2. Cargar datos
2.1. Cargar datos de nombres de personas
- Se carga un conjunto de 100 nombres de personas con sus atributo de género y la actividad deportiva o cultura que practican,
- Cargando un datos llamando a una función que construye los datos.
- El argumento encoding significa que acepte acentos en los datos.
source("https://raw.githubusercontent.com/rpizarrog/probabilidad-y-estad-stica/master/construir%20datos%20y%20funciones%20caso%209.r", encoding = "UTF-8")
kable(head(personas, 10), caption = "Los primeros diez registros de nombres en el conjunto dedatos")
Los primeros diez registros de nombres en el conjunto dedatos
JUAN |
M |
NO |
NO |
NO |
SI |
NO |
SI |
NO |
NO |
NO |
NO |
NO |
SI |
JOSÉ LUIS |
M |
NO |
NO |
NO |
NO |
NO |
NO |
NO |
SI |
NO |
NO |
NO |
NO |
JOSÉ |
M |
NO |
SI |
NO |
SI |
NO |
NO |
NO |
NO |
NO |
NO |
SI |
SI |
MARÍA GUADALUPE |
F |
NO |
SI |
NO |
NO |
NO |
NO |
NO |
NO |
NO |
NO |
SI |
SI |
FRANCISCO |
M |
NO |
NO |
NO |
NO |
NO |
NO |
SI |
NO |
NO |
NO |
NO |
NO |
GUADALUPE |
F |
NO |
NO |
NO |
NO |
NO |
NO |
NO |
NO |
NO |
NO |
NO |
NO |
MARÍA |
F |
NO |
SI |
NO |
NO |
SI |
NO |
NO |
NO |
NO |
NO |
NO |
NO |
JUANA |
F |
NO |
NO |
NO |
NO |
SI |
NO |
NO |
SI |
NO |
NO |
NO |
NO |
ANTONIO |
M |
NO |
NO |
NO |
NO |
NO |
NO |
NO |
NO |
NO |
NO |
NO |
NO |
JESÚS |
M |
NO |
NO |
SI |
NO |
NO |
SI |
NO |
NO |
SI |
NO |
NO |
NO |
kable(tail(personas, 10), caption = "Las útimos diez registros de nombres en el conjunto de datos")
Las útimos diez registros de nombres en el conjunto de datos
91 |
ANDREA |
F |
NO |
NO |
NO |
NO |
NO |
NO |
NO |
NO |
NO |
NO |
NO |
SI |
92 |
ISABEL |
F |
NO |
NO |
NO |
NO |
NO |
NO |
NO |
NO |
NO |
NO |
NO |
NO |
93 |
MARÍA TERESA |
F |
NO |
SI |
NO |
NO |
SI |
NO |
NO |
SI |
NO |
NO |
NO |
NO |
94 |
IRMA |
F |
SI |
SI |
NO |
NO |
NO |
NO |
NO |
NO |
NO |
NO |
NO |
NO |
95 |
CARMEN |
F |
NO |
NO |
NO |
NO |
NO |
NO |
NO |
NO |
NO |
NO |
NO |
NO |
96 |
LUCÍA |
F |
NO |
SI |
NO |
SI |
NO |
NO |
NO |
SI |
NO |
NO |
SI |
SI |
97 |
ADRIANA |
F |
NO |
NO |
NO |
NO |
NO |
NO |
SI |
NO |
NO |
NO |
NO |
NO |
98 |
AGUSTÍN |
M |
NO |
SI |
NO |
NO |
NO |
NO |
NO |
NO |
SI |
NO |
NO |
NO |
99 |
MARÍA DE LA LUZ |
F |
NO |
NO |
NO |
NO |
NO |
NO |
SI |
NO |
NO |
NO |
NO |
NO |
100 |
GUSTAVO |
M |
NO |
NO |
NO |
NO |
NO |
NO |
NO |
SI |
NO |
NO |
NO |
NO |
2.2. Cargar datos de alumnos
Se cargan os datos de alumnos inscritos en una Institución de educación superior en el semetre septiembre 2020 a enero 2021, con los atributos siguientes: - No de control (modificado y no real), - Número Conesucutivo de alumno - Semestre que cursa - Créditos aprobados - Carga académica que cursa - Promedio aritmético - Carrera
alumnos <- alumnos <- read_csv("https://raw.githubusercontent.com/rpizarrog/probabilidad-y-estad-stica/master/datos/promedios%20alumnos/datos%20alumnos%20promedios%20SEP%202020.csv")
## Parsed with column specification:
## cols(
## `No. Control` = col_double(),
## Alumno = col_double(),
## Semestre = col_double(),
## `Cr. Apr.` = col_double(),
## Carga = col_double(),
## Promedio = col_double(),
## Carrera = col_character()
## )
kable(head(alumnos, 10), caption = "Los primeros diez registros de alumnos")
Los primeros diez registros de alumnos
20190001 |
1 |
11 |
198 |
19 |
80.21 |
SISTEMAS |
20190002 |
2 |
11 |
235 |
10 |
84.33 |
SISTEMAS |
20190003 |
3 |
9 |
235 |
10 |
95.25 |
SISTEMAS |
20190004 |
4 |
9 |
226 |
19 |
95.00 |
SISTEMAS |
20190005 |
5 |
10 |
231 |
14 |
82.32 |
SISTEMAS |
20190006 |
6 |
9 |
212 |
23 |
95.02 |
SISTEMAS |
20190007 |
7 |
12 |
221 |
10 |
79.06 |
SISTEMAS |
20190008 |
8 |
9 |
226 |
9 |
92.47 |
SISTEMAS |
20190009 |
9 |
9 |
231 |
4 |
91.08 |
SISTEMAS |
20190010 |
10 |
11 |
222 |
13 |
80.42 |
SISTEMAS |
kable(tail(alumnos, 10), caption = "Las útimos diez registros de alumnos")
Las útimos diez registros de alumnos
20195920 |
5920 |
7 |
169 |
23 |
89.14 |
ADMINISTRACION |
20195921 |
5921 |
5 |
109 |
26 |
87.83 |
ADMINISTRACION |
20195922 |
5922 |
3 |
55 |
29 |
92.83 |
ADMINISTRACION |
20195923 |
5923 |
2 |
23 |
23 |
88.60 |
ADMINISTRACION |
20195924 |
5924 |
2 |
27 |
28 |
92.83 |
ADMINISTRACION |
20195925 |
5925 |
7 |
94 |
13 |
80.95 |
ADMINISTRACION |
20195926 |
5926 |
5 |
103 |
32 |
92.68 |
ADMINISTRACION |
20195927 |
5927 |
4 |
79 |
34 |
86.18 |
ADMINISTRACION |
20195928 |
5928 |
5 |
108 |
32 |
90.48 |
ADMINISTRACION |
20195929 |
5929 |
7 |
169 |
32 |
92.33 |
ADMINISTRACION |
3. Simular muestreos
3.1 Muestreo aleatorio simple
Hay que encuestar a diez personas de 100 para hacerles alguna entrevist, ¿a quienes? Con el conjunto de datos seleccionar 10 personas aleatoriamente con al funcón sample()
N <- nrow(personas)
n <- 10
muestra <- sample(personas$nombres, n)
kable(muestra, caption = "La muestra de personas")
La muestra de personas
DANIEL |
JUAN MANUEL |
MIGUEL |
GUSTAVO |
FRANCISCA |
RAÚL |
JUAN |
LUCÍA |
MARÍA TERESA |
JORGE |
Encontrar 100 alumnos
N <- nrow(alumnos)
n <- 100
muestra <- sample(N, n) # Genera los números
kable(alumnos[muestra, ], caption = "La muestra de alumnos")
La muestra de alumnos
20192700 |
2700 |
9 |
202 |
19 |
82.26 |
INDUSTRIAL |
20191164 |
1164 |
9 |
129 |
18 |
83.79 |
BIOQUIMICA |
20191469 |
1469 |
7 |
150 |
36 |
80.81 |
BIOQUIMICA |
20195645 |
5645 |
3 |
55 |
29 |
97.67 |
ADMINISTRACION |
20193227 |
3227 |
