Objetivo: Determinar y simular muestreos
Descripción: Con un conjunto de datos utilizar mecanismos de programación para determinar muestreos mediante técnicas de aleatorio simple, aleatorio sistemático, aleatorio estratificado y por conglomerados.
Paso 1. Cargar librerias
library(dplyr)
##
## Attaching package: 'dplyr'
## The following objects are masked from 'package:stats':
##
## filter, lag
## The following objects are masked from 'package:base':
##
## intersect, setdiff, setequal, union
library(mosaic)
## Warning: package 'mosaic' was built under R version 4.0.3
## Registered S3 method overwritten by 'mosaic':
## method from
## fortify.SpatialPolygonsDataFrame ggplot2
##
## The 'mosaic' package masks several functions from core packages in order to add
## additional features. The original behavior of these functions should not be affected by this.
##
## Attaching package: 'mosaic'
## The following object is masked from 'package:Matrix':
##
## mean
## The following object is masked from 'package:ggplot2':
##
## stat
## The following objects are masked from 'package:dplyr':
##
## count, do, tally
## The following objects are masked from 'package:stats':
##
## binom.test, cor, cor.test, cov, fivenum, IQR, median, prop.test,
## quantile, sd, t.test, var
## The following objects are masked from 'package:base':
##
## max, mean, min, prod, range, sample, sum
library(readr)
library(ggplot2)
library(knitr)
library(fdth)
##
## Attaching package: 'fdth'
## The following objects are masked from 'package:mosaic':
##
## sd, var
## The following objects are masked from 'package:stats':
##
## sd, var
Paso 2. Cargar datos
- Se carga un conjunto de 100 nombres de personas con sus atributo de género y la actividad deportiva o cultura que practican,
- Cargando un datos llamando a una función que construye los datos.
- El argumento encoding significa que acepte acentos en los datos.
source("../datos.r")
kable(head(personas, 10), caption = "Se cargaron 20 registros de las primeras 20 personas")
Se cargaron 20 registros de las primeras 20 personas
| JUAN |
M |
NO |
NO |
NO |
SI |
NO |
SI |
NO |
NO |
NO |
NO |
NO |
SI |
| JOSÉ LUIS |
M |
NO |
NO |
NO |
NO |
NO |
NO |
NO |
SI |
NO |
NO |
NO |
NO |
| JOSÉ |
M |
NO |
SI |
NO |
SI |
NO |
NO |
NO |
NO |
NO |
NO |
SI |
SI |
| MARÃA GUADALUPE |
F |
NO |
SI |
NO |
NO |
NO |
NO |
NO |
NO |
NO |
NO |
SI |
SI |
| FRANCISCO |
M |
NO |
NO |
NO |
NO |
NO |
NO |
SI |
NO |
NO |
NO |
NO |
NO |
| GUADALUPE |
F |
NO |
NO |
NO |
NO |
NO |
NO |
NO |
NO |
NO |
NO |
NO |
NO |
| MARÃA |
F |
NO |
SI |
NO |
NO |
SI |
NO |
NO |
NO |
NO |
NO |
NO |
NO |
| JUANA |
F |
NO |
NO |
NO |
NO |
SI |
NO |
NO |
SI |
NO |
NO |
NO |
NO |
| ANTONIO |
M |
NO |
NO |
NO |
NO |
NO |
NO |
NO |
NO |
NO |
NO |
NO |
NO |
| JESÚS |
M |
NO |
NO |
SI |
NO |
NO |
SI |
NO |
NO |
SI |
NO |
NO |
NO |
kable(tail(personas, 10), caption = "Se cargaron los ultimos registros de las ultimas 20 personas")
Se cargaron los ultimos registros de las ultimas 20 personas
| 91 |
ANDREA |
F |
NO |
NO |
