Log - Lineal

Pudrimiento de las raíces en yuca (\(\textit{Manihot esculenta}\))

https://www.scielo.br/scielo.php?script=sci_arttext&pid=S0103-90162017000100060&lng=en&tlng=en

tabcon <- array(data=c(180,10,108,90,50,2,12,20),
                dim = c(2,2,2),
                dimnames = list("P_scleroteichum"=c("Si","No"),
                                "N_hyalinum"=c("Si","No"),
                                "Root_rot"=c("Si","No")))
tabcon
## , , Root_rot = Si
## 
##                N_hyalinum
## P_scleroteichum  Si  No
##              Si 180 108
##              No  10  90
## 
## , , Root_rot = No
## 
##                N_hyalinum
## P_scleroteichum Si No
##              Si 50 12
##              No  2 20
ftable(tabcon,row.vars = c("P_scleroteichum","N_hyalinum"))
##                            Root_rot  Si  No
## P_scleroteichum N_hyalinum                 
## Si              Si                  180  50
##                 No                  108  12
## No              Si                   10   2
##                 No                   90  20
addmargins(tabcon)
## , , Root_rot = Si
## 
##                N_hyalinum
## P_scleroteichum  Si  No Sum
##             Si  180 108 288
##             No   10  90 100
##             Sum 190 198 388
## 
## , , Root_rot = No
## 
##                N_hyalinum
## P_scleroteichum Si No Sum
##             Si  50 12  62
##             No   2 20  22
##             Sum 52 32  84
## 
## , , Root_rot = Sum
## 
##                N_hyalinum
## P_scleroteichum  Si  No Sum
##             Si  230 120 350
##             No   12 110 122
##             Sum 242 230 472
options(digits = 3)
prop.table(tabcon,margin = c(1,3))
## , , Root_rot = Si
## 
##                N_hyalinum
## P_scleroteichum    Si    No
##              Si 0.625 0.375
##              No 0.100 0.900
## 
## , , Root_rot = No
## 
##                N_hyalinum
## P_scleroteichum     Si    No
##              Si 0.8065 0.194
##              No 0.0909 0.909
tabcon_df <- as.data.frame(as.table(tabcon))
tabcon_df[,-4] <- lapply(tabcon_df[,-4],relevel,ref ="No")
tabcon_df
##   P_scleroteichum N_hyalinum Root_rot Freq
## 1              Si         Si       Si  180
## 2              No         Si       Si   10
## 3              Si         No       Si  108
## 4              No         No       Si   90
## 5              Si         Si       No   50
## 6              No         Si       No    2
## 7              Si         No       No   12
## 8              No         No       No   20
set.seed(1234567)
m1000 <- sample(c("numero","simbolo"),40,replace = T)
m200 <- sample(c("numero","simbolo"),40,replace = T)
table(m1000,m200)
##          m200
## m1000     numero simbolo
##   numero      10      10
##   simbolo     10      10

\[\mu_{ij}=n \pi_{i} \pi_j\]

\[log(\mu_{ij})=log(n \pi_{i} \pi_j)=log~n+log~\pi_i+log~\pi_j\]

