Summary
This document contains staggered regressions (OLS) on arrest-release. We include the following variables in this regression:
- Xg-Boost risk predictor
- Arrest and demographic covariates p-hat
- Mugshot CNN p-hat
Note that the new Xg-Boost risk predictor is based on the time-varying historical arrest data. I see an increase in AUC from 0.601 to 0.63 by including these.
My main takeaway from these regressions is:
- The risk predictor coefficient has the expected directionality
- All coefficients appear significant at the 5% level
- We are able to pick up additional variance with the inclusion of covariates and cnn-predictions
- The adjusted R-squared increases in all model witht he inclusion of p-hat-cnn and the coefficients are positive and significant
Multihead 0.1 - ResNet18 - Overfit
Multihead(ResNet18)
|
|
|
|
Dependent variable:
|
|
|
|
|
|
Release Outcome
|
|
|
(1)
|
(2)
|
(3)
|
|
|
|
risk_pred_prob
|
-1.112***
|
-0.800***
|
-0.776***
|
|
|
(-1.216, -1.008)
|
(-0.902, -0.699)
|
(-0.877, -0.675)
|
|
|
|
|
|
|
p_hat_covariates
|
|
0.935***
|
0.931***
|
|
|
|
(0.883, 0.988)
|
(0.879, 0.984)
|
|
|
|
|
|
|
p_hat_cnn
|
|
|
0.078***
|
|
|
|
|
(0.055, 0.100)
|
|
|
|
|
|
|
Constant
|
1.105***
|
0.296***
|
0.226***
|
|
|
(1.072, 1.138)
|
(0.241, 0.351)
|
(0.167, 0.285)
|
|
|
|
|
|
|
|
|
Observations
|
8,835
|
8,835
|
8,835
|
|
Adjusted R2
|
0.034
|
0.119
|
0.122
|
|
F Statistic
|
307.362*** (df = 1; 8833)
|
597.506*** (df = 2; 8832)
|
410.110*** (df = 3; 8831)
|
|
|
|
Note:
|
p<0.1; p<0.05; p<0.01
|
Multihead 0.3 - ResNet50 - (not) Overfit
Multihead(ResNet50)
|
|
|
|
Dependent variable:
|
|
|
|
|
|
Release Outcome
|
|
|
(1)
|
(2)
|
(3)
|
|
|
|
risk_pred_prob
|
-1.112***
|
-0.800***
|
-0.725***
|
|
|
(-1.216, -1.008)
|
(-0.902, -0.699)
|
(-0.827, -0.624)
|
|
|
|
|
|
|
p_hat_covariates
|
|
0.935***
|
0.873***
|
|
|
|
(0.883, 0.988)
|
(0.819, 0.926)
|
|
|
|
|
|
|
p_hat_cnn
|
|
|
0.377***
|
|
|
|
|
(0.312, 0.441)
|
|
|
|
|
|
|
Constant
|
1.105***
|
0.296***
|
0.039
|
|
|
(1.072, 1.138)
|
(0.241, 0.351)
|
(-0.031, 0.110)
|
|
|
|
|
|
|
|
|
Observations
|
8,835
|
8,835
|
8,835
|
|
Adjusted R2
|
0.034
|
0.119
|
0.128
|
|
F Statistic
|
307.362*** (df = 1; 8833)
|
597.506*** (df = 2; 8832)
|
432.928*** (df = 3; 8831)
|
|
|
|
Note:
|
p<0.1; p<0.05; p<0.01
|
Multihead 0.7 - Inception ResNet - Overfit
Multihead(Inception ResNet)
|
|
|
|
Dependent variable:
|
|
|
|
|
|
Release Outcome
|
|
|
(1)
|
(2)
|
(3)
|
|
|
|
risk_pred_prob
|
-1.112***
|
-0.800***
|
-0.787***
|
|
|
(-1.216, -1.008)
|
(-0.902, -0.699)
|
(-0.888, -0.686)
|
|
|
|
|
|
|
p_hat_covariates
|
|
0.935***
|
0.928***
|
|
|
|
(0.883, 0.988)
|
(0.875, 0.981)
|
|
|
|
|
|
|
p_hat_cnn
|
|
|
0.061***
|
|
|
|
|
(0.034, 0.088)
|
|
|
|
|
|
|
Constant
|
1.105***
|
0.296***
|
0.246***
|
|
|
(1.072, 1.138)
|
(0.241, 0.351)
|
(0.186, 0.305)
|
|
|
|
|
|
|
|
|
Observations
|
8,835
|
8,835
|
8,835
|
|
Adjusted R2
|
0.034
|
0.119
|
0.120
|
|
F Statistic
|
307.362*** (df = 1; 8833)
|
597.506*** (df = 2; 8832)
|
403.596*** (df = 3; 8831)
|
|
|
|
Note:
|
p<0.1; p<0.05; p<0.01
|
Multihead 0.12 - ResNet50 - Overfit
Multihead(ResNet50)
|
|
|
|
Dependent variable:
|
|
|
|
|
|
Release Outcome
|
|
|
(1)
|
(2)
|
(3)
|
|
|
|
risk_pred_prob
|
-1.112***
|
-0.800***
|
-0.788***
|
|
|
(-1.216, -1.008)
|
(-0.902, -0.699)
|
(-0.889, -0.687)
|
|
|
|
|
|
|
p_hat_covariates
|
|
0.935***
|
0.931***
|
|
|
|
(0.883, 0.988)
|
(0.878, 0.983)
|
|
|
|
|
|
|
p_hat_cnn
|
|
|
0.086***
|
|
|
|
|
(0.059, 0.112)
|
|
|
|
|
|
|
Constant
|
1.105***
|
0.296***
|
0.220***
|
|
|
(1.072, 1.138)
|
(0.241, 0.351)
|
(0.161, 0.280)
|
|
|
|
|
|
|
|
|
Observations
|
8,835
|
8,835
|
8,835
|
|
Adjusted R2
|
0.034
|
0.119
|
0.122
|
|
F Statistic
|
307.362*** (df = 1; 8833)
|
597.506*** (df = 2; 8832)
|
409.142*** (df = 3; 8831)
|
|
|
|
Note:
|
p<0.1; p<0.05; p<0.01
|
Plotting Model Coeficients:
This gives a good visual for differences among models for judging performance based on regression coefficients. All perform essentially the same, with he exception of model_03 which has a significantly larger p_hat_cnn coefficient (outside the C.I.’s). This may potentially be informative for choosing models going forward.