NO |
NO |
NO |
NO |
NO |
NO |
NO |
NO |
NO |
SI |
| 92 |
ISABEL |
F |
NO |
NO |
NO |
NO |
NO |
NO |
NO |
NO |
NO |
NO |
NO |
NO |
| 93 |
MARÃA TERESA |
F |
NO |
SI |
NO |
NO |
SI |
NO |
NO |
SI |
NO |
NO |
NO |
NO |
| 94 |
IRMA |
F |
SI |
SI |
NO |
NO |
NO |
NO |
NO |
NO |
NO |
NO |
NO |
NO |
| 95 |
CARMEN |
F |
NO |
NO |
NO |
NO |
NO |
NO |
NO |
NO |
NO |
NO |
NO |
NO |
| 96 |
LUCÃA |
F |
NO |
SI |
NO |
SI |
NO |
NO |
NO |
SI |
NO |
NO |
SI |
SI |
| 97 |
ADRIANA |
F |
NO |
NO |
NO |
NO |
NO |
NO |
SI |
NO |
NO |
NO |
NO |
NO |
| 98 |
AGUSTÃN |
M |
NO |
SI |
NO |
NO |
NO |
NO |
NO |
NO |
SI |
NO |
NO |
NO |
| 99 |
MARÃA DE LA LUZ |
F |
NO |
NO |
NO |
NO |
NO |
NO |
SI |
NO |
NO |
NO |
NO |
NO |
| 100 |
GUSTAVO |
M |
NO |
NO |
NO |
NO |
NO |
NO |
NO |
SI |
NO |
NO |
NO |
NO |
Cargar datos de alumnos
- Se cargan los datos de alumnos inscritos en una Institución de educación superior en el semetre septiembre 2020 a enero 2021, con los atributos siguientes: ° No de control (modificado y no real), ° Número Conesucutivo de alumno ° Semestre que cursa ° Créditos aprobados ° Carga académica que cursa ° Promedio aritmético ° Carrera
alumnos <- alumnos <- read_csv("https://raw.githubusercontent.com/rpizarrog/probabilidad-y-estad-stica/master/datos/promedios%20alumnos/datos%20alumnos%20promedios%20SEP%202020.csv")
## Parsed with column specification:
## cols(
## `No. Control` = col_double(),
## Alumno = col_double(),
## Semestre = col_double(),
## `Cr. Apr.` = col_double(),
## Carga = col_double(),
## Promedio = col_double(),
## Carrera = col_character()
## )
kable(head(alumnos, 10), caption = "Los primeros diez registros de alumnos")
Los primeros diez registros de alumnos
| 20190001 |
1 |
11 |
198 |
19 |
80.21 |
SISTEMAS |
| 20190002 |
2 |
11 |
235 |
10 |
84.33 |
SISTEMAS |
| 20190003 |
3 |
9 |
235 |
10 |
95.25 |
SISTEMAS |
| 20190004 |
4 |
9 |
226 |
19 |
95.00 |
SISTEMAS |
| 20190005 |
5 |
10 |
231 |
14 |
82.32 |
SISTEMAS |
| 20190006 |
6 |
9 |
212 |
23 |
95.02 |
SISTEMAS |
| 20190007 |
7 |
12 |
221 |
10 |
79.06 |
SISTEMAS |
| 20190008 |
8 |
9 |
226 |
9 |
92.47 |
SISTEMAS |
| 20190009 |
9 |
9 |
231 |
4 |
91.08 |
SISTEMAS |
| 20190010 |
10 |
11 |
222 |
13 |
80.42 |
SISTEMAS |
kable(tail(alumnos, 10), caption = "Las útimos diez registros de alumnos")
Las útimos diez registros de alumnos
| 20195920 |
5920 |
7 |
169 |
23 |
89.14 |
ADMINISTRACION |
| 20195921 |
5921 |
5 |
109 |
26 |
87.83 |
ADMINISTRACION |
| 20195922 |
5922 |
3 |
55 |
29 |
92.83 |
ADMINISTRACION |
| 20195923 |
5923 |
2 |
23 |
23 |
88.60 |
ADMINISTRACION |
| 20195924 |
5924 |
2 |
27 |
28 |
92.83 |
ADMINISTRACION |
| 20195925 |
5925 |
7 |
94 |
13 |
80.95 |
ADMINISTRACION |
| 20195926 |
5926 |
5 |
103 |
32 |
92.68 |
ADMINISTRACION |
| 20195927 |
5927 |
4 |
79 |
34 |
86.18 |
ADMINISTRACION |
| 20195928 |
5928 |
5 |
108 |
32 |
90.48 |
ADMINISTRACION |
| 20195929 |
5929 |
7 |
169 |
32 |
92.33 |
ADMINISTRACION |
Simular muestreos
- Hay que encuestar a diez personas de 100 para hacerles alguna entrevist, ¿a quienes?