7 |
163 |
30 |
86.30 |
INDUSTRIAL |
20194973 |
4973 |
6 |
133 |
33 |
85.54 |
GESTION EMPRESARIAL |
20195866 |
5866 |
1 |
NA |
27 |
0.00 |
ADMINISTRACION |
20191513 |
1513 |
6 |
67 |
34 |
78.60 |
BIOQUIMICA |
20194076 |
4076 |
7 |
144 |
32 |
88.52 |
MECATRONICA |
20192521 |
2521 |
9 |
222 |
23 |
86.40 |
ELECTRONICA |
20195624 |
5624 |
3 |
55 |
29 |
96.67 |
ADMINISTRACION |
20194985 |
4985 |
4 |
55 |
29 |
80.42 |
GESTION EMPRESARIAL |
20195075 |
5075 |
5 |
116 |
32 |
87.71 |
GESTION EMPRESARIAL |
20195041 |
5041 |
7 |
140 |
35 |
82.27 |
GESTION EMPRESARIAL |
20190395 |
395 |
1 |
NA |
27 |
0.00 |
SISTEMAS |
20193795 |
3795 |
4 |
66 |
29 |
86.47 |
MECATRONICA |
20195683 |
5683 |
1 |
NA |
27 |
0.00 |
ADMINISTRACION |
20191577 |
1577 |
9 |
165 |
16 |
78.86 |
CIVIL |
20192306 |
2306 |
5 |
89 |
27 |
86.33 |
ELECTRICA |
20193510 |
3510 |
3 |
41 |
24 |
76.80 |
MECANICA |
20191415 |
1415 |
6 |
123 |
29 |
82.48 |
BIOQUIMICA |
20190830 |
830 |
5 |
97 |
26 |
93.50 |
ARQUITECTURA |
20190200 |
200 |
7 |
107 |
17 |
79.26 |
SISTEMAS |
20195484 |
5484 |
11 |
257 |
5 |
87.44 |
ADMINISTRACION |
20190025 |
25 |
11 |
230 |
15 |
84.02 |
SISTEMAS |
20192596 |
2596 |
3 |
52 |
25 |
92.67 |
ELECTRONICA |
20193863 |
3863 |
1 |
NA |
25 |
0.00 |
MECATRONICA |
20190074 |
74 |
10 |
230 |
15 |
83.94 |
SISTEMAS |
20191933 |
1933 |
1 |
NA |
27 |
0.00 |
CIVIL |
20191691 |
1691 |
4 |
75 |
32 |
84.19 |
CIVIL |
20192587 |
2587 |
5 |
90 |
20 |
83.50 |
ELECTRONICA |
20190886 |
886 |
1 |
NA |
26 |
0.00 |
ARQUITECTURA |
20194827 |
4827 |
7 |
150 |
25 |
88.75 |
GESTION EMPRESARIAL |
20194756 |
4756 |
9 |
230 |
15 |
91.77 |
GESTION EMPRESARIAL |
20190663 |
663 |
7 |
151 |
23 |
85.22 |
ARQUITECTURA |
20192503 |
2503 |
10 |
202 |
23 |
81.25 |
ELECTRONICA |
20194892 |
4892 |
1 |
NA |
27 |
0.00 |
GESTION EMPRESARIAL |
20194549 |
4549 |
6 |
133 |
23 |
83.25 |
QUIMICA |
20190308 |
308 |
4 |
83 |
29 |
91.00 |
SISTEMAS |
20192139 |
2139 |
6 |
143 |
30 |
84.77 |
CIVIL |
20191319 |
1319 |
7 |
124 |
34 |
83.15 |
BIOQUIMICA |
20195755 |
5755 |
4 |
84 |
29 |
87.44 |
ADMINISTRACION |
20195920 |
5920 |
7 |
169 |
23 |
89.14 |
ADMINISTRACION |
20193632 |
3632 |
1 |
NA |
26 |
0.00 |
MECANICA |
20193546 |
3546 |
3 |
48 |
22 |
78.64 |
MECANICA |
20191619 |
1619 |
9 |
225 |
10 |
84.85 |
CIVIL |
20191632 |
1632 |
9 |
159 |
15 |
80.15 |
CIVIL |
20194890 |
4890 |
7 |
170 |
35 |
87.44 |
GESTION EMPRESARIAL |
20192090 |
2090 |
4 |
78 |
33 |
83.59 |
CIVIL |
20191764 |
1764 |
1 |
NA |
27 |
0.00 |
CIVIL |
20190612 |
612 |
1 |
NA |
26 |
0.00 |
ARQUITECTURA |
20191097 |
1097 |
7 |
139 |
24 |
84.62 |
ARQUITECTURA |
20190796 |
796 |
7 |
116 |
34 |
81.12 |
ARQUITECTURA |
20190240 |
240 |
2 |
27 |
28 |
92.33 |
SISTEMAS |
20191202 |
1202 |
1 |
NA |
23 |
0.00 |
BIOQUIMICA |
20194673 |
4673 |
12 |
219 |
16 |
89.93 |
GESTION EMPRESARIAL |
20195370 |
5370 |
5 |
41 |
4 |
81.44 |
INFORMATICA |
20191901 |
1901 |
5 |
117 |
31 |
87.08 |
CIVIL |
20193696 |
3696 |
11 |
231 |
4 |
83.33 |
MECATRONICA |
20193370 |
3370 |
11 |
225 |
10 |
81.86 |
MECANICA |
20191197 |
1197 |
3 |
57 |
27 |
82.54 |
BIOQUIMICA |
20193032 |
3032 |
3 |
55 |
29 |
89.00 |
INDUSTRIAL |
20194867 |
4867 |
1 |
NA |
27 |
0.00 |
GESTION EMPRESARIAL |
20191967 |
1967 |
1 |
NA |
27 |
0.00 |
CIVIL |
20193638 |
3638 |
7 |
170 |
27 |
86.59 |
MECANICA |
20190934 |
934 |
7 |
170 |
28 |
88.58 |
ARQUITECTURA |
20194100 |
4100 |
9 |
225 |
5 |
87.96 |
QUIMICA |
20195193 |
5193 |
6 |
138 |
33 |
86.21 |
GESTION EMPRESARIAL |
20195450 |
5450 |
10 |
262 |
10 |
88.60 |
ADMINISTRACION |
20191067 |
1067 |
1 |
NA |
26 |
0.00 |
ARQUITECTURA |
20193404 |
3404 |
10 |
172 |
18 |
81.13 |
MECANICA |
20194217 |
4217 |
12 |
225 |
10 |
78.46 |
QUIMICA |
20191449 |
1449 |
1 |
NA |
23 |
0.00 |
BIOQUIMICA |
20192720 |
2720 |
9 |
202 |
24 |
82.28 |
INDUSTRIAL |
20195151 |
5151 |
1 |
NA |
27 |
0.00 |
GESTION EMPRESARIAL |
20193110 |
3110 |
1 |
NA |
27 |
0.00 |
INDUSTRIAL |
20191051 |
1051 |
6 |
127 |
24 |
88.19 |
ARQUITECTURA |
20194783 |
4783 |
1 |
NA |
27 |
0.00 |
GESTION EMPRESARIAL |
20195643 |
5643 |
2 |
27 |
28 |
92.67 |
ADMINISTRACION |
20194482 |
4482 |
2 |
25 |
30 |
82.00 |
QUIMICA |
20194046 |
4046 |
1 |
NA |
25 |
0.00 |
MECATRONICA |
20192183 |
2183 |
2 |
27 |
30 |
83.50 |
CIVIL |
20190659 |
659 |
1 |
NA |
26 |
0.00 |
ARQUITECTURA |
20195318 |
5318 |
1 |
NA |
26 |
0.00 |
TIC |
20192101 |
2101 |
2 |
23 |
25 |
80.80 |
CIVIL |
20191758 |
1758 |
4 |
80 |
34 |
85.94 |
CIVIL |
20192297 |
2297 |
5 |
94 |
33 |
84.77 |
ELECTRICA |
20193793 |
3793 |
7 |
128 |
31 |
84.46 |
MECATRONICA |
20190822 |
822 |
3 |
48 |
32 |
90.45 |
ARQUITECTURA |
20190352 |
352 |
8 |
176 |
32 |
80.47 |
SISTEMAS |
20193467 |
3467 |
3 |
42 |
32 |
82.30 |
MECANICA |
20190443 |
443 |
7 |
160 |
34 |
90.34 |
SISTEMAS |
20190241 |
241 |
5 |
112 |
25 |
91.63 |
SISTEMAS |
20194569 |
4569 |
3 |
51 |
30 |
88.64 |
QUIMICA |
20193456 |
3456 |
6 |
89 |
32 |
78.30 |
MECANICA |
20195534 |
5534 |
8 |
177 |
34 |
86.89 |
ADMINISTRACION |
20193666 |
3666 |
12 |
190 |
5 |
78.35 |
MECATRONICA |
20192155 |
2155 |
2 |
22 |
26 |
93.40 |
CIVIL |
20193527 |
3527 |
1 |
NA |
26 |
0.00 |
MECANICA |
20191607 |
1607 |
10 |
231 |
4 |
83.15 |
CIVIL |
3.2. Muestreo aleatorio sistemático
Con el conjunto de datos personas, iniciar en un valor aletorio e identificar los siguientes de 10 en 10 hasta tener diez personas.
