AUCs

Approach 1: Fitting logit classifier on full validation set

AUC of all Models
Model ID Model Name Pre-Trained Baseline Just Photo Photo and Covariates
1 inception-flat_decay imagenet 0.585 (0.555-0.615) 0.669 (0.640-0.697) 0.672 (0.643-0.700)
2 inception-steep_decay imagenet 0.585 (0.555-0.615) 0.656 (0.627-0.685) 0.660 (0.631-0.688)
3 resnet18-flat_decay imagenet 0.585 (0.555-0.615) 0.685 (0.657-0.713) 0.689 (0.661-0.716)
4 resnet18-gentle_decay imagenet 0.585 (0.555-0.615) 0.685 (0.657-0.713) 0.686 (0.658-0.714)
5 resnet18-steep_decay imagenet 0.585 (0.555-0.615) 0.687 (0.658-0.715) 0.689 (0.661-0.717)
6 resnet50-flat_decay imagenet 0.585 (0.555-0.615) 0.691 (0.664-0.719) 0.696 (0.668-0.723)
7 resnet50-gentle_decay imagenet 0.585 (0.555-0.615) 0.683 (0.655-0.711) 0.687 (0.659-0.715)
8 resnet50-steep_decay imagenet 0.585 (0.555-0.615) 0.692 (0.665-0.720) 0.693 (0.665-0.720)

Multihead_01 Summary Output

Model 1 (ResNet-50) Classifier (full validation set)
Dependent variable:
Election Outcome (did win)
(1) (2) (3)
P-hat Baseline 1.030*** 0.536***
(0.726, 1.333) (0.232, 0.840)
P-hat CNN 0.440*** 0.408***
(0.375, 0.504) (0.342, 0.475)
Constant -0.016 0.409*** 0.112
(-0.192, 0.160) (0.377, 0.441) (-0.060, 0.283)
Observations 1,393 1,393 1,393
Adjusted R2 0.021 0.082 0.087
F Statistic 31.167*** (df = 1; 1391) 125.498*** (df = 1; 1391) 67.291*** (df = 2; 1390)
Note: p<0.1; p<0.05; p<0.01

Multihead_03 Summary Output

Model 1 (ResNet-50) Classifier (full validation set)
Dependent variable:
Election Outcome (did win)
(1) (2) (3)
P-hat Baseline 1.030*** 0.415**
(0.726, 1.333) (0.111, 0.718)
P-hat CNN 0.771*** 0.728***
(0.670, 0.871) (0.623, 0.834)
Constant -0.016 0.160*** -0.056
(-0.192, 0.160) (0.102, 0.219) (-0.225, 0.113)
Observations 1,393 1,393 1,393
Adjusted R2 0.021 0.101 0.104
F Statistic 31.167*** (df = 1; 1391) 157.765*** (df = 1; 1391) 81.635*** (df = 2; 1390)
Note: p<0.1; p<0.05; p<0.01

Multihead_04 Summary Output

Model 1 (ResNet-50) Classifier (full validation set)
Dependent variable:
Election Outcome (did win)
(1) (2) (3)
P-hat Baseline 1.030*** 0.284
(0.726, 1.333) (-0.026, 0.595)
P-hat CNN 0.851*** 0.812***
(0.739, 0.962) (0.694, 0.931)
Constant -0.016 0.073* -0.069
(-0.192, 0.160) (0.003, 0.142) (-0.238, 0.100)
Observations 1,393 1,393 1,393
Adjusted R2 0.021 0.101 0.102
F Statistic 31.167*** (df = 1; 1391) 158.231*** (df = 1; 1391) 80.325*** (df = 2; 1390)
Note: p<0.1; p<0.05; p<0.01

Multihead_05 Summary Output

Model 1 (ResNet-50) Classifier (full validation set)
Dependent variable:
Election Outcome (did win)
(1) (2) (3)
P-hat Baseline 1.030*** 0.436**
(0.726, 1.333) (0.133, 0.739)
P-hat CNN 0.569*** 0.537***
(0.494, 0.644) (0.459, 0.615)
Constant -0.016 0.335*** 0.097
(-0.192, 0.160) (0.297, 0.373) (-0.072, 0.267)
Observations 1,393 1,393 1,393
Adjusted R2 0.021 0.100 0.103
F Statistic 31.167*** (df = 1; 1391) 155.755*** (df = 1; 1391) 80.941*** (df = 2; 1390)
Note: p<0.1; p<0.05; p<0.01

Multihead_06 Summary Output

Model 4 (ResNet-50) Classifier (full validation set)
Dependent variable:
Election Outcome (did win)
(1) (2) (3)
P-hat Baseline 1.030*** 0.494***
(0.726, 1.333) (0.195, 0.793)
P-hat CNN 0.655*** 0.619***
(0.570, 0.739) (0.532, 0.706)
Constant -0.016 0.304*** 0.034
(-0.192, 0.160) (0.263, 0.344) (-0.135, 0.202)
Observations 1,393 1,393 1,393
Adjusted R2 0.021 0.104 0.108
F Statistic 31.167*** (df = 1; 1391) 162.507*** (df = 1; 1391) 85.317*** (df = 2; 1390)
Note: p<0.1; p<0.05; p<0.01