Decile Plots
Here I provide two types of plots for each of p_hat_cnn , p_hat_covariate, and risk_pred_prob:
- Decile Plot A - The max value in a decile vs. the mean arrest outcome in that decile
- Decile Plot B - The mean arrest outcome at each decile index
Decile Plot 1 - p_hat_cnn


Decile Plot 2 - p_hat_covariate


Decile Plot 3 - risk_pred_prob


MTurk Features
We now include MTurk results in our covariates. These are collected for some (not all) of the validation set, reaching 7318 arrest_ids. The included features are:
- Attractiveness
- Competence
- Dominance
- Trustworthiness
- Age
- Race (Black, White, Hispanic, Asian, Indian, Unsure/Other)
- Skin-color (18 variants)
Multihead 0.3 - ResNet50 - (not) Overfit
Table _01 - Model 03
- The
p_hat_features model includes 18 skin-tone variants (not super-categorized as in regression table No.2)
p_hat_cnn is significant throughout !
- These effects are robust to the inclusion/exclusion of
race in the covariate model on top of the skin_color levels
- Quite confident that in this sense we are picking up signal on-top of the information gained through knowing race/skin_color !
Multihead(ResNet50)
|
|
|
|
Dependent variable:
|
|
|
|
|
|
Release Outcome
|
|
|
(1)
|
(2)
|
(3)
|
(4)
|
|
|
|
risk_pred_prob
|
-1.074***
|
-1.053***
|
-0.720***
|
-0.658***
|
|
|
(-1.188, -0.960)
|
(-1.167, -0.938)
|
(-0.831, -0.608)
|
(-0.770, -0.547)
|
|
|
|
|
|
|
|
p_hat_features
|
|
0.773***
|
0.579***
|
0.395**
|
|
|
|
(0.447, 1.099)
|
(0.266, 0.891)
|
(0.083, 0.708)
|
|
|
|
|
|
|
|
p_hat_covariates
|
|
|
0.924***
|
0.855***
|
|
|
|
|
(0.864, 0.983)
|
(0.795, 0.916)
|
|
|
|
|
|
|
|
p_hat_cnn
|
|
|
|
0.384***
|
|
|
|
|
|
(0.313, 0.455)
|
|
|
|
|
|
|
|
Constant
|
1.095***
|
0.498***
|
-0.162
|
-0.276*
|
|
|
(1.059, 1.131)
|
(0.243, 0.752)
|
(-0.410, 0.085)
|
(-0.523, -0.029)
|
|
|
|
|
|
|
|
|
|
Observations
|
7,318
|
7,318
|
7,318
|
7,318
|
|
Adjusted R2
|
0.032
|
0.033
|
0.113
|
0.122
|
|
F Statistic
|
239.132*** (df = 1; 7316)
|
127.396*** (df = 2; 7315)
|
311.346*** (df = 3; 7314)
|
255.754*** (df = 4; 7313)
|
|
|
|
Note:
|
p<0.1; p<0.05; p<0.01
|
Table _02 - Model 03
covariates_lm excludes race (so as to allow the skin_tone to account for all race signal in this test)
- The results (
p_hat_cnn being significant) are robust to the inclusion of race, though the skin_tone_cat_light become insignificant
skin_tone_(category) is a factor variable which encodes the 18 raw hexidecimal color variants (included in Table _01) into three categories comprised of 6 such variants into one of light, medium, and dark skin categories respectively.