N <- nrow(personas)
n = 10
saltos <- round(N / n, 0)
inicio <- round(sample(N, 1) / n, 0)
#inicio
cuales <- seq(from = inicio, to =N, by= saltos)
kable(personas[cuales, ], caption = "La muestra sistematizada de personas")
La muestra sistematizada de personas
6 |
GUADALUPE |
F |
NO |
NO |
NO |
NO |
NO |
NO |
NO |
NO |
NO |
NO |
NO |
NO |
16 |
MARÍA DEL CARMEN |
F |
NO |
NO |
NO |
NO |
NO |
SI |
NO |
NO |
NO |
NO |
NO |
NO |
26 |
JAVIER |
F |
NO |
NO |
NO |
NO |
NO |
SI |
NO |
NO |
NO |
NO |
SI |
NO |
36 |
FRANCISCO JAVIER |
F |
SI |
NO |
NO |
NO |
NO |
NO |
NO |
SI |
NO |
NO |
SI |
NO |
46 |
TERESA |
F |
NO |
NO |
NO |
NO |
NO |
NO |
NO |
SI |
NO |
NO |
NO |
NO |
56 |
YOLANDA |
F |
SI |
NO |
NO |
NO |
SI |
NO |
NO |
NO |
NO |
NO |
NO |
NO |
66 |
VÍCTOR MANUEL |
M |
NO |
SI |
SI |
SI |
NO |
NO |
NO |
NO |
NO |
NO |
NO |
NO |
76 |
MARÍA ISABEL |
F |
NO |
SI |
NO |
NO |
NO |
NO |
NO |
NO |
NO |
NO |
NO |
SI |
86 |
JOSÉ GUADALUPE |
M |
NO |
NO |
NO |
NO |
NO |
SI |
NO |
NO |
NO |
NO |
NO |
SI |
96 |
LUCÍA |
F |
NO |
SI |
NO |
SI |
NO |
NO |
NO |
SI |
NO |
NO |
SI |
SI |
N <- nrow(alumnos)
n = 100
saltos <- round(N / n, 0)
inicio <- round(sample(N, 1) / n, 0)
cuales <- seq(from = inicio, to =N, by= saltos)
kable(alumnos[cuales, ], caption = "La muestra de alumnos")
La muestra de alumnos
20190040 |
40 |
9 |
217 |
18 |
92.00 |
SISTEMAS |
20190099 |
99 |
1 |
NA |
27 |
0.00 |
SISTEMAS |
20190158 |
158 |
1 |
NA |
27 |
0.00 |
SISTEMAS |
20190217 |
217 |
1 |
NA |
27 |
0.00 |
SISTEMAS |
20190276 |
276 |
3 |
8 |
22 |
80.00 |
SISTEMAS |
20190335 |
335 |
3 |
50 |
28 |
92.00 |
SISTEMAS |
20190394 |
394 |
3 |
50 |
28 |
88.55 |
SISTEMAS |
20190453 |
453 |
9 |
219 |
16 |
89.98 |
ARQUITECTURA |
20190512 |
512 |
9 |
223 |
4 |
90.24 |
ARQUITECTURA |
20190571 |
571 |
1 |
NA |
26 |
0.00 |
ARQUITECTURA |
20190630 |
630 |
1 |
NA |
26 |
0.00 |
ARQUITECTURA |
20190689 |
689 |
1 |
NA |
26 |
0.00 |
ARQUITECTURA |
20190748 |
748 |
6 |
117 |
33 |
86.38 |
ARQUITECTURA |
20190807 |
807 |
3 |
48 |
32 |
89.82 |
ARQUITECTURA |
20190866 |
866 |
6 |
142 |
28 |
88.53 |
ARQUITECTURA |
20190925 |
925 |
4 |
80 |
30 |
93.39 |
ARQUITECTURA |
20190984 |
984 |
6 |
120 |
28 |
85.59 |
ARQUITECTURA |
20191043 |
1043 |
2 |
26 |
26 |
88.33 |
ARQUITECTURA |
20191102 |
1102 |
3 |
52 |
28 |
88.33 |
ARQUITECTURA |
20191161 |
1161 |
9 |
247 |
11 |
90.62 |
BIOQUIMICA |
20191220 |
1220 |
5 |
81 |
34 |
85.44 |
BIOQUIMICA |
20191279 |
1279 |
3 |
52 |
30 |
97.92 |
BIOQUIMICA |
20191338 |
1338 |
4 |
77 |
22 |
80.47 |
BIOQUIMICA |
20191397 |
1397 |
4 |
77 |
28 |
85.71 |
BIOQUIMICA |
20191456 |
1456 |
6 |
118 |
34 |
84.35 |
BIOQUIMICA |
20191515 |
1515 |
5 |
99 |
26 |
86.86 |
BIOQUIMICA |
20191574 |
1574 |
12 |
230 |
5 |
79.42 |
CIVIL |
20191633 |
1633 |
11 |
206 |
29 |
79.65 |
CIVIL |
20191692 |
1692 |
8 |
193 |
27 |
80.38 |
CIVIL |
20191751 |
1751 |
7 |
175 |
24 |
87.25 |
CIVIL |
20191810 |
1810 |
5 |
109 |
30 |
82.48 |
CIVIL |
20191869 |
1869 |
3 |
57 |
24 |
90.83 |
CIVIL |
20191928 |
1928 |
5 |
100 |
19 |
80.00 |
CIVIL |
20191987 |
1987 |
5 |
101 |
28 |
83.71 |
CIVIL |
20192046 |
2046 |
8 |
150 |
33 |
81.77 |
CIVIL |
20192105 |
2105 |
8 |
178 |
30 |
79.41 |
CIVIL |
20192164 |
2164 |
1 |
NA |
27 |
0.00 |
CIVIL |
20192223 |
2223 |
9 |
220 |
15 |
83.30 |
ELECTRICA |
20192282 |
2282 |
5 |
94 |
26 |
84.09 |
ELECTRICA |
20192341 |
2341 |
3 |
46 |
28 |
91.55 |
ELECTRICA |
20192400 |
2400 |
1 |
NA |
24 |
0.00 |
ELECTRICA |
20192459 |
2459 |
1 |
NA |
24 |
0.00 |
ELECTRICA |
20192518 |
2518 |
11 |
192 |
23 |
83.88 |
ELECTRONICA |
20192577 |
2577 |
3 |
52 |
25 |
87.67 |
ELECTRONICA |
20192636 |
2636 |
5 |
105 |
28 |
92.65 |
ELECTRONICA |
20192695 |
2695 |
9 |
226 |
4 |
85.18 |
INDUSTRIAL |
20192754 |
2754 |
5 |
93 |
34 |
83.29 |
INDUSTRIAL |
20192813 |
2813 |
5 |
98 |
32 |
83.41 |
INDUSTRIAL |
20192872 |
2872 |
7 |
156 |
36 |
84.71 |
INDUSTRIAL |
20192931 |
2931 |
2 |
27 |
24 |
82.83 |
INDUSTRIAL |
20192990 |
2990 |
9 |
235 |
10 |
84.96 |
INDUSTRIAL |
20193049 |
3049 |
2 |
27 |
24 |
81.50 |
INDUSTRIAL |
20193108 |
3108 |
8 |
123 |
34 |
82.50 |
INDUSTRIAL |
20193167 |
3167 |
2 |
27 |
28 |
88.33 |
INDUSTRIAL |
20193226 |
3226 |
1 |
NA |
27 |
0.00 |
INDUSTRIAL |
20193285 |
3285 |
2 |
27 |
24 |
81.00 |
INDUSTRIAL |
20193344 |
3344 |
5 |
55 |
27 |
86.69 |
INDUSTRIAL |
20193403 |
3403 |
9 |
175 |
28 |
83.45 |
MECANICA |
20193462 |
3462 |
7 |
83 |
30 |
78.05 |
MECANICA |
20193521 |
3521 |
7 |
137 |
34 |
86.20 |
MECANICA |
20193580 |