- Con el conjunto de datos seleccionar 10 personas aleatoriamente con al funcón sample()
N <- nrow(personas)
n <- 10
muestra <- sample(personas$nombres, n)
kable(muestra, caption = "La muestra de personas")
La muestra de personas
| DANIEL |
| JUAN MANUEL |
| MIGUEL |
| GUSTAVO |
| FRANCISCA |
| RAÚL |
| JUAN |
| LUCÃA |
| MARÃA TERESA |
| JORGE |
- Con el conjunto de datos alumnos, hay que encontrar a 100 alumnos, ¿A cuáles?
N <- nrow(alumnos)
n <- 100
muestra <- sample(N, n) # Genera los números
kable(alumnos[muestra, ], caption = "La muestra de alumnos")
La muestra de alumnos
| 20192700 |
2700 |
9 |
202 |
19 |
82.26 |
INDUSTRIAL |
| 20191164 |
1164 |
9 |
129 |
18 |
83.79 |
BIOQUIMICA |
| 20191469 |
1469 |
7 |
150 |
36 |
80.81 |
BIOQUIMICA |
| 20195645 |
5645 |
3 |
55 |
29 |
97.67 |
ADMINISTRACION |
| 20193227 |
3227 |
7 |
163 |
30 |
86.30 |
INDUSTRIAL |
| 20194973 |
4973 |
6 |
133 |
33 |
85.54 |
GESTION EMPRESARIAL |
| 20195866 |
5866 |
1 |
NA |
27 |
0.00 |
ADMINISTRACION |
| 20191513 |
1513 |
6 |
67 |
34 |
78.60 |
BIOQUIMICA |
| 20194076 |
4076 |
7 |
144 |
32 |
88.52 |
MECATRONICA |
| 20192521 |
2521 |
9 |
222 |
23 |
86.40 |
ELECTRONICA |
| 20195624 |
5624 |
3 |
55 |
29 |
96.67 |
ADMINISTRACION |
| 20194985 |
4985 |
4 |
55 |
29 |
80.42 |
GESTION EMPRESARIAL |
| 20195075 |
5075 |
5 |
116 |
32 |
87.71 |
GESTION EMPRESARIAL |
| 20195041 |
5041 |
7 |
140 |
35 |
82.27 |
GESTION EMPRESARIAL |
| 20190395 |
395 |
1 |
NA |
27 |
0.00 |
SISTEMAS |
| 20193795 |
3795 |
4 |
66 |
29 |
86.47 |
MECATRONICA |
| 20195683 |
5683 |
1 |
NA |
27 |
0.00 |
ADMINISTRACION |
| 20191577 |
1577 |
9 |
165 |
16 |
78.86 |
CIVIL |
| 20192306 |
2306 |
5 |
89 |
27 |
86.33 |
ELECTRICA |
| 20193510 |
3510 |
3 |
41 |
24 |
76.80 |
MECANICA |
| 20191415 |
1415 |
6 |
123 |
29 |
82.48 |
BIOQUIMICA |
| 20190830 |
830 |
5 |
97 |
26 |
93.50 |
ARQUITECTURA |
| 20190200 |
200 |
7 |
107 |
17 |
79.26 |
SISTEMAS |
| 20195484 |
5484 |
11 |
257 |
5 |
87.44 |
ADMINISTRACION |
| 20190025 |
25 |
11 |
230 |
15 |
84.02 |
SISTEMAS |
| 20192596 |
2596 |