Multihead_07 Summary Output

Model 1 (ResNet-50) Classifier (full validation set)
Dependent variable:
Election Outcome (did win)
(1) (2) (3)
P-hat Baseline 1.030*** 0.417**
(0.726, 1.333) (0.113, 0.722)
P-hat CNN 0.640*** 0.603***
(0.554, 0.725) (0.514, 0.693)
Constant -0.016 0.261*** 0.039
(-0.192, 0.160) (0.214, 0.308) (-0.131, 0.208)
Observations 1,393 1,393 1,393
Adjusted R2 0.021 0.098 0.100
F Statistic 31.167*** (df = 1; 1391) 151.442*** (df = 1; 1391) 78.482*** (df = 2; 1390)
Note: p<0.1; p<0.05; p<0.01

Multihead_08 Summary Output

Model 8 (ResNet-50) Classifier (full validation set)
Dependent variable:
Election Outcome (did win)
(1) (2) (3)
P-hat Baseline 1.030*** 0.459**
(0.726, 1.333) (0.157, 0.760)
P-hat CNN 0.636*** 0.600***
(0.552, 0.720) (0.513, 0.687)
Constant -0.016 0.166*** -0.075
(-0.192, 0.160) (0.108, 0.224) (-0.244, 0.094)
Observations 1,393 1,393 1,393
Adjusted R2 0.021 0.100 0.104
F Statistic 31.167*** (df = 1; 1391) 156.029*** (df = 1; 1391) 81.431*** (df = 2; 1390)
Note: p<0.1; p<0.05; p<0.01

Plotting Model Coeficients:

Combining models

AUC of Combination Models
Model ID Baseline Combined Models
1-2 0.585 (0.555-0.615) 0.681 (0.653-0.709)
1-2-3-4 0.585 (0.555-0.615) 0.706 (0.678-0.733)
1-2-3-4-5-6-7-8 0.585 (0.555-0.615) 0.721 (0.695-0.748)
3-4 0.585 (0.555-0.615) 0.697 (0.669-0.724)
5-6 0.585 (0.555-0.615) 0.710 (0.683-0.737)
5-6-7-8 0.585 (0.555-0.615) 0.716 (0.689-0.743)
7-8 0.585 (0.555-0.615) 0.703 (0.676-0.731)

Decile Plots

Only for p_hat_cnn from model 04 (highest AUC)

Decile Plot 1 - p_hat_cnn

Decile Plot 2 - p_hat_baseline

Separated by Gender:

AUC of Models Split by Sex
Model ID Model Name Pretrained On Female Baseline Female Full Model Male Baseline Male Full Model
1 inception-flat_decay imagenet 0.486 (0.432-0.540) 0.625 (0.574-0.677) 0.558 (0.521-0.595) 0.676 (0.641-0.711)
2 inception-steep_decay imagenet 0.486 (0.432-0.540) 0.582 (0.529-0.635) 0.558 (0.521-0.595) 0.669 (0.634-0.704)
3 resnet18-flat_decay imagenet 0.486 (0.432-0.540) 0.638 (0.587-0.689) 0.558 (0.521-0.595) 0.688 (0.654-0.723)
4 resnet18-gentle_decay imagenet 0.486 (0.432-0.540) 0.653 (0.602-0.703) 0.558 (0.521-0.595) 0.680 (0.645-0.715)
5 resnet18-steep_decay imagenet 0.486 (0.432-0.540) 0.632 (0.580-0.683) 0.558 (0.521-0.595) 0.698 (0.664-0.733)
6 resnet50-flat_decay imagenet 0.486 (0.432-0.540) 0.658 (0.608-0.709) 0.558 (0.521-0.595) 0.702 (0.668-0.736)
7 resnet50-gentle_decay imagenet 0.486 (0.432-0.540) 0.632 (0.580-0.683) 0.558 (0.521-0.595) 0.695 (0.661-0.730)
8 resnet50-steep_decay imagenet 0.486 (0.432-0.540) 0.648 (0.598-0.699) 0.558 (0.521-0.595) 0.700 (0.666-0.734)
1-2-3-4-5-6-7-8 0.486 (0.432-0.540) 0.681 (0.632-0.730) 0.558 (0.521-0.595) 0.730 (0.697-0.762)

Regression Outputs - Model 04

Male Models
Dependent variable:
Election Outcome
(1) (2) (3)
P-hat Baseline 0.889*** 0.180
(0.476, 1.302) (-0.233, 0.593)
P-hat CNN 0.859*** 0.840***
(0.721, 0.996) (0.696, 0.984)
Constant 0.081 0.081 -0.017
(-0.171, 0.332) (-0.009, 0.170) (-0.257, 0.224)
Observations 944 944 944
Adjusted R2 0.012 0.100 0.099
F Statistic 12.519*** (df = 1; 942) 105.410*** (df = 1; 942) 52.934*** (df = 2; 941)
Note: p<0.1; p<0.05; p<0.01
Female Models
Dependent variable:
Election Outcome
(1) (2) (3)
P-hat Baseline 0.455 0.016
(-0.433, 1.342) (-0.851, 0.882)
P-hat CNN 0.742*** 0.742***
(0.532, 0.952) (0.529, 0.954)
Constant 0.256 0.102 0.094
(-0.204, 0.716) (-0.014, 0.218) (-0.353, 0.541)
Observations 448 448 448
Adjusted R2 -0.001 0.068 0.066
F Statistic 0.711 (df = 1; 446) 33.851*** (df = 1; 446) 16.888*** (df = 2; 445)
Note: p<0.1; p<0.05; p<0.01