3580 |
8 |
175 |
21 |
85.34 |
MECANICA |
20193639 |
3639 |
3 |
30 |
22 |
83.00 |
MECANICA |
20193698 |
3698 |
9 |
219 |
16 |
89.63 |
MECATRONICA |
20193757 |
3757 |
1 |
NA |
25 |
0.00 |
MECATRONICA |
20193816 |
3816 |
5 |
108 |
30 |
86.71 |
MECATRONICA |
20193875 |
3875 |
4 |
67 |
23 |
79.07 |
MECATRONICA |
20193934 |
3934 |
3 |
53 |
27 |
86.50 |
MECATRONICA |
20193993 |
3993 |
8 |
151 |
27 |
79.53 |
MECATRONICA |
20194052 |
4052 |
5 |
110 |
24 |
85.17 |
MECATRONICA |
20194111 |
4111 |
9 |
224 |
6 |
91.26 |
QUIMICA |
20194170 |
4170 |
10 |
211 |
24 |
80.44 |
QUIMICA |
20194229 |
4229 |
3 |
36 |
30 |
89.25 |
QUIMICA |
20194288 |
4288 |
13 |
235 |
10 |
78.98 |
QUIMICA |
20194347 |
4347 |
7 |
138 |
24 |
85.07 |
QUIMICA |
20194406 |
4406 |
4 |
86 |
28 |
81.44 |
QUIMICA |
20194465 |
4465 |
9 |
214 |
21 |
89.05 |
QUIMICA |
20194524 |
4524 |
10 |
127 |
13 |
78.89 |
QUIMICA |
20194583 |
4583 |
7 |
150 |
22 |
86.16 |
QUIMICA |
20194642 |
4642 |
2 |
25 |
31 |
89.17 |
QUIMICA |
20194701 |
4701 |
9 |
230 |
5 |
94.75 |
GESTION EMPRESARIAL |
20194760 |
4760 |
9 |
215 |
20 |
87.38 |
GESTION EMPRESARIAL |
20194819 |
4819 |
3 |
54 |
28 |
87.08 |
GESTION EMPRESARIAL |
20194878 |
4878 |
3 |
54 |
28 |
87.42 |
GESTION EMPRESARIAL |
20194937 |
4937 |
7 |
167 |
33 |
88.00 |
GESTION EMPRESARIAL |
20194996 |
4996 |
3 |
54 |
28 |
95.33 |
GESTION EMPRESARIAL |
20195055 |
5055 |
1 |
NA |
27 |
0.00 |
GESTION EMPRESARIAL |
20195114 |
5114 |
7 |
185 |
25 |
95.74 |
GESTION EMPRESARIAL |
20195173 |
5173 |
2 |
37 |
30 |
93.25 |
GESTION EMPRESARIAL |
20195232 |
5232 |
3 |
54 |
28 |
89.08 |
GESTION EMPRESARIAL |
20195291 |
5291 |
5 |
101 |
28 |
81.27 |
TIC |
20195350 |
5350 |
9 |
215 |
16 |
84.57 |
INFORMATICA |
20195409 |
5409 |
3 |
55 |
27 |
87.92 |
INFORMATICA |
20195468 |
5468 |
11 |
240 |
22 |
84.88 |
ADMINISTRACION |
20195527 |
5527 |
1 |
NA |
27 |
0.00 |
ADMINISTRACION |
20195586 |
5586 |
1 |
NA |
27 |
0.00 |
ADMINISTRACION |
20195645 |
5645 |
3 |
55 |
29 |
97.67 |
ADMINISTRACION |
20195704 |
5704 |
5 |
79 |
29 |
86.06 |
ADMINISTRACION |
20195763 |
5763 |
5 |
113 |
27 |
92.83 |
ADMINISTRACION |
20195822 |
5822 |
5 |
113 |
27 |
95.63 |
ADMINISTRACION |
20195881 |
5881 |
7 |
135 |
34 |
83.90 |
ADMINISTRACION |
3.3. Muestreo aleatorio estratificado
N <- nrow(personas)
n <- 10
femeninos <- filter(personas, generos=='F')
masculinos <- filter(personas, generos=='M')
frfem <- nrow(femeninos) / N
frmas <- nrow(masculinos) / N
frfem
## [1] 0.42
frmas
## [1] 0.58
muestraFem <- sample(femeninos, n * frfem)
kable(muestraFem, caption = "La muestra de personas Femenino")
La muestra de personas Femenino
26 |
GABRIELA |
F |
NO |
NO |
NO |
NO |
NO |
NO |
NO |
NO |
NO |
NO |
NO |
NO |
26 |
36 |
ISABEL |
F |
NO |
NO |
NO |
NO |
NO |
NO |
NO |
NO |
NO |
NO |
NO |
NO |
36 |
39 |
CARMEN |
F |
NO |
NO |
NO |
NO |
NO |
NO |
NO |
NO |
NO |
NO |
NO |
NO |
39 |
10 |
FRANCISCO JAVIER |
F |
SI |
NO |
NO |
NO |
NO |
NO |
NO |
SI |
NO |
NO |
SI |
NO |
10 |
muestraMas <- sample(masculinos, n * frmas)
kable(muestraMas, caption = "La muestra de personas Masculino")
La muestra de personas Masculino
58 |
GUSTAVO |
M |
NO |
NO |
NO |
NO |
NO |
NO |
NO |
SI |
NO |
NO |
NO |
NO |
58 |
20 |
RAFAEL |
M |
NO |
NO |
NO |
NO |
NO |
NO |
NO |
SI |
NO |
NO |
NO |
NO |
20 |
3 |
JOSÉ |
M |
NO |
SI |
NO |
SI |
NO |
NO |
NO |
NO |
NO |
NO |
SI |
SI |
3 |
31 |
ALFREDO |
M |
NO |
NO |
NO |
SI |
NO |
NO |
NO |
NO |
NO |
SI |
NO |
NO |
31 |
47 |
RUBEN |
M |
NO |
SI |
NO |
NO |
NO |
NO |
NO |
NO |
NO |
NO |
SI |
NO |
47 |
N <- nrow(alumnos)
n <- 100
tabla_frec <- data.frame(fdt_cat(alumnos$Carrera))
tabla_frec$muestra <- round(tabla_frec$rf * n, 0)
kable(tabla_frec, caption = "Tabla de frecuencia de alumnos")
Tabla de frecuencia de alumnos
INDUSTRIAL |
707 |
0.1192444 |
11.924439 |
707 |
11.92444 |
12 |
ARQUITECTURA |
675 |
0.1138472 |
11.384719 |
1382 |
23.30916 |
11 |
CIVIL |
648 |
0.1092933 |
10.929330 |
2030 |
34.23849 |
11 |
GESTION EMPRESARIAL |
585 |
0.0986676 |
9.866757 |
2615 |
44.10525 |
10 |
QUIMICA |
568 |
0.0958003 |
9.580030 |
3183 |
53.68528 |
10 |
ADMINISTRACION |
497 |
0.0838253 |
8.382527 |
3680 |
62.06780 |
8 |
SISTEMAS |
452 |
0.0762355 |
7.623545 |
4132 |
69.69135 |
8 |
BIOQUIMICA |
441 |
0.0743802 |
7.438016 |
4573 |
77.12936 |
7 |
MECATRONICA |
432 |
0.0728622 |
7.286220 |
5005 |
84.41558 |
7 |
MECANICA |
301 |
0.0507674 |
5.076741 |
5306 |
89.49233 |
5 |
ELECTRICA |
280 |
0.0472255 |
4.722550 |
5586 |
