1. descriptive stats - means

groupLikely means

### groupLikely means
groupLikely <-  aggregate(d2$groupLikelihood ~ d2$Introspection_Condition,
                  FUN = mean, na.rm = T)
groupLikely
##   d2$Introspection_Condition d2$groupLikelihood
## 1                    control           3.720511
## 2                 introspect           3.658929
### groupLikely means
groupLikely <-  aggregate(d2$groupLikelihood ~(d2$Introspection_Condition*d2$country_factor),
                  FUN = mean, na.rm = T)
groupLikely
##    d2$Introspection_Condition d2$country_factor d2$groupLikelihood
## 1                     control            Brazil           3.706667
## 2                  introspect            Brazil           3.678191
## 3                     control             Korea           4.284530
## 4                  introspect             Korea           4.201705
## 5                     control            Sweden           3.128713
## 6                  introspect            Sweden           3.034722
## 7                     control                UK           4.324397
## 8                  introspect                UK           4.195187
## 9                     control                US           3.476253
## 10                 introspect                US           3.475921

#descriptive graphs

## violin plot

p1 <- ggplot(d2,
              aes(y = partyLikely,
                  x = country,
                  group = interaction(as.factor(Introspection_Condition),as.factor(country)),
                  fill = Introspection_Condition,
                  color = Introspection_Condition)) +
  geom_boxplot(color = "gray4")+
  geom_violin(alpha = .1, color = "gray4") +
  scale_x_discrete(labels = c("1" = "US", "2" = "UK", "3" = "Korea", "4" = "Italy", "5"="Sweden", "6" = "Israel", "7" = "Brazil")) +
  scale_y_continuous(name = "Likelihood of attending party") +
  scale_fill_manual(values = c("indianred1","steelblue1"),
                    name = "Condition",
                    labels = c("Control", "Introspection")) + 
  theme_classic()

p1
## Warning: Removed 2089 rows containing non-finite values (stat_boxplot).
## Warning: Removed 2089 rows containing non-finite values (stat_ydensity).

## means between countries

p2m <-  aggregate(d2$partyLikely ~ (d2$Introspection_Condition*d2$country),
                  FUN = mean, na.rm = T)


p2m$sd <-  aggregate(d2$partyLikely ~ (d2$Introspection_Condition*d2$country),
                  FUN = mean, na.rm = T)[,3]

getN <- function(vector) sum(!is.na(vector))

p2m$n <- aggregate(d2$partyLikely ~ (d2$Introspection_Condition*d2$country),
                  FUN = getN)[,3]


p2m$se <- p2m$sd/sqrt(p2m$n)

names(p2m)[1:3] <- c("intro","country","partyLikely")

p2 <- ggplot(d2,
              aes(y = partyLikely,
                  x = country,
                  group = interaction(as.factor(intro),as.factor(country)),
                  fill = intro,
                  color = intro)) +
  
  geom_bar(data=p2m,
           stat = "identity",
           position = position_dodge(),
           color = "gray4") +
  
  geom_errorbar(data = p2m,
                aes(ymin=partyLikely - se,
                    ymax=partyLikely + se),
                position = position_dodge(),
                color = "gray4") +

  
  scale_x_discrete(labels = c("1" = "US", "2" = "UK", "3" = "Korea", "4" = "Italy", "5"="Sweden", "6" = "Israel", "7" = "Brazil")) +
  
  scale_y_continuous(name = "Likelihood of attending party") +
  
  scale_fill_manual(values = c("indianred1","steelblue1"),
                    name = "Condition",
                    labels = c("Control", "Introspection")) + 
  
  theme_classic()
  


p2

3. Models

party ~ condition + (1|country)

#contrast code social gains: control = -.5; introspection = .5
d2$intro_cc_.5 <- ifelse(d2$Introspection_Condition == 1, .5, -.5)