Multihead(ResNet50)
|
|
|
|
Dependent variable:
|
|
|
|
|
|
Release Outcome
|
|
|
(1)
|
(2)
|
(3)
|
(4)
|
|
|
|
risk_pred_prob
|
-1.074***
|
-1.068***
|
-0.736***
|
-0.676***
|
|
|
(-1.188, -0.960)
|
(-1.183, -0.953)
|
(-0.849, -0.624)
|
(-0.788, -0.564)
|
|
|
|
|
|
|
|
skin_tone_cat_light_skin
|
|
-0.004
|
-0.015
|
-0.019*
|
|
|
|
(-0.022, 0.015)
|
(-0.033, 0.002)
|
(-0.037, -0.002)
|
|
|
|
|
|
|
|
skin_tone_cat_medium_skin
|
|
0.004
|
-0.004
|
-0.007
|
|
|
|
(-0.018, 0.026)
|
(-0.025, 0.018)
|
(-0.028, 0.014)
|
|
|
|
|
|
|
|
age
|
|
-0.0005
|
-0.0001
|
0.001
|
|
|
|
(-0.002, 0.001)
|
(-0.001, 0.001)
|
(-0.0004, 0.002)
|
|
|
|
|
|
|
|
attractiveness
|
|
-0.003
|
0.001
|
0.001
|
|
|
|
(-0.013, 0.008)
|
(-0.010, 0.011)
|
(-0.009, 0.011)
|
|
|
|
|
|
|
|
competence
|
|
0.003
|
-0.002
|
-0.003
|
|
|
|
(-0.010, 0.015)
|
(-0.014, 0.010)
|
(-0.015, 0.009)
|
|
|
|
|
|
|
|
dominance
|
|
-0.002
|
0.003
|
0.005
|
|
|
|
(-0.011, 0.007)
|
(-0.005, 0.012)
|
(-0.003, 0.014)
|
|
|
|
|
|
|
|
trustworthiness
|
|
0.004
|
0.004
|
0.002
|
|
|
|
(-0.007, 0.015)
|
(-0.007, 0.015)
|
(-0.009, 0.012)
|
|
|
|
|
|
|
|
p_hat_covariates
|
|
|
0.931***
|
0.860***
|
|
|
|
|
(0.872, 0.991)
|
(0.799, 0.920)
|
|
|
|
|
|
|
|
p_hat_cnn
|
|
|
|
0.404***
|
|
|
|
|
|
(0.333, 0.476)
|
|
|
|
|
|
|
|
Constant
|
1.095***
|
1.100***
|
0.261***
|
-0.026
|
|
|
(1.059, 1.131)
|
(1.030, 1.170)
|
(0.175, 0.347)
|
(-0.126, 0.073)
|
|
|
|
|
|
|
|
|
|
Observations
|
7,318
|
7,318
|
7,318
|
7,318
|
|
Adjusted R2
|
0.032
|
0.031
|
0.111
|
0.122
|
|
F Statistic
|
239.132*** (df = 1; 7316)
|
30.083*** (df = 8; 7309)
|
102.968*** (df = 9; 7308)
|
102.390*** (df = 10; 7307)
|
|
|
|
Note:
|
p<0.1; p<0.05; p<0.01
|
Table _03 - Model 03
Here we include the 18 raw skin-tone levels.
Multihead(ResNet50)
|
|
|
|
Dependent variable:
|
|
|
|
|
|
Release Outcome
|
|
|
(1)
|
(2)
|
(3)
|
(4)
|
(5)
|
|
|
|
risk_pred_prob
|
-1.074***
|
-1.077***
|
-1.072***
|
-0.745***
|
-0.685***
|
|
|
(-1.188, -0.960)
|
(-1.192, -0.962)
|
(-1.187, -0.956)
|
(-0.858, -0.632)
|
(-0.798, -0.573)
|
|
|
|
|
|
|
|
|
skin_tonenumber_623a17
|
|
-0.002
|
-0.002
|
-0.005
|
-0.006
|
|
|
|
(-0.039, 0.034)
|
(-0.039, 0.035)
|
(-0.040, 0.030)
|
(-0.041, 0.029)
|
|
|
|
|
|
|
|
|
skin_tonenumber_76441f
|
|
-0.005
|
-0.005
|
-0.006
|
-0.009
|
|
|
|
(-0.050, 0.040)
|
(-0.051, 0.040)
|
(-0.049, 0.038)
|
(-0.052, 0.034)
|
|
|
|
|
|
|
|
|
skin_tonenumber_80492a
|
|
0.005
|
0.005
|
-0.001
|
-0.008
|
|
|
|
(-0.035, 0.045)
|
(-0.035, 0.045)
|
(-0.040, 0.037)
|
(-0.046, 0.031)
|
|
|
|
|
|
|
|
|
skin_tonenumber_885633
|
|
0.050*
|
0.050*
|
0.037
|
0.033
|
|
|
|
(0.002, 0.099)
|
(0.002, 0.098)
|
(-0.010, 0.083)
|
(-0.013, 0.078)
|
|
|
|
|
|
|
|
|
skin_tonenumber_94623d
|
|
0.006
|
0.006
|
-0.008
|
-0.020
|
|
|
|
(-0.040, 0.053)
|
(-0.041, 0.053)
|
(-0.053, 0.037)
|
(-0.065, 0.025)
|
|
|
|
|
|
|
|
|
skin_tonenumber_ab8b64
|
|
0.001
|
0.0002
|
-0.013
|
-0.022
|
|
|
|
(-0.041, 0.043)
|
(-0.042, 0.043)
|
(-0.053, 0.028)
|
(-0.063, 0.018)
|
|
|
|
|
|
|
|
|
skin_tonenumber_b26949
|
|
0.013
|
0.013
|
0.012
|
0.004
|
|
|
|
(-0.044, 0.070)
|
(-0.044, 0.070)
|
(-0.043, 0.067)
|
(-0.051, 0.058)
|
|
|
|
|
|
|
|
|
