_13 age_in_yrs_13 3.414112
## other_debtors_or_grantors_10 other_debtors_or_grantors_10 3.174170
## other_instalment_type_14 other_instalment_type_14 3.059566
## property_type_12 property_type_12 2.051668
## housing_type_15 housing_type_15 0.000000
## personal_status_9 personal_status_9 0.000000
Podemos observar que hay dos variables con nulo poder predictivo en el modelo: housing_type_15 y personal_status_9. Posteriormente haremos otro modelo excluyendo estas dos variables.
gbm_pred <- predict(object=gbm.fit.final, newdata=test, n.trees = 27)
plot(x=test$target, y=gbm_pred, xlab='Valor observado', ylab='Predicción')
abline(a=0, b=1, lty='dashed')
# Se convierte TARGET en la muestra TEST a 1 y 0.
#test$target <- ifelse(test$target == "Good", 1, 0)
# Se emplea type = "response" para convertir los valores predichos en probabilidades.
gbm_score <- predict(object = gbm.fit.final,
newdata = test,
n.trees = 27,
type = "response")
head(gbm_score)
## [1] 0.7426707 0.9086818 0.9561684 0.7117533 0.4612036 0.6618296
pred_gbm <- prediction(gbm_score, test$target)
perf_gbm <- performance(pred_gbm,"tpr","fpr")
#library(ROCR)
plot(perf_gbm, lwd=2, colorize=TRUE, main="ROC: GBM Performance")
lines(x=c(0, 1), y=c(0, 1), col="red", lwd=1, lty=3);
lines(x=c(1, 0), y=c(0, 1), col="green", lwd=1, lty=4)
A continuación se probarán distintos umbrales para maximizar el F1 al transformar la probabilidad obtenida en otra dicotómica (Good y Bad credit).
En otros proyectos hemos empleado funciones. En este caso lo haremos una por una para entender mejor le proceso. Lo que vamos cambiando es el umbral (“treshold”), observando en cada caso cómo varían las mátricas de la matriz de confusión (exactitud, sensibilidad, precisión y F1).
score2 <- ifelse(gbm_score > 0.20, "Good", "Bad")
MC <- table(test$target, score2)
Acc2 <- (MC[1,1] + MC[2,2]) / sum(MC) *100
Sen2 <- MC[2,2] / (MC[2,2] + MC[1,2]) *100
Pr2 <- MC[2,2] / (MC[2,2] + MC[2,1]) *100
F12 <- 2*Pr2*Sen2/(Pr2+Sen2)
score3 <- ifelse(gbm_score > 0.30, "Good", "Bad")
MC <- table(test$target, score3)
Acc3 <- (MC[1,1] + MC[2,2]) / sum(MC) *100
Sen3 <- MC[2,2] / (MC[2,2] + MC[1,2]) *100
Pr3 <- MC[2,2] / (MC[2,2] + MC[2,1]) *100
F13 <- 2*Pr3*Sen3/(Pr3+Sen3)
score4 <- ifelse(gbm_score > 0.40, "Good", "Bad")
MC <- table(test$target, score4)
Acc4 <- (MC[1,1] + MC[2,2]) / sum(MC) *100
Sen4 <- MC[2,2] / (MC[2,2] + MC[1,2]) *100
Pr4 <- MC[2,2] / (MC[2,2] + MC[2,1]) *100
F14 <- 2*Pr4*Sen4/(Pr4+Sen4)
score5 <- ifelse(gbm_score > 0.50, "Good", "Bad")
MC <- table(test$target, score5)
Acc5 <- (MC[1,1] + MC[2,2]) / sum(MC) *100
Sen5 <- MC[2,2] / (MC[2,2] + MC[1,2]) *100
Pr5 <- MC[2,2] / (MC[2,2] + MC[2,1]) *100
F15 <- 2*Pr5*Sen5/(Pr5+Sen5)
score6 <- ifelse(gbm_score > 0.60, "Good", "Bad")
MC <- table(test$target, score6)
Acc6 <- (MC[1,1] + MC[2,2]) / sum(MC) *100
Sen6 <- MC[2,2] / (MC[2,2] + MC[1,2]) *100
Pr6 <- MC[2,2] / (MC[2,2] + MC[2,1]) *100
F16 <- 2*Pr6*Sen6/(Pr6+Sen6)
#salida<-c(Acc2,Acc3,Acc4,Acc5,Acc6)
#salida
#salida<-c(Sen2,Sen3,Sen4,Sen5,Sen6)
#salida
#salida<-c(Pr2,Pr3,Pr4,Pr5,Pr6)
#salida