94.21488 |
5 |
ELECTRONICA |
161 |
0.0271547 |
2.715466 |
5747 |
96.93034 |
3 |
INFORMATICA |
101 |
0.0170349 |
1.703491 |
5848 |
98.63383 |
2 |
TIC |
81 |
0.0136617 |
1.366166 |
5929 |
100.00000 |
1 |
N <- nrow(alumnos)
n <- 100
sistemas <- filter(alumnos, Carrera =='SISTEMAS')
civil <- filter(alumnos, Carrera == 'CIVIL')
frsistemas <- nrow(sistemas) / N
frcivil <- nrow(civil) / N
frsistemas
## [1] 0.07623545
frcivil
## [1] 0.1092933
muestrasistemas <- sample(sistemas, round(n * frsistemas, 0))
kable(muestrasistemas, caption = "La muestra de alumnos de Sistemas")
La muestra de alumnos de Sistemas
20190046 |
46 |
9 |
221 |
14 |
90.71 |
SISTEMAS |
46 |
20190130 |
130 |
4 |
87 |
33 |
87.89 |
SISTEMAS |
130 |
20190335 |
335 |
3 |
50 |
28 |
92.00 |
SISTEMAS |
335 |
20190142 |
142 |
3 |
36 |
23 |
89.13 |
SISTEMAS |
142 |
20190199 |
199 |
1 |
NA |
27 |
0.00 |
SISTEMAS |
199 |
20190030 |
30 |
11 |
226 |
9 |
81.78 |
SISTEMAS |
30 |
20190052 |
52 |
10 |
138 |
31 |
79.33 |
SISTEMAS |
52 |
20190448 |
448 |
1 |
NA |
27 |
0.00 |
SISTEMAS |
448 |
muestracivil <- sample(civil, round(n * frcivil, 0))
kable(muestracivil, caption = "La muestra de alumnos de Civil")
La muestra de alumnos de Civil
20191982 |
1982 |
6 |
120 |
31 |
81.36 |
CIVIL |
414 |
20191847 |
1847 |
5 |
122 |
30 |
86.00 |
CIVIL |
279 |
20192207 |
2207 |
6 |
38 |
35 |
77.38 |
CIVIL |
639 |
20192128 |
2128 |
6 |
118 |
34 |
78.44 |
CIVIL |
560 |
20192184 |
2184 |
1 |
NA |
27 |
0.00 |
CIVIL |
616 |
20191794 |
1794 |
6 |
137 |
34 |
87.66 |
CIVIL |
226 |
20191740 |
1740 |
5 |
113 |
30 |
88.63 |
CIVIL |
172 |
20192009 |
2009 |
4 |
82 |
31 |
82.71 |
CIVIL |
441 |
20191578 |
1578 |
10 |
205 |
25 |
81.95 |
CIVIL |
10 |
20191905 |
1905 |
7 |
154 |
32 |
82.64 |
CIVIL |
337 |
20191984 |
1984 |
6 |
133 |
30 |
86.79 |
CIVIL |
416 |
3.4. Muestreo por conglomerados
Al conjunto de datos alumnos agregar tres columnas.
N <- nrow(alumnos)
n <- 100
locdurangomx <- read.csv("https://raw.githubusercontent.com/rpizarrog/probabilidad-y-estad-stica/master/datos/locdurangomx.csv", encoding = "UTF-8")
localidades50 <- locdurangomx[sample(nrow(locdurangomx), 5), ]
# localidades50
alumlocalidades <- sample(localidades50, N, replace = TRUE)
alumnos$localidad <- alumlocalidades$Nom_Loc
alumnos$latitud <- alumlocalidades$Lat_Decimal
alumnos$longitud <- alumlocalidades$Lon_Decimal
kable(head(alumnos, 10), caption = "Los primeros diez registros de alumnos")
Los primeros diez registros de alumnos
20190001 |
1 |
11 |
198 |
19 |
80.21 |
SISTEMAS |
Rancho el Bajío |
24.22719 |
-104.7093 |
20190002 |
2 |
11 |
235 |
10 |
84.33 |
SISTEMAS |
José Gamboa |
24.07609 |
-104.5546 |
20190003 |
3 |
9 |
235 |
10 |
95.25 |
SISTEMAS |
Rancho el Bajío |
24.22719 |
-104.7093 |
20190004 |
4 |
9 |
226 |
19 |
95.00 |
SISTEMAS |
Rancho el Bajío |
24.22719 |
-104.7093 |
20190005 |
5 |
10 |
231 |
14 |
82.32 |
SISTEMAS |
Rancho el Bajío |
24.22719 |
-104.7093 |
20190006 |
6 |
9 |
212 |
23 |
95.02 |
SISTEMAS |
Residencial Los Arcos [Fraccionamiento] |
24.09682 |
-104.6913 |
20190007 |
7 |
12 |
221 |
10 |
79.06 |
SISTEMAS |
Rancho el Bajío |
24.22719 |
-104.7093 |
20190008 |
8 |
9 |
226 |
9 |
92.47 |
SISTEMAS |
Rancho San Pablo |
23.78263 |
-104.4304 |
20190009 |
9 |
9 |
231 |
4 |
91.08 |
SISTEMAS |
Rancho San Pablo |
23.78263 |
-104.4304 |
20190010 |
10 |
11 |
222 |
13 |
80.42 |
SISTEMAS |
José Gamboa |
24.07609 |
-104.5546 |
kable(tail(alumnos, 10), caption = "Las útimos diez registros de alumnos")
Las útimos diez registros de alumnos
20195920 |
5920 |
7 |
169 |
23 |
89.14 |
ADMINISTRACION |
Residencial Los Arcos [Fraccionamiento] |
24.09682 |
-104.6913 |
20195921 |
5921 |
5 |
109 |
26 |
87.83 |
ADMINISTRACION |
Rancho el Bajío |
24.22719 |
-104.7093 |
20195922 |
5922 |
3 |
55 |
29 |
92.83 |
ADMINISTRACION |
José Gamboa |
24.07609 |
-104.5546 |
20195923 |
5923 |
2 |
23 |
23 |
88.60 |
ADMINISTRACION |
Tierra Prometida |
24.00826 |
-104.5932 |
20195924 |
5924 |
2 |
27 |
28 |
92.83 |
ADMINISTRACION |
José Gamboa |
24.07609 |
-104.5546 |
20195925 |
5925 |
7 |
94 |
13 |
80.95 |
ADMINISTRACION |
Rancho el Bajío |
24.22719 |
-104.7093 |
20195926 |
5926 |
5 |
103 |
32 |
92.68 |
ADMINISTRACION |
Residencial Los Arcos [Fraccionamiento] |
24.09682 |
-104.6913 |
20195927 |
5927 |
4 |
79 |
34 |
86.18 |
ADMINISTRACION |
Tierra Prometida |
24.00826 |
-104.5932 |
20195928 |
5928 |
5 |
108 |
32 |
90.48 |
ADMINISTRACION |
Residencial Los Arcos [Fraccionamiento] |
24.09682 |
-104.6913 |
