If our predicting variable is continuous in nature i.e., a numeric which could be any value o.1, o.22,2223.3 etc, then we use linear regression for predicting such outputs. In real world, the example could be interest rates. As the interest rates are something that numeric and continuous in nature i.e., they can take any floating value, therefore if we would like to predict them, then we use linear regression. Other example include rainfall in mm etc
library(datasets)
str(mtcars)
## 'data.frame': 32 obs. of 11 variables:
## $ mpg : num 21 21 22.8 21.4 18.7 18.1 14.3 24.4 22.8 19.2 ...
## $ cyl : num 6 6 4 6 8 6 8 4 4 6 ...
## $ disp: num 160 160 108 258 360 ...
## $ hp : num 110 110 93 110 175 105 245 62 95 123 ...
## $ drat: num 3.9 3.9 3.85 3.08 3.15 2.76 3.21 3.69 3.92 3.92 ...
## $ wt : num 2.62 2.88 2.32 3.21 3.44 ...
## $ qsec: num 16.5 17 18.6 19.4 17 ...
## $ vs : num 0 0 1 1 0 1 0 1 1 1 ...
## $ am : num 1 1 1 0 0 0 0 0 0 0 ...
## $ gear: num 4 4 4 3 3 3 3 4 4 4 ...
## $ carb: num 4 4 1 1 2 1 4 2 2 4 ...
head(mtcars)
## mpg cyl disp hp drat wt qsec vs am gear carb
## Mazda RX4 21.0 6 160 110 3.90 2.620 16.46 0 1 4 4
## Mazda RX4 Wag 21.0 6 160 110 3.90 2.875 17.02 0 1 4 4
## Datsun 710 22.8 4 108 93 3.85 2.320 18.61 1 1 4 1
## Hornet 4 Drive 21.4 6 258 110 3.08 3.215 19.44 1 0 3 1
## Hornet Sportabout 18.7 8 360 175 3.15 3.440 17.02 0 0 3 2
## Valiant 18.1 6 225 105 2.76 3.460 20.22 1 0 3 1
model <- lm(mpg~cyl+hp+wt+vs+gear+qsec, data = mtcars)
summary(model)
##
## Call:
## lm(formula = mpg ~ cyl + hp + wt + vs + gear + qsec, data = mtcars)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.4441 -1.6780 -0.5283 1.0272 5.5570
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 26.50215 15.67122 1.691 0.10324
## cyl -0.50892 0.90915 -0.560 0.58061
## hp -0.01731 0.01764 -0.981 0.33582
## wt -3.45927 1.07974 -3.204 0.00368 **
## vs -0.33781 2.02804 -0.167 0.86905
## gear 0.71439 1.15831 0.617 0.54298
## qsec 0.44371 0.65694 0.675 0.50561
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.625 on 25 degrees of freedom
## Multiple R-squared: 0.847, Adjusted R-squared: 0.8102
## F-statistic: 23.06 on 6 and 25 DF, p-value: 4.652e-09
plot(model)
Here the model presents us with the summary output for the given mtcars data. Going through the p value, we can identify what the best values that can explain the mpg value better.