salida<-c(F12,F13,F14,F15,F16)
salida
## [1] 82.28346 82.96593 81.66667 83.07692 80.57554
Se puede observar que el límite donde se mazimiza la F1 es en 0,5, con un F1 = 83.07692
#Matriz de confusión con umbral final
score5 <- ifelse(gbm_score > 0.50, "Good", "Bad")
MC <- table(test$target, score5)
gbm_Acc_T1 <- round((MC[1,1] + MC[2,2]) / sum(MC) *100, 2)
gbm_Sen_T1 <- round(MC[2,2] / (MC[2,2] + MC[1,2]) *100, 2)
gbm_Pr_T1 <- round(MC[2,2] / (MC[2,2] + MC[2,1]) *100, 2)
gbm_F1_T1 <- round(2*gbm_Pr_T1*gbm_Sen_T1/(gbm_Pr_T1+gbm_Sen_T1), 2)
#KS & AUC
gbm_KS_T1 <- round(max(attr(perf_gbm,'y.values')[[1]]-attr(perf_gbm,'x.values')[[1]])*100, 2)
gbm_AUROC_T1 <- round(performance(pred_gbm, measure = "auc")@y.values[[1]]*100, 2)
#Métricas finales del modelo
cat("Acierto_gbm: ", gbm_Acc_T1,"\tSensibilidad_gbm: ", gbm_Sen_T1, "\tPrecision_gbm:", gbm_Pr_T1, "\tF1-gbm:", gbm_F1_T1, "\tAUROC_gbm: ",gbm_AUROC_T1,"\tKS_gbm: ", gbm_KS_T1, "\n")
## Acierto_gbm: 74.33 Sensibilidad_gbm: 77.14 Precision_gbm: 90 F1-gbm: 83.08 AUROC_gbm: 76.48 KS_gbm: 44.44
Se obtiene una AUC de 76,48, lo que indica un modelo moderadamente aceptable.
#Eliminamos de los df train y test la variable foreign_worker_20.
train <- select(train, -housing_type_15, -personal_status_9)
test <- select(test, -housing_type_15, -personal_status_9)
set.seed(123)
# Entrenamos modelo
gbm2.fit <- gbm(
formula = target ~ .,
distribution = "bernoulli",
data = train,
n.trees = 5000,
interaction.depth = 1,
shrinkage = 0.001,
cv.folds = 5,
n.cores = NULL,
verbose = FALSE
)
# Imprimimos resultados
print(gbm2.fit)
## gbm(formula = target ~ ., distribution = "bernoulli", data = train,
## n.trees = 5000, interaction.depth = 1, shrinkage = 0.001,
## cv.folds = 5, verbose = FALSE, n.cores = NULL)
## A gradient boosted model with bernoulli loss function.
## 5000 iterations were performed.
## The best cross-validation iteration was 5000.
## There were 12 predictors of which 12 had non-zero influence.
# create hyperparameter grid
hyper_grid2 <- expand.grid(
shrinkage = c(0.01, 0.1, 0.3),
interaction.depth = c(1, 3, 5),
n.minobsinnode = c(5, 10, 15),
bag.fraction = c(0.65, 0.8, 1),
optimal_trees = 0, # a place to dump results
min_RMSE = 0, # a place to dump results
min_cor = 0
)
nrow(hyper_grid2) # total number of combinations
## [1] 81
# randomize data
random_index <- sample(1:nrow(train), nrow(train))
random_train <- train[random_index, ]
for(i in 1:nrow(hyper_grid2)) {
set.seed(123)
gbm.tune2 <- gbm(
formula = target ~ .,
distribution = "bernoulli",
data = train,
n.trees = 5000,
interaction.depth = hyper_grid$interaction.depth[i],
shrinkage = hyper_grid$shrinkage[i],
n.minobsinnode = hyper_grid$n.minobsinnode[i],
bag.fraction = hyper_grid$bag.fraction[i],
train.fraction = 0.75,
n.cores = NULL, # will use all cores by default
verbose = FALSE
)
# Agregamos la información que nos interesa
hyper_grid2$optimal_trees[i] <- which.min(gbm.tune2$valid.error)
hyper_grid2$min_RMSE[i] <- sqrt(min(gbm.tune2$valid.error))
hyper_grid2$min_cor[i] <- cor(random_train$target, predict(gbm.tune2))