skin_tonenumber_cb9662
|
|
0.041
|
0.040
|
0.035
|
0.025
|
|
|
|
(-0.005, 0.088)
|
(-0.006, 0.087)
|
(-0.009, 0.080)
|
(-0.019, 0.070)
|
|
|
|
|
|
|
|
|
skin_tonenumber_d09e7d
|
|
0.025
|
0.024
|
0.014
|
0.001
|
|
|
|
(-0.030, 0.079)
|
(-0.031, 0.078)
|
(-0.038, 0.067)
|
(-0.051, 0.053)
|
|
|
|
|
|
|
|
|
skin_tonenumber_e7bc91
|
|
0.002
|
0.001
|
-0.031
|
-0.043
|
|
|
|
(-0.064, 0.068)
|
(-0.065, 0.067)
|
(-0.094, 0.032)
|
(-0.106, 0.020)
|
|
|
|
|
|
|
|
|
skin_tonenumber_e9cba7
|
|
-0.026
|
-0.027
|
-0.066*
|
-0.077**
|
|
|
|
(-0.090, 0.038)
|
(-0.091, 0.037)
|
(-0.127, -0.005)
|
(-0.138, -0.016)
|
|
|
|
|
|
|
|
|
skin_tonenumber_ecc083
|
|
-0.022
|
-0.022
|
-0.042
|
-0.044
|
|
|
|
(-0.071, 0.028)
|
(-0.072, 0.027)
|
(-0.089, 0.006)
|
(-0.092, 0.003)
|
|
|
|
|
|
|
|
|
skin_tonenumber_eed0b8
|
|
0.022
|
0.022
|
-0.009
|
-0.024
|
|
|
|
(-0.022, 0.066)
|
(-0.022, 0.065)
|
(-0.051, 0.033)
|
(-0.065, 0.018)
|
|
|
|
|
|
|
|
|
skin_tonenumber_efc088
|
|
-0.084*
|
-0.084*
|
-0.089**
|
-0.097**
|
|
|
|
(-0.159, -0.008)
|
(-0.160, -0.009)
|
(-0.162, -0.017)
|
(-0.168, -0.025)
|
|
|
|
|
|
|
|
|
skin_tonenumber_efc794
|
|
-0.034
|
-0.034
|
-0.049
|
-0.056*
|
|
|
|
(-0.087, 0.019)
|
(-0.087, 0.019)
|
(-0.099, 0.002)
|
(-0.107, -0.006)
|
|
|
|
|
|
|
|
|
skin_tonenumber_f6e1aa
|
|
0.014
|
0.013
|
-0.010
|
-0.017
|
|
|
|
(-0.029, 0.057)
|
(-0.030, 0.056)
|
(-0.051, 0.031)
|
(-0.058, 0.024)
|
|
|
|
|
|
|
|
|
skin_tonenumber_f7ddc4
|
|
0.006
|
0.006
|
-0.020
|
-0.036
|
|
|
|
(-0.033, 0.045)
|
(-0.034, 0.045)
|
(-0.058, 0.018)
|
(-0.074, 0.001)
|
|
|
|
|
|
|
|
|
age
|
|
|
-0.0004
|
-0.00002
|
0.001
|
|
|
|
|
(-0.002, 0.001)
|
(-0.001, 0.001)
|
(-0.0003, 0.002)
|
|
|
|
|
|
|
|
|
attractiveness
|
|
|
-0.002
|
0.002
|
0.003
|
|
|
|
|
(-0.013, 0.009)
|
(-0.008, 0.012)
|
(-0.008, 0.013)
|
|
|
|
|
|
|
|
|
competence
|
|
|
0.002
|
-0.002
|
-0.003
|
|
|
|
|
(-0.010, 0.015)
|
(-0.014, 0.010)
|
(-0.015, 0.009)
|
|
|
|
|
|
|
|
|
dominance
|
|
|
-0.002
|
0.003
|
0.005
|
|
|
|
|
(-0.011, 0.007)
|
(-0.006, 0.011)
|
(-0.004, 0.013)
|
|
|
|
|
|
|
|
|
trustworthiness
|
|
|
0.004
|
0.004
|
0.001
|
|
|
|
|
(-0.007, 0.015)
|
(-0.007, 0.014)
|
(-0.009, 0.012)
|
|
|
|
|
|
|
|
|
p_hat_covariates
|
|
|
|
0.936***
|
0.865***
|
|
|
|
|
|
(0.876, 0.995)
|
(0.804, 0.925)
|
|
|
|
|
|
|
|
|
p_hat_cnn
|
|
|
|
|
0.410***
|
|
|
|
|
|
|
(0.338, 0.482)
|
|
|
|
|
|
|
|
|
Constant
|
1.095***
|
1.091***
|
1.095***
|
0.258***
|
-0.029
|
|
|
(1.059, 1.131)
|
(1.043, 1.139)
|
(1.018, 1.171)
|
(0.168, 0.349)
|
(-0.132, 0.074)
|
|
|
|
|
|
|
|
|
|
|
Observations
|
7,318
|
7,318
|
7,318
|
7,318
|
7,318
|
|
Adjusted R2
|
0.032
|
0.032
|
0.031
|
0.112
|
0.123
|
|
F Statistic
|
239.132*** (df = 1; 7316)
|
14.271*** (df = 18; 7299)
|
11.215*** (df = 23; 7294)
|
39.518*** (df = 24; 7293)
|
41.899*** (df = 25; 7292)
|
|
|
|
Note:
|
p<0.1; p<0.05; p<0.01
|
Table _04 - Model 03 - Male vs. Female
We now split the regression model into male and female.
- The
p_hat_cnn coefficient is significant and larger than the combined model for both
- The Female
p_hat_cnn is surprisingly large
- The
dominance feature for the female population becomes signficant (which is fascinating !!!)