20195929 |
5929 |
7 |
169 |
32 |
92.33 |
ADMINISTRACION |
Tierra Prometida |
24.00826 |
-104.5932 |
N <- nrow(alumnos)
n <- 100
tabla_frec <- data.frame(fdt_cat(alumnos$localidad))
tabla_frec$muestra <- round(tabla_frec$rf * n, 0)
kable(tabla_frec, caption = "Tabla de frecuencia de alumnos por localidad")
Tabla de frecuencia de alumnos por localidad
José Gamboa |
1216 |
0.2050936 |
20.50936 |
1216 |
20.50936 |
21 |
Tierra Prometida |
1208 |
0.2037443 |
20.37443 |
2424 |
40.88379 |
20 |
Residencial Los Arcos [Fraccionamiento] |
1180 |
0.1990218 |
19.90218 |
3604 |
60.78597 |
20 |
Rancho San Pablo |
1174 |
0.1980098 |
19.80098 |
4778 |
80.58695 |
20 |
Rancho el Bajío |
1151 |
0.1941305 |
19.41305 |
5929 |
100.00000 |
19 |
N <- nrow(alumnos)
n <- 100
loc1 <- filter(alumnos, localidad == tabla_frec$Category[1])
loc2 <- filter(alumnos, localidad == tabla_frec$Category[2])
loc3 <- filter(alumnos, localidad == tabla_frec$Category[3])
loc4 <- filter(alumnos, localidad == tabla_frec$Category[4])
loc5 <- filter(alumnos, localidad == tabla_frec$Category[5])
frloc1 <- nrow(loc1) / N
frloc2 <- nrow(loc2) / N
frloc3 <- nrow(loc3) / N
frloc4 <- nrow(loc4) / N
frloc5 <- nrow(loc5) / N
muestraloc1 <- sample(loc1, round(n * frloc1, 0))
kable(muestraloc1, caption = paste("La muestra de alumnos de Localidad ",tabla_frec$Category[1] ))
La muestra de alumnos de Localidad José Gamboa
20194278 |
4278 |
7 |
172 |
32 |
91.36 |
QUIMICA |
José Gamboa |
24.07609 |
-104.5546 |
891 |
20194700 |
4700 |
11 |
205 |
30 |
83.65 |
GESTION EMPRESARIAL |
José Gamboa |
24.07609 |
-104.5546 |
977 |
20193753 |
3753 |
6 |
109 |
36 |
90.46 |
MECATRONICA |
José Gamboa |
24.07609 |
-104.5546 |
774 |
20192092 |
2092 |
8 |
156 |
20 |
80.18 |
CIVIL |
José Gamboa |
24.07609 |
-104.5546 |
404 |
20191273 |
1273 |
4 |
82 |
31 |
85.94 |
BIOQUIMICA |
José Gamboa |
24.07609 |
-104.5546 |
249 |
20191508 |
1508 |
1 |
NA |
23 |
0.00 |
BIOQUIMICA |
José Gamboa |
24.07609 |
-104.5546 |
292 |
20192338 |
2338 |
1 |
NA |
24 |
0.00 |
ELECTRICA |
José Gamboa |
24.07609 |
-104.5546 |
454 |
20191070 |
1070 |
8 |
202 |
25 |
82.59 |
ARQUITECTURA |
José Gamboa |
24.07609 |
-104.5546 |
211 |
20193755 |
3755 |
5 |
109 |
29 |
91.63 |
MECATRONICA |
José Gamboa |
24.07609 |
-104.5546 |
775 |
20192807 |
2807 |
5 |
96 |
32 |
85.18 |
INDUSTRIAL |
José Gamboa |
24.07609 |
-104.5546 |
560 |
20194193 |
4193 |
8 |
141 |
28 |
82.17 |
QUIMICA |
José Gamboa |
24.07609 |
-104.5546 |
871 |
20190813 |
813 |
2 |
20 |
20 |
88.20 |
ARQUITECTURA |
José Gamboa |
24.07609 |
-104.5546 |
161 |
20193397 |
3397 |
9 |
178 |
23 |
82.05 |
MECANICA |
José Gamboa |
24.07609 |
-104.5546 |
701 |
20195406 |
5406 |
3 |
50 |
27 |
89.82 |
INFORMATICA |
José Gamboa |
24.07609 |
-104.5546 |
1106 |
20192824 |
2824 |
3 |
61 |
22 |
81.57 |
INDUSTRIAL |
José Gamboa |
24.07609 |
-104.5546 |
564 |
20193247 |
3247 |
7 |
179 |
31 |
94.61 |
INDUSTRIAL |
José Gamboa |
24.07609 |
-104.5546 |
665 |
20193650 |
3650 |
3 |
52 |
32 |
79.00 |
MECANICA |
José Gamboa |
24.07609 |
-104.5546 |
752 |
20192005 |
2005 |
8 |
203 |
18 |
88.86 |
CIVIL |
José Gamboa |
24.07609 |
-104.5546 |
384 |
20191003 |
1003 |
2 |
26 |
26 |
90.33 |
ARQUITECTURA |
José Gamboa |
24.07609 |
-104.5546 |
196 |
20195076 |
5076 |
6 |
98 |
24 |
86.05 |
GESTION EMPRESARIAL |
José Gamboa |
24.07609 |
-104.5546 |
1048 |
20191334 |
1334 |
1 |
NA |
23 |
0.00 |
BIOQUIMICA |
José Gamboa |
24.07609 |
-104.5546 |
260 |
muestraloc2 <- sample(loc2, round(n * frloc2, 0))
kable(muestraloc1, caption = paste("La muestra de alumnos de Localidad ",tabla_frec$Category[2] ))
La muestra de alumnos de Localidad Tierra Prometida
20194278 |
4278 |
7 |
172 |
32 |
91.36 |
QUIMICA |
José Gamboa |
24.07609 |
-104.5546 |
891 |
20194700 |
4700 |
11 |
205 |
30 |
83.65 |
GESTION EMPRESARIAL |
José Gamboa |
24.07609 |
-104.5546 |
977 |
20193753 |
3753 |
6 |
109 |
36 |
90.46 |
MECATRONICA |
José Gamboa |
24.07609 |
-104.5546 |
774 |
20192092 |
2092 |
8 |
156 |
20 |
80.18 |
CIVIL |
José Gamboa |
24.07609 |
-104.5546 |
404 |
20191273 |
1273 |
4 |
82 |
31 |
85.94 |
BIOQUIMICA |
José Gamboa |
24.07609 |
-104.5546 |
249 |
20191508 |
1508 |
1 |
NA |
23 |
0.00 |
BIOQUIMICA |
José Gamboa |
24.07609 |
-104.5546 |
292 |
20192338 |
2338 |
1 |
NA |
24 |
0.00 |
ELECTRICA |
José Gamboa |
24.07609 |
-104.5546 |
454 |
20191070 |
1070 |
8 |
202 |
25 |
82.59 |
ARQUITECTURA |
José Gamboa |
24.07609 |
-104.5546 |
211 |
20193755 |
3755 |
5 |
109 |
29 |