}
## Using 1481 trees...
## Using 175 trees...
## Using 50 trees...
## Using 659 trees...
## Using 63 trees...
## Using 19 trees...
## Using 406 trees...
## Using 63 trees...
## Using 13 trees...
## Using 1481 trees...
## Using 175 trees...
## Using 50 trees...
## Using 586 trees...
## Using 64 trees...
## Using 13 trees...
## Using 434 trees...
## Using 50 trees...
## Using 19 trees...
## Using 1487 trees...
## Using 123 trees...
## Using 50 trees...
## Using 659 trees...
## Using 51 trees...
## Using 19 trees...
## Using 441 trees...
## Using 50 trees...
## Using 13 trees...
## Using 1709 trees...
## Using 182 trees...
## Using 52 trees...
## Using 604 trees...
## Using 82 trees...
## Using 11 trees...
## Using 456 trees...
## Using 48 trees...
## Using 7 trees...
## Using 1709 trees...
## Using 168 trees...
## Using 52 trees...
## Using 703 trees...
## Using 49 trees...
## Using 13 trees...
## Using 470 trees...
## Using 42 trees...
## Using 10 trees...
## Using 1682 trees...
## Using 188 trees...
## Using 52 trees...
## Using 700 trees...
## Using 79 trees...
## Using 13 trees...
## Using 441 trees...
## Using 36 trees...
## Using 11 trees...
## Using 2363 trees...
## Using 225 trees...
## Using 56 trees...
## Using 618 trees...
## Using 66 trees...
## Using 11 trees...
## Using 406 trees...
## Using 48 trees...
## Using 8 trees...
## Using 2363 trees...
## Using 225 trees...
## Using 56 trees...
## Using 686 trees...
## Using 72 trees...
## Using 17 trees...
## Using 384 trees...
## Using 54 trees...
## Using 9 trees...
## Using 2440 trees...
## Using 225 trees...
## Using 56 trees...
## Using 721 trees...
## Using 63 trees...
## Using 25 trees...
## Using 406 trees...
## Using 42 trees...
## Using 17 trees...
Sacamos los resultados obtenidos en hyper_grid (shrinkage, interaction.depth, n.minobsinnode, bag.fraction, optimal_trees, min_RMSE, min_cor)
hyper_grid2 %>%
dplyr::arrange(min_RMSE) %>%
head(10)
## shrinkage interaction.depth n.minobsinnode bag.fraction optimal_trees
## 1 0.3 3 5 0.65 19
## 2 0.1 5 10 0.65 50
## 3 0.3 1 5 0.65 50
## 4 0.3 1 10 0.65 50
## 5 0.3 1 15 0.65 50
## 6 0.1 3 15 0.80 79
## 7 0.3 1 15 0.80 52
## 8 0.3 1 5 0.80 52
## 9 0.3 3 15 0.65 19
## 10 0.3 1 10 0.80 52
## min_RMSE min_cor
## 1 0.9583456 0.0083676439
## 2 0.9666268 -0.0073234424
## 3 0.9690286 0.0141520221
## 4 0.9720435 0.0087717349
## 5 0.9740683 0.0047509046
## 6 0.9750708 0.0060058506
## 7 0.9753483 -0.0034874517
## 8 0.9755129 0.0026841467
## 9 0.9760739 -0.0061937110
## 10 0.9761165 0.0004921278
Se observa en la tabla que el mínimo RMSE es: 0.9583456 (la RMSE del modelo anterior era 0.9753025). Pasamos estos valores al modelo definitivo.