Table _04 - Male
Multihead(ResNet50)
|
|
|
|
Dependent variable:
|
|
|
|
|
|
Release Outcome
|
|
|
(1)
|
(2)
|
(3)
|
(4)
|
(5)
|
|
|
|
risk_pred_prob
|
-0.997***
|
-1.002***
|
-1.003***
|
-0.760***
|
-0.724***
|
|
|
(-1.125, -0.869)
|
(-1.132, -0.873)
|
(-1.133, -0.874)
|
(-0.885, -0.634)
|
(-0.849, -0.600)
|
|
|
|
|
|
|
|
|
skin_tonenumber_623a17
|
|
-0.011
|
-0.011
|
-0.011
|
-0.013
|
|
|
|
(-0.052, 0.030)
|
(-0.052, 0.029)
|
(-0.050, 0.028)
|
(-0.051, 0.026)
|
|
|
|
|
|
|
|
|
skin_tonenumber_76441f
|
|
-0.009
|
-0.009
|
-0.004
|
-0.007
|
|
|
|
(-0.060, 0.041)
|
(-0.060, 0.042)
|
(-0.053, 0.044)
|
(-0.055, 0.041)
|
|
|
|
|
|
|
|
|
skin_tonenumber_80492a
|
|
-0.017
|
-0.016
|
-0.016
|
-0.022
|
|
|
|
(-0.062, 0.028)
|
(-0.061, 0.029)
|
(-0.059, 0.027)
|
(-0.064, 0.021)
|
|
|
|
|
|
|
|
|
skin_tonenumber_885633
|
|
0.036
|
0.037
|
0.029
|
0.026
|
|
|
|
(-0.018, 0.091)
|
(-0.018, 0.091)
|
(-0.023, 0.081)
|
(-0.026, 0.078)
|
|
|
|
|
|
|
|
|
skin_tonenumber_94623d
|
|
-0.015
|
-0.014
|
-0.021
|
-0.030
|
|
|
|
(-0.069, 0.039)
|
(-0.068, 0.040)
|
(-0.073, 0.030)
|
(-0.082, 0.021)
|
|
|
|
|
|
|
|
|
skin_tonenumber_ab8b64
|
|
-0.019
|
-0.018
|
-0.025
|
-0.034
|
|
|
|
(-0.067, 0.029)
|
(-0.066, 0.030)
|
(-0.071, 0.021)
|
(-0.079, 0.012)
|
|
|
|
|
|
|
|
|
skin_tonenumber_b26949
|
|
-0.019
|
-0.019
|
-0.010
|
-0.020
|
|
|
|
(-0.084, 0.045)
|
(-0.084, 0.046)
|
(-0.072, 0.052)
|
(-0.081, 0.042)
|
|
|
|
|
|
|
|
|
skin_tonenumber_cb9662
|
|
0.029
|
0.030
|
0.036
|
0.028
|
|
|
|
(-0.025, 0.083)
|
(-0.024, 0.084)
|
(-0.016, 0.087)
|
(-0.024, 0.079)
|
|
|
|
|
|
|
|
|
skin_tonenumber_d09e7d
|
|
0.032
|
0.033
|
0.027
|
0.009
|
|
|
|
(-0.031, 0.094)
|
(-0.029, 0.096)
|
(-0.033, 0.087)
|
(-0.050, 0.069)
|
|
|
|
|
|
|
|
|
skin_tonenumber_e7bc91
|
|
-0.051
|
-0.049
|
-0.066
|
-0.078*
|
|
|
|
(-0.130, 0.029)
|
(-0.128, 0.031)
|
(-0.142, 0.010)
|
(-0.154, -0.003)
|
|
|
|
|
|
|
|
|
skin_tonenumber_e9cba7
|
|
-0.036
|
-0.036
|
-0.057
|
-0.074*
|
|
|
|
(-0.112, 0.040)
|
(-0.112, 0.041)
|
(-0.130, 0.016)
|
(-0.147, -0.001)
|
|
|
|
|
|
|
|
|
skin_tonenumber_ecc083
|
|
-0.054
|
-0.053
|
-0.061*
|
-0.064*
|
|
|
|
(-0.112, 0.003)
|
(-0.110, 0.005)
|
(-0.117, -0.006)
|
(-0.119, -0.009)
|
|
|
|
|
|
|
|
|
skin_tonenumber_eed0b8
|
|
0.019
|
0.019
|
-0.003
|
-0.023
|
|
|
|
(-0.032, 0.070)
|
(-0.032, 0.070)
|
(-0.052, 0.046)
|
(-0.072, 0.025)
|
|
|
|
|
|
|
|
|
skin_tonenumber_efc088
|
|
-0.122**
|
-0.121**
|
-0.099*
|
-0.105*
|
|
|
|
(-0.214, -0.029)
|
(-0.213, -0.028)
|
(-0.188, -0.011)
|
(-0.193, -0.017)
|
|
|
|
|
|
|
|
|
skin_tonenumber_efc794
|
|
-0.039
|
-0.039
|
-0.046
|
-0.055
|
|
|
|
(-0.101, 0.022)
|
(-0.100, 0.023)
|
(-0.105, 0.013)
|
(-0.113, 0.004)
|
|
|
|
|
|
|
|
|
skin_tonenumber_f6e1aa
|
|
0.012
|
0.013
|
0.004
|
-0.007
|
|
|
|
(-0.039, 0.063)
|
(-0.038, 0.064)
|
(-0.045, 0.053)
|
(-0.056, 0.041)
|
|
|
|
|
|
|
|
|
skin_tonenumber_f7ddc4
|
|
-0.004
|
-0.003
|
-0.020
|
-0.045*
|
|
|
|
(-0.049, 0.042)
|
(-0.049, 0.043)
|
(-0.064, 0.024)
|
(-0.089, -0.001)
|
|
|
|
|
|
|
|
|
age
|
|
|
0.0005
|
0.0001
|
0.001
|
|
|
|
|
(-0.001, 0.002)
|
(-0.001, 0.001)