mod0 <- glm(Freq ~ P_scleroteichum + N_hyalinum + Root_rot,
            data = tabcon_df,family = poisson)
summary(mod0)
## 
## Call:
## glm(formula = Freq ~ P_scleroteichum + N_hyalinum + Root_rot, 
##     family = poisson, data = tabcon_df)
## 
## Deviance Residuals: 
##     1      2      3      4      5      6      7      8  
##  2.58  -7.08  -2.83   5.26   2.95  -3.38  -3.80   2.58  
## 
## Coefficients:
##                   Estimate Std. Error z value Pr(>|z|)    
## (Intercept)         2.3590     0.1422   16.59   <2e-16 ***
## P_scleroteichumSi   1.0539     0.1051   10.02   <2e-16 ***
## N_hyalinumSi        0.0509     0.0921    0.55     0.58    
## Root_rotSi          1.5302     0.1203   12.72   <2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for poisson family taken to be 1)
## 
##     Null deviance: 461.07  on 7  degrees of freedom
## Residual deviance: 133.63  on 4  degrees of freedom
## AIC: 183.2
## 
## Number of Fisher Scoring iterations: 5
mod0 <- glm(Freq ~ P_scleroteichum + N_hyalinum + Root_rot,
            data = tabcon_df,family = quasipoisson)
summary(mod0)
## 
## Call:
## glm(formula = Freq ~ P_scleroteichum + N_hyalinum + Root_rot, 
##     family = quasipoisson, data = tabcon_df)
## 
## Deviance Residuals: 
##     1      2      3      4      5      6      7      8  
##  2.58  -7.08  -2.83   5.26   2.95  -3.38  -3.80   2.58  
## 
## Coefficients:
##                   Estimate Std. Error t value Pr(>|t|)  
## (Intercept)         2.3590     0.7778    3.03    0.039 *
## P_scleroteichumSi   1.0539     0.5752    1.83    0.141  
## N_hyalinumSi        0.0509     0.5038    0.10    0.924  
## Root_rotSi          1.5302     0.6584    2.32    0.081 .
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for quasipoisson family taken to be 29.9)
## 
##     Null deviance: 461.07  on 7  degrees of freedom
## Residual deviance: 133.63  on 4  degrees of freedom
## AIC: NA
## 
## Number of Fisher Scoring iterations: 5
pchisq(deviance(mod0),df= df.residual(mod0),lower.tail = F)
## [1] 6.53e-28
cbind(mod0$data,fitted(mod0))
##   P_scleroteichum N_hyalinum Root_rot Freq fitted(mod0)
## 1              Si         Si       Si  180        147.5
## 2              No         Si       Si   10         51.4
## 3              Si         No       Si  108        140.2
## 4              No         No       Si   90         48.9
## 5              Si         Si       No   50         31.9
## 6              No         Si       No    2         11.1
## 7              Si         No       No   12         30.4
## 8              No         No       No   20         10.6
exp(coef(mod0)[3])
## N_hyalinumSi 
##         1.05
prueba_odd <- margin.table(tabcon,margin=2)/sum(margin.table(tabcon,margin = 2))
prueba_odd[1]/prueba_odd[2]
##   Si 
## 1.05
mod1 <- glm(Freq ~(P_scleroteichum + N_hyalinum + Root_rot)^2,
            data = tabcon_df,family = poisson)
summary(mod1)
## 
## Call:
## glm(formula = Freq ~ (P_scleroteichum + N_hyalinum + Root_rot)^2, 
##     family = poisson, data = tabcon_df)
## 
## Deviance Residuals: 
##      1       2       3       4       5       6       7       8  
## -0.116   0.522   0.151  -0.164   0.223  -0.902  -0.432   0.358  
## 
## Coefficients:
##                                Estimate Std. Error z value Pr(>|z|)    
## (Intercept)                       2.915      0.222   13.15  < 2e-16 ***
## P_scleroteichumSi                -0.307      0.315   -0.97    0.330    
## N_hyalinumSi                     -1.645      0.373   -4.41  1.1e-05 ***
## Root_rotSi                        1.602      0.240    6.67  2.6e-11 ***
## P_scleroteichumSi:N_hyalinumSi    2.918      0.329    8.88  < 2e-16 ***
## P_scleroteichumSi:Root_rotSi      0.458      0.332    1.38    0.167    
## N_hyalinumSi:Root_rotSi          -0.739      0.297   -2.49    0.013 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for poisson family taken to be 1)
## 
##     Null deviance: 461.0688  on 7  degrees of freedom
## Residual deviance:   1.5132  on 1  degrees of freedom
## AIC: 57.11
## 
## Number of Fisher Scoring iterations: 4
cbind(mod1$data,fitted(mod1))