set.seed(123)
# Entrenamos el modelo
gbm.fit.final2 <- gbm(
formula = target ~ .,
distribution = "bernoulli",
data = train,
n.trees = 19,
interaction.depth = 3,
shrinkage = 0.3,
n.minobsinnode = 5,
bag.fraction = 0.65,
train.fraction = 1,
n.cores = NULL,
verbose = FALSE
)
summary(gbm.fit.final2, cBars = 10,
method = relative.influence, las = 2)
## var rel.inf
## chk_ac_status_1 chk_ac_status_1 24.073744
## duration_month_2 duration_month_2 12.246941
## purpose_4 purpose_4 11.855482
## age_in_yrs_13 age_in_yrs_13 11.118319
## credit_history_3 credit_history_3 9.371801
## credit_amount_5 credit_amount_5 6.857989
## instalment_pct_8 instalment_pct_8 5.984810
## p_employment_since_7 p_employment_since_7 5.686218
## savings_ac_bond_6 savings_ac_bond_6 4.027205
## other_debtors_or_grantors_10 other_debtors_or_grantors_10 3.827067
## other_instalment_type_14 other_instalment_type_14 2.521020
## property_type_12 property_type_12 2.429402
Ahora vemos que no hay ninguna variables con peso predictivo nulo.
gbm_pred2 <- predict(object=gbm.fit.final2, newdata=test, n.trees = 19)
plot(x=test$target, y=gbm_pred2, xlab='Valor observado', ylab='Predicción')
abline(a=0, b=1, lty='dashed')
# Se emplea type = "response" para convertir los valores predichos en probabilidades.
gbm_score2 <- predict(object = gbm.fit.final2,
newdata = test,
n.trees = 19,
type = "response")
head(gbm_score2)
## [1] 0.7580310 0.9157374 0.9622986 0.5601250 0.4325598 0.8151039
pred_gbm2 <- prediction(gbm_score2, test$target)
perf_gbm2 <- performance(pred_gbm2,"tpr","fpr")
#library(ROCR)
plot(perf_gbm2, lwd=2, colorize=TRUE, main="ROC: GBM Performance")
lines(x=c(0, 1), y=c(0, 1), col="red", lwd=1, lty=3);
lines(x=c(1, 0), y=c(0, 1), col="green", lwd=1, lty=4)
A continuación se probarán distintos umbrales para maximizar el F1 al transformar la probabilidad obtenida en otra dicotómica (Good y Bad credit).
En otros proyectos hemos empleado funciones. En este caso lo haremos una por una para entender mejor le proceso. Lo que vamos cambiando es el umbral (“treshold”), observando en cada caso cómo varían las mátricas de la matriz de confusión (exactitud, sensibilidad, precisión y F1).
score2 <- ifelse(gbm_score2 > 0.20, "Good", "Bad")
MC <- table(test$target, score2)
Acc2 <- (MC[1,1] + MC[2,2]) / sum(MC) *100
Sen2 <- MC[2,2] / (MC[2,2] + MC[1,2]) *100
Pr2 <- MC[2,2] / (MC[2,2] + MC[2,1]) *100
F12 <- 2*Pr2*Sen2/(Pr2+Sen2)
score3 <- ifelse(gbm_score2 > 0.30, "Good", "Bad")
MC <- table(test$target, score3)
Acc3 <- (MC[1,1] + MC[2,2]) / sum(MC) *100
Sen3 <- MC[2,2] / (MC[2,2] + MC[1,2]) *100
Pr3 <- MC[2,2] / (MC[2,2] + MC[2,1]) *100
F13 <- 2*Pr3*Sen3/(Pr3+Sen3)
score4 <- ifelse(gbm_score2 > 0.40, "Good", "Bad")
MC <- table(test$target, score4)
Acc4 <- (MC[1,1] + MC[2,2]) / sum(MC) *100
Sen4 <- MC[2,2] / (MC[2,2] + MC[1,2]) *100
Pr4 <- MC[2,2] / (MC[2,2] + MC[2,1]) *100