91.63 |
MECATRONICA |
José Gamboa |
24.07609 |
-104.5546 |
775 |
20192807 |
2807 |
5 |
96 |
32 |
85.18 |
INDUSTRIAL |
José Gamboa |
24.07609 |
-104.5546 |
560 |
20194193 |
4193 |
8 |
141 |
28 |
82.17 |
QUIMICA |
José Gamboa |
24.07609 |
-104.5546 |
871 |
20190813 |
813 |
2 |
20 |
20 |
88.20 |
ARQUITECTURA |
José Gamboa |
24.07609 |
-104.5546 |
161 |
20193397 |
3397 |
9 |
178 |
23 |
82.05 |
MECANICA |
José Gamboa |
24.07609 |
-104.5546 |
701 |
20195406 |
5406 |
3 |
50 |
27 |
89.82 |
INFORMATICA |
José Gamboa |
24.07609 |
-104.5546 |
1106 |
20192824 |
2824 |
3 |
61 |
22 |
81.57 |
INDUSTRIAL |
José Gamboa |
24.07609 |
-104.5546 |
564 |
20193247 |
3247 |
7 |
179 |
31 |
94.61 |
INDUSTRIAL |
José Gamboa |
24.07609 |
-104.5546 |
665 |
20193650 |
3650 |
3 |
52 |
32 |
79.00 |
MECANICA |
José Gamboa |
24.07609 |
-104.5546 |
752 |
20192005 |
2005 |
8 |
203 |
18 |
88.86 |
CIVIL |
José Gamboa |
24.07609 |
-104.5546 |
384 |
20191003 |
1003 |
2 |
26 |
26 |
90.33 |
ARQUITECTURA |
José Gamboa |
24.07609 |
-104.5546 |
196 |
20195076 |
5076 |
6 |
98 |
24 |
86.05 |
GESTION EMPRESARIAL |
José Gamboa |
24.07609 |
-104.5546 |
1048 |
20191334 |
1334 |
1 |
NA |
23 |
0.00 |
BIOQUIMICA |
José Gamboa |
24.07609 |
-104.5546 |
260 |
muestraloc3 <- sample(loc3, round(n * frloc3, 0))
kable(muestraloc1, caption = paste("La muestra de alumnos de Localidad ",tabla_frec$Category[3] ))
La muestra de alumnos de Localidad Residencial Los Arcos [Fraccionamiento]
20194278 |
4278 |
7 |
172 |
32 |
91.36 |
QUIMICA |
José Gamboa |
24.07609 |
-104.5546 |
891 |
20194700 |
4700 |
11 |
205 |
30 |
83.65 |
GESTION EMPRESARIAL |
José Gamboa |
24.07609 |
-104.5546 |
977 |
20193753 |
3753 |
6 |
109 |
36 |
90.46 |
MECATRONICA |
José Gamboa |
24.07609 |
-104.5546 |
774 |
20192092 |
2092 |
8 |
156 |
20 |
80.18 |
CIVIL |
José Gamboa |
24.07609 |
-104.5546 |
404 |
20191273 |
1273 |
4 |
82 |
31 |
85.94 |
BIOQUIMICA |
José Gamboa |
24.07609 |
-104.5546 |
249 |
20191508 |
1508 |
1 |
NA |
23 |
0.00 |
BIOQUIMICA |
José Gamboa |
24.07609 |
-104.5546 |
292 |
20192338 |
2338 |
1 |
NA |
24 |
0.00 |
ELECTRICA |
José Gamboa |
24.07609 |
-104.5546 |
454 |
20191070 |
1070 |
8 |
202 |
25 |
82.59 |
ARQUITECTURA |
José Gamboa |
24.07609 |
-104.5546 |
211 |
20193755 |
3755 |
5 |
109 |
29 |
91.63 |
MECATRONICA |
José Gamboa |
24.07609 |
-104.5546 |
775 |
20192807 |
2807 |
5 |
96 |
32 |
85.18 |
INDUSTRIAL |
José Gamboa |
24.07609 |
-104.5546 |
560 |
20194193 |
4193 |
8 |
141 |
28 |
82.17 |
QUIMICA |
José Gamboa |
24.07609 |
-104.5546 |
871 |
20190813 |
813 |
2 |
20 |
20 |
88.20 |
ARQUITECTURA |
José Gamboa |
24.07609 |
-104.5546 |
161 |
20193397 |
3397 |
9 |
178 |
23 |
82.05 |
MECANICA |
José Gamboa |
24.07609 |
-104.5546 |
701 |
20195406 |
5406 |
3 |
50 |
27 |
89.82 |
INFORMATICA |
José Gamboa |
24.07609 |
-104.5546 |
1106 |
20192824 |
2824 |
3 |
61 |
22 |
81.57 |
INDUSTRIAL |
José Gamboa |
24.07609 |
-104.5546 |
564 |
20193247 |
3247 |
7 |
179 |
31 |
94.61 |
INDUSTRIAL |
José Gamboa |
24.07609 |
-104.5546 |
665 |
20193650 |
3650 |
3 |
52 |
32 |
79.00 |
MECANICA |
José Gamboa |
24.07609 |
-104.5546 |
752 |
20192005 |
2005 |
8 |
203 |
18 |
88.86 |
CIVIL |
José Gamboa |
24.07609 |
-104.5546 |
384 |
20191003 |
1003 |
2 |
26 |
26 |
90.33 |
ARQUITECTURA |
José Gamboa |
24.07609 |
-104.5546 |
196 |
20195076 |
5076 |
6 |
98 |
24 |
86.05 |
GESTION EMPRESARIAL |
José Gamboa |
24.07609 |
-104.5546 |
1048 |
20191334 |
1334 |
1 |
NA |
23 |
0.00 |
BIOQUIMICA |
José Gamboa |
24.07609 |
-104.5546 |
260 |
muestraloc4 <- sample(loc4, round(n * frloc4, 0))
kable(muestraloc1, caption = paste("La muestra de alumnos de Localidad ",tabla_frec$Category[4] ))
La muestra de alumnos de Localidad Rancho San Pablo
20194278 |
4278 |
7 |
172 |
32 |
91.36 |
QUIMICA |
José Gamboa |
24.07609 |
-104.5546 |
891 |
20194700 |
4700 |
11 |
205 |
30 |
83.65 |
GESTION EMPRESARIAL |
José Gamboa |
24.07609 |
-104.5546 |
977 |
20193753 |
3753 |
6 |
109 |
36 |
90.46 |
MECATRONICA |
José Gamboa |
24.07609 |
-104.5546 |
774 |
20192092 |
2092 |
8 |
156 |
20 |
80.18 |
CIVIL |
José Gamboa |
24.07609 |
-104.5546 |
404 |
20191273 |
1273 |
4 |
82 |
31 |
85.94 |
BIOQUIMICA |
José Gamboa |
24.07609 |
-104.5546 |
249 |
20191508 |
1508 |
1 |
NA |
23 |
0.00 |
BIOQUIMICA |
José Gamboa |
24.07609 |
-104.5546 |
292 |
20192338 |
2338 |
1 |
NA |
24 |
0.00 |
ELECTRICA |
José Gamboa |
24.07609 |
-104.5546 |
454 |
20191070 |
1070 |
8 |
202 |
25 |
82.59 |
ARQUITECTURA |
José Gamboa |
24.07609 |