|
(-0.0004, 0.002)
|
|
|
|
|
|
|
|
|
attractiveness
|
|
|
-0.005
|
0.002
|
0.003
|
|
|
|
|
(-0.018, 0.008)
|
(-0.011, 0.014)
|
(-0.009, 0.015)
|
|
|
|
|
|
|
|
|
competence
|
|
|
0.004
|
-0.0003
|
-0.001
|
|
|
|
|
(-0.011, 0.019)
|
(-0.014, 0.014)
|
(-0.014, 0.013)
|
|
|
|
|
|
|
|
|
dominance
|
|
|
-0.001
|
-0.003
|
-0.004
|
|
|
|
|
(-0.012, 0.009)
|
(-0.013, 0.007)
|
(-0.014, 0.006)
|
|
|
|
|
|
|
|
|
trustworthiness
|
|
|
0.001
|
0.003
|
0.002
|
|
|
|
|
(-0.013, 0.014)
|
(-0.010, 0.016)
|
(-0.011, 0.014)
|
|
|
|
|
|
|
|
|
p_hat_covariates
|
|
|
|
0.946***
|
0.904***
|
|
|
|
|
|
(0.877, 1.015)
|
(0.834, 0.973)
|
|
|
|
|
|
|
|
|
p_hat_cnn
|
|
|
|
|
0.477***
|
|
|
|
|
|
|
(0.389, 0.565)
|
|
|
|
|
|
|
|
|
Constant
|
1.055***
|
1.064***
|
1.053***
|
0.285***
|
-0.049
|
|
|
(1.014, 1.096)
|
(1.010, 1.118)
|
(0.964, 1.142)
|
(0.183, 0.387)
|
(-0.168, 0.070)
|
|
|
|
|
|
|
|
|
|
|
Observations
|
5,725
|
5,725
|
5,725
|
5,725
|
5,725
|
|
Adjusted R2
|
0.028
|
0.028
|
0.027
|
0.106
|
0.118
|
|
F Statistic
|
164.322*** (df = 1; 5723)
|
10.197*** (df = 18; 5706)
|
8.033*** (df = 23; 5701)
|
29.298*** (df = 24; 5700)
|
31.704*** (df = 25; 5699)
|
|
|
|
Note:
|
p<0.1; p<0.05; p<0.01
|
Table _04 - Female
Multihead(ResNet50)
|
|
|
|
Dependent variable:
|
|
|
|
|
|
Release Outcome
|
|
|
(1)
|
(2)
|
(3)
|
(4)
|
(5)
|
|
|
|
risk_pred_prob
|
-0.996***
|
-0.987***
|
-0.963***
|
-0.722***
|
-0.661***
|
|
|
(-1.280, -0.712)
|
(-1.272, -0.701)
|
(-1.250, -0.677)
|
(-1.002, -0.441)
|
(-0.939, -0.382)
|
|
|
|
|
|
|
|
|
skin_tonenumber_623a17
|
|
0.051
|
0.048
|
0.041
|
0.045
|
|
|
|
(-0.037, 0.139)
|
(-0.040, 0.135)
|
(-0.043, 0.126)
|
(-0.039, 0.129)
|
|
|
|
|
|
|
|
|
skin_tonenumber_76441f
|
|
0.020
|
0.017
|
-0.0005
|
-0.004
|
|
|
|
(-0.084, 0.123)
|
(-0.087, 0.120)
|
(-0.101, 0.100)
|
(-0.104, 0.095)
|
|
|
|
|
|
|
|
|
skin_tonenumber_80492a
|
|
0.101*
|
0.097*
|
0.078
|
0.080
|
|
|
|
(0.010, 0.191)
|
(0.006, 0.187)
|
(-0.009, 0.166)
|
(-0.007, 0.167)
|
|
|
|
|
|
|
|
|
skin_tonenumber_885633
|
|
0.108*
|
0.103
|
0.088
|
0.092
|
|
|
|
(0.004, 0.213)
|
(-0.002, 0.207)
|
(-0.013, 0.189)
|
(-0.008, 0.192)
|
|
|
|
|
|
|
|
|
skin_tonenumber_94623d
|
|
0.065
|
0.057
|
0.058
|
0.054
|
|
|
|
(-0.031, 0.162)
|
(-0.039, 0.154)
|
(-0.035, 0.151)
|
(-0.038, 0.147)
|
|
|
|
|
|
|
|
|
skin_tonenumber_ab8b64
|
|
0.069
|
0.062
|
0.055
|
0.055
|
|
|
|
(-0.022, 0.161)
|
(-0.030, 0.153)
|
(-0.034, 0.143)
|
(-0.033, 0.143)
|
|
|
|
|
|
|
|
|
skin_tonenumber_b26949
|
|
0.156**
|
0.149**
|
0.129*
|
0.137*
|
|
|
|
(0.035, 0.277)
|
(0.028, 0.270)
|
(0.012, 0.247)
|
(0.021, 0.254)
|
|
|
|
|
|
|
|
|
skin_tonenumber_cb9662
|
|
0.077
|
0.067
|
0.058
|
0.061
|
|
|
|
(-0.019, 0.172)
|
(-0.029, 0.163)
|
(-0.035, 0.151)
|
(-0.031, 0.153)
|
|
|
|
|
|
|
|
|
skin_tonenumber_d09e7d
|
|
-0.003
|
-0.011
|
-0.013
|
-0.002
|
|
|
|
(-0.115, 0.109)
|
(-0.122, 0.101)
|
(-0.121, 0.096)
|
(-0.109, 0.106)
|
|
|
|
|
|
|
|
|
skin_tonenumber_e7bc91
|
|
0.118*
|
0.109
|
0.083
|
0.097
|
|
|
|
(0.001, 0.235)
|
(-0.008, 0.226)
|
(-0.031, 0.196)
|
(-0.016, 0.210)
|
|
|
|
|
|
|
|
|
skin_tonenumber_e9cba7