F14 <- 2*Pr4*Sen4/(Pr4+Sen4)
score5 <- ifelse(gbm_score2 > 0.50, "Good", "Bad")
MC <- table(test$target, score5)
Acc5 <- (MC[1,1] + MC[2,2]) / sum(MC) *100
Sen5 <- MC[2,2] / (MC[2,2] + MC[1,2]) *100
Pr5 <- MC[2,2] / (MC[2,2] + MC[2,1]) *100
F15 <- 2*Pr5*Sen5/(Pr5+Sen5)
score6 <- ifelse(gbm_score2 > 0.60, "Good", "Bad")
MC <- table(test$target, score6)
Acc6 <- (MC[1,1] + MC[2,2]) / sum(MC) *100
Sen6 <- MC[2,2] / (MC[2,2] + MC[1,2]) *100
Pr6 <- MC[2,2] / (MC[2,2] + MC[2,1]) *100
F16 <- 2*Pr6*Sen6/(Pr6+Sen6)
#salida<-c(Acc2,Acc3,Acc4,Acc5,Acc6)
#salida
#salida<-c(Sen2,Sen3,Sen4,Sen5,Sen6)
#salida
#salida<-c(Pr2,Pr3,Pr4,Pr5,Pr6)
#salida
salida<-c(F12,F13,F14,F15,F16)
salida
## [1] 80.64516 80.74534 81.68421 80.87912 79.24528
Se puede observar que el límite donde se mazimiza la F1 es en 0,4, con un F1 = 81.68421
#Matriz de confusión con umbral final
score4 <- ifelse(gbm_score2 > 0.40, "Good", "Bad")
MC <- table(test$target, score4)
gbm_Acc_T2 <- round((MC[1,1] + MC[2,2]) / sum(MC) *100, 2)
gbm_Sen_T2 <- round(MC[2,2] / (MC[2,2] + MC[1,2]) *100, 2)
gbm_Pr_T2 <- round(MC[2,2] / (MC[2,2] + MC[2,1]) *100, 2)
gbm_F1_T2 <- round(2*gbm_Pr_T2*gbm_Sen_T2/(gbm_Pr_T2+gbm_Sen_T2), 2)
#KS & AUC
gbm_KS_T2 <- round(max(attr(perf_gbm2,'y.values')[[1]]-attr(perf_gbm2,'x.values')[[1]])*100, 2)
gbm_AUROC_T2 <- round(performance(pred_gbm2, measure = "auc")@y.values[[1]]*100, 2)
#Métricas finales del modelo
cat("Acierto_gbm: ", gbm_Acc_T2,"\tSensibilidad_gbm: ", gbm_Sen_T2, "\tPrecision_gbm:", gbm_Pr_T2, "\tF1-gbm:", gbm_F1_T2, "\tAUROC_gbm: ",gbm_AUROC_T2,"\tKS_gbm: ", gbm_KS_T2, "\n")
## Acierto_gbm: 71 Sensibilidad_gbm: 73.21 Precision_gbm: 92.38 F1-gbm: 81.69 AUROC_gbm: 73.97 KS_gbm: 41.9
Se obtiene una AUC de 73.97, lo que indica un modelo moderadamente aceptable.
Comparamos los dos modelos (T1: con 14 variables, y T2 con 12 variables).
# Etiquetas de filas
models <- c('GBM_T1', 'GBM_T2')
#Accuracy
models_Acc <- c(gbm_Acc_T1, gbm_Acc_T2)
#Sensibilidad
models_Sen <- c(gbm_Sen_T1, gbm_Sen_T2)
#Precisión
models_Pr <- c(gbm_Pr_T1, gbm_Pr_T2)
#F1
models_F1 <- c(gbm_F1_T1, gbm_F1_T2)
# AUC
models_AUC <- c(gbm_AUROC_T1, gbm_AUROC_T2)
# KS
models_KS <- c(gbm_KS_T1, gbm_KS_T2)
# Combinar métricas
metricas <- as.data.frame(cbind(models, models_Acc, models_Sen, models_Pr, models_F1, models_AUC, models_KS))
# Colnames
colnames(metricas) <- c("Model", "Acc", "Sen", "Pr", "F1", "AUC", "KS")
# Tabla final de métricas
kable(metricas, caption ="Comparision of Model Performances")
| Model | Acc | Sen | Pr | F1 | AUC | KS |
|---|---|---|---|---|---|---|
| GBM_T1 | 74.33 | 77.14 | 90 | 83.08 | 76.48 | 44.44 |
| GBM_T2 | 71 | 73.21 | 92.38 | 81.69 | 73.97 | 41.9 |
Observando la métricade AUC, el primer modelo con 14 variables predictoras resulta mejor (AUC = 76.48) que el segundo modelo con 12 variables (AUC = 73.97).