##   P_scleroteichum N_hyalinum Root_rot Freq fitted(mod1)
## 1              Si         Si       Si  180       181.56
## 2              No         Si       Si   10         8.44
## 3              Si         No       Si  108       106.44
## 4              No         No       Si   90        91.56
## 5              Si         Si       No   50        48.44
## 6              No         Si       No    2         3.56
## 7              Si         No       No   12        13.56
## 8              No         No       No   20        18.44
exp(coef(mod1)["N_hyalinumSi:Root_rotSi"])
## N_hyalinumSi:Root_rotSi 
##                   0.477
mod1$coefficients
##                    (Intercept)              P_scleroteichumSi 
##                          2.915                         -0.307 
##                   N_hyalinumSi                     Root_rotSi 
##                         -1.645                          1.602 
## P_scleroteichumSi:N_hyalinumSi   P_scleroteichumSi:Root_rotSi 
##                          2.918                          0.458 
##        N_hyalinumSi:Root_rotSi 
##                         -0.739
#exp(confint(mod1,parm = c("P_scleroteichumSi:N_hyalinumSi","P_scleroteichumSi:Root_rotSi","N_hyalinumSi:Root_rotSi ")))
mod2 <- update(mod1,~. -P_scleroteichum:Root_rot)
summary(mod2)
## 
## Call:
## glm(formula = Freq ~ P_scleroteichum + N_hyalinum + Root_rot + 
##     P_scleroteichum:N_hyalinum + N_hyalinum:Root_rot, family = poisson, 
##     data = tabcon_df)
## 
## Deviance Residuals: 
##       1        2        3        4        5        6        7        8  
## -0.0431   0.1866   0.4586  -0.4866   0.0821  -0.3752  -1.2106   1.1456  
## 
## Coefficients:
##                                Estimate Std. Error z value Pr(>|z|)    
## (Intercept)                       2.728      0.190   14.38  < 2e-16 ***
## P_scleroteichumSi                 0.087      0.132    0.66    0.510    
## N_hyalinumSi                     -1.781      0.367   -4.86  1.2e-06 ***
## Root_rotSi                        1.823      0.190    9.57  < 2e-16 ***
## P_scleroteichumSi:N_hyalinumSi    2.866      0.324    8.84  < 2e-16 ***
## N_hyalinumSi:Root_rotSi          -0.527      0.247   -2.14    0.033 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for poisson family taken to be 1)
## 
##     Null deviance: 461.0688  on 7  degrees of freedom
## Residual deviance:   3.4093  on 2  degrees of freedom
## AIC: 57
## 
## Number of Fisher Scoring iterations: 4
mod4 <- glm(Freq ~ P_scleroteichum * N_hyalinum * Root_rot,
            data = tabcon_df,family = poisson)
summary(mod4)
## 
## Call:
## glm(formula = Freq ~ P_scleroteichum * N_hyalinum * Root_rot, 
##     family = poisson, data = tabcon_df)
## 
## Deviance Residuals: 
## [1]  0  0  0  0  0  0  0  0
## 
## Coefficients:
##                                           Estimate Std. Error z value Pr(>|z|)
## (Intercept)                                  2.996      0.224   13.40  < 2e-16
## P_scleroteichumSi                           -0.511      0.365   -1.40   0.1618
## N_hyalinumSi                                -2.303      0.742   -3.10   0.0019
## Root_rotSi                                   1.504      0.247    6.08  1.2e-09
## P_scleroteichumSi:N_hyalinumSi               3.730      0.808    4.61  3.9e-06
## P_scleroteichumSi:Root_rotSi                 0.693      0.392    1.77   0.0771
## N_hyalinumSi:Root_rotSi                      0.105      0.813    0.13   0.8969
## P_scleroteichumSi:N_hyalinumSi:Root_rotSi   -1.022      0.883   -1.16   0.2471
##                                              
## (Intercept)                               ***
## P_scleroteichumSi                            
## N_hyalinumSi                              ** 
## Root_rotSi                                ***
## P_scleroteichumSi:N_hyalinumSi            ***
## P_scleroteichumSi:Root_rotSi              .  
## N_hyalinumSi:Root_rotSi                      
## P_scleroteichumSi:N_hyalinumSi:Root_rotSi    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for poisson family taken to be 1)
## 
##     Null deviance: 4.6107e+02  on 7  degrees of freedom
## Residual deviance: 1.2879e-14  on 0  degrees of freedom
## AIC: 57.6
## 
## Number of Fisher Scoring iterations: 3

El mejor modelo es el 2, ya que se elimina la interacción la cual no es significativa y arroja un AKAIKE de 57, inferior a los demás modelos

mosaicplot(tabcon,shade = T)