|
|
-0.006
|
-0.017
|
-0.063
|
-0.035
|
|
|
|
(-0.123, 0.110)
|
(-0.134, 0.100)
|
(-0.176, 0.051)
|
(-0.148, 0.078)
|
|
|
|
|
|
|
|
|
skin_tonenumber_ecc083
|
|
0.071
|
0.061
|
0.038
|
0.060
|
|
|
|
(-0.028, 0.170)
|
(-0.039, 0.160)
|
(-0.058, 0.134)
|
(-0.036, 0.155)
|
|
|
|
|
|
|
|
|
skin_tonenumber_eed0b8
|
|
0.023
|
0.017
|
0.0004
|
0.023
|
|
|
|
(-0.066, 0.112)
|
(-0.073, 0.107)
|
(-0.087, 0.087)
|
(-0.064, 0.109)
|
|
|
|
|
|
|
|
|
skin_tonenumber_efc088
|
|
-0.007
|
-0.019
|
-0.041
|
-0.020
|
|
|
|
(-0.135, 0.121)
|
(-0.148, 0.109)
|
(-0.166, 0.083)
|
(-0.144, 0.103)
|
|
|
|
|
|
|
|
|
skin_tonenumber_efc794
|
|
-0.021
|
-0.026
|
-0.033
|
-0.015
|
|
|
|
(-0.126, 0.084)
|
(-0.132, 0.079)
|
(-0.135, 0.070)
|
(-0.116, 0.087)
|
|
|
|
|
|
|
|
|
skin_tonenumber_f6e1aa
|
|
0.012
|
0.002
|
-0.010
|
0.026
|
|
|
|
(-0.074, 0.098)
|
(-0.086, 0.089)
|
(-0.095, 0.074)
|
(-0.059, 0.110)
|
|
|
|
|
|
|
|
|
skin_tonenumber_f7ddc4
|
|
0.018
|
0.017
|
0.008
|
0.038
|
|
|
|
(-0.065, 0.100)
|
(-0.066, 0.100)
|
(-0.073, 0.088)
|
(-0.042, 0.118)
|
|
|
|
|
|
|
|
|
age
|
|
|
-0.002*
|
-0.002
|
-0.001
|
|
|
|
|
(-0.005, -0.00004)
|
(-0.004, 0.001)
|
(-0.003, 0.001)
|
|
|
|
|
|
|
|
|
attractiveness
|
|
|
0.007
|
0.009
|
0.007
|
|
|
|
|
(-0.013, 0.027)
|
(-0.010, 0.028)
|
(-0.012, 0.026)
|
|
|
|
|
|
|
|
|
competence
|
|
|
-0.009
|
-0.011
|
-0.013
|
|
|
|
|
(-0.032, 0.014)
|
(-0.033, 0.011)
|
(-0.035, 0.009)
|
|
|
|
|
|
|
|
|
dominance
|
|
|
0.018*
|
0.017*
|
0.017*
|
|
|
|
|
(0.002, 0.035)
|
(0.001, 0.033)
|
(0.002, 0.033)
|
|
|
|
|
|
|
|
|
trustworthiness
|
|
|
0.004
|
0.004
|
0.002
|
|
|
|
|
(-0.016, 0.025)
|
(-0.015, 0.024)
|
(-0.018, 0.021)
|
|
|
|
|
|
|
|
|
p_hat_covariates
|
|
|
|
0.761***
|
0.750***
|
|
|
|
|
|
(0.640, 0.882)
|
(0.631, 0.870)
|
|
|
|
|
|
|
|
|
p_hat_cnn
|
|
|
|
|
0.554***
|
|
|
|
|
|
|
(0.382, 0.726)
|
|
|
|
|
|
|
|
|
Constant
|
1.131***
|
1.084***
|
1.059***
|
0.406***
|
-0.069
|
|
|
(1.048, 1.213)
|
(0.977, 1.190)
|
(0.906, 1.211)
|
(0.225, 0.586)
|
(-0.301, 0.163)
|
|
|
|
|
|
|
|
|
|
|
Observations
|
1,593
|
1,593
|
1,593
|
1,593
|
1,593
|
|
Adjusted R2
|
0.020
|
0.022
|
0.026
|
0.087
|
0.103
|
|
F Statistic
|
33.263*** (df = 1; 1591)
|
3.024*** (df = 18; 1574)
|
2.819*** (df = 23; 1569)
|
7.351*** (df = 24; 1568)
|
8.303*** (df = 25; 1567)
|
|
|
|
Note:
|
p<0.1; p<0.05; p<0.01
|
Table _05 - Including p_hat_cnn first
Multihead(ResNet50)
|
|
|
|
Dependent variable:
|
|
|
|
|
|
Release Outcome
|
|
|
(1)
|
(2)
|
(3)
|
(4)
|
(5)
|
|
|
|
risk_pred_prob
|
-1.074***
|
-0.929***
|
-0.942***
|
-0.944***
|
-0.685***
|
|
|
(-1.188, -0.960)
|
(-1.043, -0.815)
|
(-1.056, -0.827)
|
(-1.059, -0.829)
|
(-0.798, -0.573)
|
|
|
|
|
|
|
|
|
p_hat_cnn
|
|
0.608***
|
0.613***
|
0.621***
|
0.410***
|
|
|
|
(0.536, 0.679)
|
(0.541, 0.685)
|
(0.548, 0.694)
|
(0.338, 0.482)
|
|
|
|
|
|
|
|
|
skin_tonenumber_623a17
|
|
|
-0.004
|
-0.004
|
-0.006
|
|
|
|
|
(-0.040, 0.033)
|
(-0.040, 0.032)
|
(-0.041, 0.029)
|
|
|
|
|
|
|
|
|
skin_tonenumber_76441f
|
|
|
-0.011
|
-0.011
|
-0.009
|
|
|
|
|
(-0.056, 0.034)
|
(-0.055, 0.034)
|
(-0.052, 0.034)
|
|
|