-104.5546 |
211 |
20193755 |
3755 |
5 |
109 |
29 |
91.63 |
MECATRONICA |
José Gamboa |
24.07609 |
-104.5546 |
775 |
20192807 |
2807 |
5 |
96 |
32 |
85.18 |
INDUSTRIAL |
José Gamboa |
24.07609 |
-104.5546 |
560 |
20194193 |
4193 |
8 |
141 |
28 |
82.17 |
QUIMICA |
José Gamboa |
24.07609 |
-104.5546 |
871 |
20190813 |
813 |
2 |
20 |
20 |
88.20 |
ARQUITECTURA |
José Gamboa |
24.07609 |
-104.5546 |
161 |
20193397 |
3397 |
9 |
178 |
23 |
82.05 |
MECANICA |
José Gamboa |
24.07609 |
-104.5546 |
701 |
20195406 |
5406 |
3 |
50 |
27 |
89.82 |
INFORMATICA |
José Gamboa |
24.07609 |
-104.5546 |
1106 |
20192824 |
2824 |
3 |
61 |
22 |
81.57 |
INDUSTRIAL |
José Gamboa |
24.07609 |
-104.5546 |
564 |
20193247 |
3247 |
7 |
179 |
31 |
94.61 |
INDUSTRIAL |
José Gamboa |
24.07609 |
-104.5546 |
665 |
20193650 |
3650 |
3 |
52 |
32 |
79.00 |
MECANICA |
José Gamboa |
24.07609 |
-104.5546 |
752 |
20192005 |
2005 |
8 |
203 |
18 |
88.86 |
CIVIL |
José Gamboa |
24.07609 |
-104.5546 |
384 |
20191003 |
1003 |
2 |
26 |
26 |
90.33 |
ARQUITECTURA |
José Gamboa |
24.07609 |
-104.5546 |
196 |
20195076 |
5076 |
6 |
98 |
24 |
86.05 |
GESTION EMPRESARIAL |
José Gamboa |
24.07609 |
-104.5546 |
1048 |
20191334 |
1334 |
1 |
NA |
23 |
0.00 |
BIOQUIMICA |
José Gamboa |
24.07609 |
-104.5546 |
260 |
muestraloc5 <- sample(loc5, round(n * frloc5, 0))
kable(muestraloc1, caption = paste("La muestra de alumnos de Localidad ",tabla_frec$Category[5] ))
La muestra de alumnos de Localidad Rancho el Bajío
20194278 |
4278 |
7 |
172 |
32 |
91.36 |
QUIMICA |
José Gamboa |
24.07609 |
-104.5546 |
891 |
20194700 |
4700 |
11 |
205 |
30 |
83.65 |
GESTION EMPRESARIAL |
José Gamboa |
24.07609 |
-104.5546 |
977 |
20193753 |
3753 |
6 |
109 |
36 |
90.46 |
MECATRONICA |
José Gamboa |
24.07609 |
-104.5546 |
774 |
20192092 |
2092 |
8 |
156 |
20 |
80.18 |
CIVIL |
José Gamboa |
24.07609 |
-104.5546 |
404 |
20191273 |
1273 |
4 |
82 |
31 |
85.94 |
BIOQUIMICA |
José Gamboa |
24.07609 |
-104.5546 |
249 |
20191508 |
1508 |
1 |
NA |
23 |
0.00 |
BIOQUIMICA |
José Gamboa |
24.07609 |
-104.5546 |
292 |
20192338 |
2338 |
1 |
NA |
24 |
0.00 |
ELECTRICA |
José Gamboa |
24.07609 |
-104.5546 |
454 |
20191070 |
1070 |
8 |
202 |
25 |
82.59 |
ARQUITECTURA |
José Gamboa |
24.07609 |
-104.5546 |
211 |
20193755 |
3755 |
5 |
109 |
29 |
91.63 |
MECATRONICA |
José Gamboa |
24.07609 |
-104.5546 |
775 |
20192807 |
2807 |
5 |
96 |
32 |
85.18 |
INDUSTRIAL |
José Gamboa |
24.07609 |
-104.5546 |
560 |
20194193 |
4193 |
8 |
141 |
28 |
82.17 |
QUIMICA |
José Gamboa |
24.07609 |
-104.5546 |
871 |
20190813 |
813 |
2 |
20 |
20 |
88.20 |
ARQUITECTURA |
José Gamboa |
24.07609 |
-104.5546 |
161 |
20193397 |
3397 |
9 |
178 |
23 |
82.05 |
MECANICA |
José Gamboa |
24.07609 |
-104.5546 |
701 |
20195406 |
5406 |
3 |
50 |
27 |
89.82 |
INFORMATICA |
José Gamboa |
24.07609 |
-104.5546 |
1106 |
20192824 |
2824 |
3 |
61 |
22 |
81.57 |
INDUSTRIAL |
José Gamboa |
24.07609 |
-104.5546 |
564 |
20193247 |
3247 |
7 |
179 |
31 |
94.61 |
INDUSTRIAL |
José Gamboa |
24.07609 |
-104.5546 |
665 |
20193650 |
3650 |
3 |
52 |
32 |
79.00 |
MECANICA |
José Gamboa |
24.07609 |
-104.5546 |
752 |
20192005 |
2005 |
8 |
203 |
18 |
88.86 |
CIVIL |
José Gamboa |
24.07609 |
-104.5546 |
384 |
20191003 |
1003 |
2 |
26 |
26 |
90.33 |
ARQUITECTURA |
José Gamboa |
24.07609 |
-104.5546 |
196 |
20195076 |
5076 |
6 |
98 |
24 |
86.05 |
GESTION EMPRESARIAL |
José Gamboa |
24.07609 |
-104.5546 |
1048 |
20191334 |
1334 |
1 |
NA |
23 |
0.00 |
BIOQUIMICA |
José Gamboa |
24.07609 |
-104.5546 |
260 |
Visualizar con mapas
#install.packages("leaflet")
library(leaflet)
## Warning: package 'leaflet' was built under R version 4.0.3
map<-leaflet() %>%
addTiles() %>%
addMarkers(lat=localidades50$Lat_Decimal[1],lng=localidades50$Lon_Decimal[1] ,popup=paste(localidades50$Nom_Loc[1], " ", tabla_frec$muestra[1])) %>%
addMarkers(lat=localidades50$Lat_Decimal[2],lng=localidades50$Lon_Decimal[2] ,popup=paste(localidades50$Nom_Loc[2], " ", tabla_frec$muestra[2])) %>%
addMarkers(lat=localidades50$Lat_Decimal[3],lng=localidades50$Lon_Decimal[3] ,popup=paste(localidades50$Nom_Loc[3], " ", tabla_frec$muestra[3])) %>%
addMarkers(lat=localidades50$Lat_Decimal[4],lng=localidades50$Lon_Decimal[4] ,popup=paste(localidades50$Nom_Loc[4], " ", tabla_frec$muestra[4])) %>%
addMarkers(lat=localidades50$Lat_Decimal[5],lng=localidades50$Lon_Decimal[5] ,popup=paste(localidades50$Nom_Loc[5], " ", tabla_frec$muestra[5]))
# Mostrar el mapa
map