#tried to include random slopes for introspection condition, but singularity issues
m1 <-
  lmer(partyLikely ~ intro_cc_.5 + ( 1 | country),
       data = d2)
## fixed-effect model matrix is rank deficient so dropping 1 column / coefficient
summary(m1)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: partyLikely ~ intro_cc_.5 + (1 | country)
##    Data: d2
## 
## REML criterion at convergence: 21775.6
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -1.0492 -0.8266 -0.4447  0.6444  2.6384 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  country  (Intercept) 0.1025   0.3201  
##  Residual             3.3720   1.8363  
## Number of obs: 5367, groups:  country, 6
## 
## Fixed effects:
##             Estimate Std. Error     df t value Pr(>|t|)    
## (Intercept)   2.5705     0.1332 4.9632    19.3 7.36e-06 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## fit warnings:
## fixed-effect model matrix is rank deficient so dropping 1 column / coefficient
d2 %>% ggplot(aes(Introspection_Condition, partyLikely, fill = Introspection_Condition)) +
  stat_summary(fun.data = mean_sdl, geom = "bar", position = "dodge") + 
    scale_fill_manual(values = c("indianred1","steelblue1"),
                    name = "Condition",
                    labels = c("Introspection", "Control")) + 
  theme_minimal() + 
  coord_cartesian(ylim = c(1, 3))
## Warning: Removed 2089 rows containing non-finite values (stat_summary).

plot_model(m1,
           type = "re",
           grid = F)
## Warning: `select_vars()` is deprecated as of dplyr 0.8.4.
## Please use `tidyselect::vars_select()` instead.
## This warning is displayed once every 8 hours.
## Call `lifecycle::last_warnings()` to see where this warning was generated.

going to party ~ condition + spread + experience symptoms + policy condition (2 df test)

## 
## Call:
## lm(formula = partyLikely ~ intro_cc_.5 + spread + expSymp + Policy_Condition_cc, 
##     data = d3)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -3.6836 -0.9302 -0.6580  0.8819  5.3420 
## 
## Coefficients: (1 not defined because of singularities)
##                     Estimate Std. Error t value Pr(>|t|)    
## (Intercept)          5.09425    0.07400  68.843  < 2e-16 ***
## intro_cc_.5               NA         NA      NA       NA    
## spread              -0.33146    0.01975 -16.786  < 2e-16 ***
## expSymp             -0.14941    0.01958  -7.630 2.77e-14 ***
## Policy_Condition_cc  0.14042    0.06587   2.132   0.0331 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.661 on 5329 degrees of freedom
##   (8 observations deleted due to missingness)
## Multiple R-squared:  0.1981, Adjusted R-squared:  0.1976 
## F-statistic: 438.8 on 3 and 5329 DF,  p-value: < 2.2e-16
## 
## Call:
## lm(formula = partyLikely ~ intro_cc_.5 + Policy_Condition_cc, 
##     data = d3)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -1.6146 -1.5407 -0.5851  1.4149  4.5036 
## 
## Coefficients: (1 not defined because of singularities)
##                     Estimate Std. Error t value Pr(>|t|)    
## (Intercept)          2.55552    0.02539 100.646   <2e-16 ***
## intro_cc_.5               NA         NA      NA       NA    
## Policy_Condition_cc  0.11818    0.07352   1.607    0.108    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.854 on 5331 degrees of freedom
##   (8 observations deleted due to missingness)
## Multiple R-squared:  0.0004845,  Adjusted R-squared:  0.000297 
## F-statistic: 2.584 on 1 and 5331 DF,  p-value: 0.108
## SSE (Compact) =  18324.33 
## SSE (Augmented) =  14701.65 
## Delta R-Squared =  0.1976016 
## Partial Eta-Squared (PRE) =  0.1976974 
## F(2,5329) = 656.566, p = 1.285841e-255

partyLikely ~ intro_cc_.5*avg_screen + (1|country)

summary(m<-lmer(partyLikely ~ intro_cc_.5*avg_screen + (avg_screen | country), data = d2))
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: partyLikely ~ intro_cc_.5 * avg_screen + (avg_screen | country)
##    Data: d2
## 
## REML criterion at convergence: 20256.9
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -2.8819 -0.6343 -0.2937  0.5932  3.4879 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev. Corr 
##  country  (Intercept) 1.5439   1.243         
##           avg_screen  0.0676   0.260    -0.98
##  Residual             2.5909   1.610         
## Number of obs: 5333, groups:  country, 6
## 
## Fixed effects:
##             Estimate Std. Error      df t value Pr(>|t|)    
## (Intercept)   5.0939     0.5134  5.0370   9.921  0.00017 ***
## avg_screen   -0.4686     0.1071  5.0051  -4.375  0.00717 ** 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##            (Intr)
## avg_screen -0.983
## fit warnings:
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients