Encontrar probabilidades de acuerdo a la distribución binomial
Identificar dos casos de la literatura de distribuciones de probabilidad binomial y realizar cálculos de probabilidades utilizando la fórmula y las funciones dbinom() y pbinom(), identificar el valor medio, la varianza y la desviación.
El experimento de lanzar al aire una moneda es un ejemplo sencillo de una importante variable aleatoria discreta llamada variable aleatoria binomial. Muchos experimentos prácticos resultan en datos similares a que salgan cara o cruz al tirar la moneda (Mendenhall et al., 2006)
Un experimento binomial es el que tiene estas cinco características:
El experimento consiste en n intentos idénticos.
Cada intento resulta en uno de dos resultados. Por falta de un mejor nombre, el resultado uno se llama éxito, ‘S’, y el otro se llama fracaso, ‘F’.
La probabilidad de éxito en un solo intento es igual a p y es igual de un intento a otro. La probabilidad de fracaso es igual a q=(1−p).
Los intentos son independientes.
El interés es el valor de x, o sea, el número de éxitos observado durante los n intentos, para x=0,1,2,…,n. (Mendenhall et al., 2006).
Un experimiento de Bernoulli puede tener como resultado un éxito con probabilidad p y un fracaso con probabilidad q=1−p. Entonces, la distribución de probabilidad de la variable aleatoria binomial X, el número de éxito en n ensayos independientes (Walpole et al., 2012):
library(dplyr)
## Warning: package 'dplyr' was built under R version 3.6.3
##
## Attaching package: 'dplyr'
## The following objects are masked from 'package:stats':
##
## filter, lag
## The following objects are masked from 'package:base':
##
## intersect, setdiff, setequal, union
source("https://raw.githubusercontent.com/rpizarrog/probabilidad-y-estad-stica/master/funciones/funciones.distribuciones.r")
## Warning: package 'gtools' was built under R version 3.6.3
Tienda de ropa MartinClothingStore (Anderson et al., 2008)
De acuerdo con la experiencia, el gerente de la tienda estima que la probabilidad de que un cliente realice una compra es 0.30.
Identificar las probabilidad para cuando se compre 0,1,2,3, determinar la tabla de probabilidad incluyendo probabilidad cumulada
Encontrar la probabilidad de que compren dos clientes
Encontrar la probabilidad de que compren los tres próximos clientes.
Encontrar la probabilidad de que sean menor o igual que dos.
Determinar el valor esperado y su significado
Determinar la varianza y la desviación estándar y si significado
Interpretar
x <- c(0,1,2,3)
n <- 3
exito <- 0.30
Determinar tabla de probabilidad usando la función creada y conforme a la fórmula
tabla1 <- data.frame(x=x, f.prob.x = f.prob.binom(x,n,exito), f.acum.x = cumsum(f.prob.binom(x,n,exito)))
tabla1
## x f.prob.x f.acum.x
## 1 0 0.343 0.343
## 2 1 0.441 0.784
## 3 2 0.189 0.973
## 4 3 0.027 1.000
Determinar tabla de probabilidad usando función propia de los paquetes base de r dbinom()
tabla2 <- data.frame(x=x, f.prob.x = dbinom(x = x, size = n, prob = exito), f.acum.x = cumsum(dbinom(x = x, size = n, prob = exito)))
tabla2
## x f.prob.x f.acum.x
## 1 0 0.343 0.343
## 2 1 0.441 0.784
## 3 2 0.189 0.973
## 4 3 0.027 1.000
Identificar la probabildiad cuando P(x=2) de la tabla
Se puede usar tabla1 o tabla2 es la misma
valor.x <- 2
la.probabilidad <- filter(tabla1, x == valor.x)
la.probabilidad
## x f.prob.x f.acum.x
## 1 2 0.189 0.973
paste("La probabilidad cuando x es ", valor.x, " es igual a : ", la.probabilidad$f.prob.x )
## [1] "La probabilidad cuando x es 2 es igual a : 0.189"
Identificar la probabildiad cuando P(x=3) de la tabla
Se puede usar tabla1 o tabla2 es la misma
valor.x <- 3
la.probabilidad <- filter(tabla1, x == valor.x)
la.probabilidad
## x f.prob.x f.acum.x
## 1 3 0.027 1
paste("La probabilidad cuando x es ", valor.x, " es igual a : ", la.probabilidad$f.prob.x )
## [1] "La probabilidad cuando x es 3 es igual a : 0.027"
Ahora usar la función acumulada por la pregunta
P(x=0)+P(x=1)+P(x=2)
valor.x <- 2
la.probabilidad <- filter(tabla1, x == valor.x)
la.probabilidad
## x f.prob.x f.acum.x
## 1 2 0.189 0.973
paste("La probabilidad de que sea menor o igual a ", valor.x, " es igual a : ", la.probabilidad$f.acum.x )
## [1] "La probabilidad de que sea menor o igual a 2 es igual a : 0.973"
μ=n⋅p
VE <- n * exito
paste ("El valor esperado es: ", VE)
## [1] "El valor esperado es: 0.9"
La varianza en la distribución binomial
varianza <- n * exito *( 1 - exito)
paste ("La varianza es: ", round(varianza,2))
## [1] "La varianza es: 0.63"
La desviación
desviacion.std <- sqrt(varianza)
paste("La desviación std es: ", round(desviacion.std, 2))
## [1] "La desviación std es: 0.79"
Un jugador encesta con probabilidad 0.55. (La Distribución Binomial O de Bernoulli, n.d.):
Determinar las probabilidad de los tiros del 1 al 6 con la tabla de probabilidad
Determinr la probabilidad de encestar cuatro tiros P(x=4)
Determinar la probabilidad de encestar todos tiros o sea seis P(x=6)
Determinar la probabilidad de encestar al menor tres P.acum(x=3)
Determinar el valor esperado VE
Determinar la varianza y su desviación estándard
Interpretar el ejercicio
La probabilidad de que un paciente se recupere de una rara enferme dad sanguínea es 0.4. Si se sabe que 15 personas contraen tal enfermedad,
Determine tabla de probabilidad de 1 al 15
¿Cuál es la probabilidad de que sobrevivan al menos diez,
¿Cuál es la probabilidad de que sobrevivan de tres a ocho, y
¿Cuál es la probabilidad de que sobrevivan exactamente cinco?
¿Cuál es el valor esperado ‘VE’ o la esperanza media?
¿Cual es la varianza y la desviación estándar?
Interpretración del ejercicio.