|
|
|
|
|
|
skin_tonenumber_80492a
|
|
|
-0.006
|
-0.006
|
-0.008
|
|
|
|
|
(-0.045, 0.034)
|
(-0.045, 0.034)
|
(-0.046, 0.031)
|
|
|
|
|
|
|
|
|
skin_tonenumber_885633
|
|
|
0.042
|
0.043
|
0.033
|
|
|
|
|
(-0.006, 0.089)
|
(-0.005, 0.090)
|
(-0.013, 0.078)
|
|
|
|
|
|
|
|
|
skin_tonenumber_94623d
|
|
|
-0.014
|
-0.014
|
-0.020
|
|
|
|
|
(-0.061, 0.032)
|
(-0.060, 0.033)
|
(-0.065, 0.025)
|
|
|
|
|
|
|
|
|
skin_tonenumber_ab8b64
|
|
|
-0.017
|
-0.016
|
-0.022
|
|
|
|
|
(-0.058, 0.025)
|
(-0.058, 0.026)
|
(-0.063, 0.018)
|
|
|
|
|
|
|
|
|
skin_tonenumber_b26949
|
|
|
0.001
|
0.001
|
0.004
|
|
|
|
|
(-0.056, 0.057)
|
(-0.056, 0.057)
|
(-0.051, 0.058)
|
|
|
|
|
|
|
|
|
skin_tonenumber_cb9662
|
|
|
0.023
|
0.025
|
0.025
|
|
|
|
|
(-0.023, 0.069)
|
(-0.022, 0.071)
|
(-0.019, 0.070)
|
|
|
|
|
|
|
|
|
skin_tonenumber_d09e7d
|
|
|
0.002
|
0.002
|
0.001
|
|
|
|
|
(-0.052, 0.056)
|
(-0.051, 0.056)
|
(-0.051, 0.053)
|
|
|
|
|
|
|
|
|
skin_tonenumber_e7bc91
|
|
|
-0.021
|
-0.020
|
-0.043
|
|
|
|
|
(-0.086, 0.044)
|
(-0.085, 0.045)
|
(-0.106, 0.020)
|
|
|
|
|
|
|
|
|
skin_tonenumber_e9cba7
|
|
|
-0.048
|
-0.048
|
-0.077**
|
|
|
|
|
(-0.111, 0.015)
|
(-0.111, 0.015)
|
(-0.138, -0.016)
|
|
|
|
|
|
|
|
|
skin_tonenumber_ecc083
|
|
|
-0.029
|
-0.029
|
-0.044
|
|
|
|
|
(-0.078, 0.019)
|
(-0.077, 0.020)
|
(-0.092, 0.003)
|
|
|
|
|
|
|
|
|
skin_tonenumber_eed0b8
|
|
|
-0.003
|
-0.004
|
-0.024
|
|
|
|
|
(-0.046, 0.040)
|
(-0.047, 0.039)
|
(-0.065, 0.018)
|
|
|
|
|
|
|
|
|
skin_tonenumber_efc088
|
|
|
-0.096**
|
-0.096**
|
-0.097**
|
|
|
|
|
(-0.171, -0.022)
|
(-0.170, -0.021)
|
(-0.168, -0.025)
|
|
|
|
|
|
|
|
|
skin_tonenumber_efc794
|
|
|
-0.047
|
-0.047
|
-0.056*
|
|
|
|
|
(-0.100, 0.005)
|
(-0.100, 0.005)
|
(-0.107, -0.006)
|
|
|
|
|
|
|
|
|
skin_tonenumber_f6e1aa
|
|
|
-0.001
|
-0.0001
|
-0.017
|
|
|
|
|
(-0.043, 0.042)
|
(-0.043, 0.043)
|
(-0.058, 0.024)
|
|
|
|
|
|
|
|
|
skin_tonenumber_f7ddc4
|
|
|
-0.021
|
-0.022
|
-0.036
|
|
|
|
|
(-0.060, 0.018)
|
(-0.061, 0.018)
|
(-0.074, 0.001)
|
|
|
|
|
|
|
|
|
age
|
|
|
|
0.001
|
0.001
|
|
|
|
|
|
(-0.0003, 0.002)
|
(-0.0003, 0.002)
|
|
|
|
|
|
|
|
|
attractiveness
|
|
|
|
-0.001
|
0.003
|
|
|
|
|
|
(-0.011, 0.010)
|
(-0.008, 0.013)
|
|
|
|
|
|
|
|
|
competence
|
|
|
|
0.0005
|
-0.003
|
|
|
|
|
|
(-0.012, 0.013)
|
(-0.015, 0.009)
|
|
|
|
|
|
|
|
|
dominance
|
|
|
|
0.001
|
0.005
|
|
|
|
|
|
(-0.007, 0.010)
|
(-0.004, 0.013)
|
|
|
|
|
|
|
|
|
trustworthiness
|
|
|
|
0.0002
|
0.001
|
|
|
|
|
|
(-0.011, 0.011)
|
(-0.009, 0.012)
|
|
|
|
|
|
|
|
|
p_hat_covariates
|
|
|
|
|
0.865***
|
|
|
|
|
|
|
(0.804, 0.925)
|
|
|
|
|
|
|
|
|
Constant
|
1.095***
|
0.596***
|
0.605***
|
0.564***
|
-0.029
|
|
|
(1.059, 1.131)
|
(0.528, 0.665)
|
(0.530, 0.679)
|
(0.467, 0.662)
|
(-0.132, 0.074)
|
|
|
|
|
|
|
|
|
|
|
Observations
|
7,318
|
7,318
|
7,318
|
7,318
|
7,318
|
|
Adjusted R2
|
0.032
|
0.057
|
0.057
|
0.056
|
0.123
|
|
F Statistic
|
239.132*** (df = 1; 7316)
|
220.280*** (df = 2; 7315)
|
24.137*** (df = 19; 7298)
|
19.172*** (df = 24; 7293)
|
41.899*** (df = 25; 7292)
|
|
|
|
Note:
|
p<0.1; p<0.05; p<0.01
|