3 |
52 |
25 |
92.67 |
ELECTRONICA |
| 20193863 |
3863 |
1 |
NA |
25 |
0.00 |
MECATRONICA |
| 20190074 |
74 |
10 |
230 |
15 |
83.94 |
SISTEMAS |
| 20191933 |
1933 |
1 |
NA |
27 |
0.00 |
CIVIL |
| 20191691 |
1691 |
4 |
75 |
32 |
84.19 |
CIVIL |
| 20192587 |
2587 |
5 |
90 |
20 |
83.50 |
ELECTRONICA |
| 20190886 |
886 |
1 |
NA |
26 |
0.00 |
ARQUITECTURA |
| 20194827 |
4827 |
7 |
150 |
25 |
88.75 |
GESTION EMPRESARIAL |
| 20194756 |
4756 |
9 |
230 |
15 |
91.77 |
GESTION EMPRESARIAL |
| 20190663 |
663 |
7 |
151 |
23 |
85.22 |
ARQUITECTURA |
| 20192503 |
2503 |
10 |
202 |
23 |
81.25 |
ELECTRONICA |
| 20194892 |
4892 |
1 |
NA |
27 |
0.00 |
GESTION EMPRESARIAL |
| 20194549 |
4549 |
6 |
133 |
23 |
83.25 |
QUIMICA |
| 20190308 |
308 |
4 |
83 |
29 |
91.00 |
SISTEMAS |
| 20192139 |
2139 |
6 |
143 |
30 |
84.77 |
CIVIL |
| 20191319 |
1319 |
7 |
124 |
34 |
83.15 |
BIOQUIMICA |
| 20195755 |
5755 |
4 |
84 |
29 |
87.44 |
ADMINISTRACION |
| 20195920 |
5920 |
7 |
169 |
23 |
89.14 |
ADMINISTRACION |
| 20193632 |
3632 |
1 |
NA |
26 |
0.00 |
MECANICA |
| 20193546 |
3546 |
3 |
48 |
22 |
78.64 |
MECANICA |
| 20191619 |
1619 |
9 |
225 |
10 |
84.85 |
CIVIL |
| 20191632 |
1632 |
9 |
159 |
15 |
80.15 |
CIVIL |
| 20194890 |
4890 |
7 |
170 |
35 |
87.44 |
GESTION EMPRESARIAL |
| 20192090 |
2090 |
4 |
78 |
33 |
83.59 |
CIVIL |
| 20191764 |
1764 |
1 |
NA |
27 |
0.00 |
CIVIL |
| 20190612 |
612 |
1 |
NA |
26 |
0.00 |
ARQUITECTURA |
| 20191097 |
1097 |
7 |
139 |
24 |
84.62 |
ARQUITECTURA |
| 20190796 |
796 |
7 |
116 |
34 |
81.12 |
ARQUITECTURA |
| 20190240 |
240 |
2 |
27 |
28 |
92.33 |
SISTEMAS |
| 20191202 |
1202 |
1 |
NA |
23 |
0.00 |
BIOQUIMICA |
| 20194673 |
4673 |
12 |
219 |
16 |
89.93 |
GESTION EMPRESARIAL |
| 20195370 |
5370 |
5 |
41 |
4 |
81.44 |
INFORMATICA |
| 20191901 |
1901 |
5 |
117 |
31 |
87.08 |
CIVIL |
| 20193696 |
3696 |
11 |
231 |
4 |
83.33 |
MECATRONICA |
| 20193370 |
3370 |
11 |
225 |
10 |
81.86 |
MECANICA |
| 20191197 |
1197 |
3 |
57 |
27 |
82.54 |
BIOQUIMICA |
| 20193032 |
3032 |
3 |
55 |
29 |
89.00 |
INDUSTRIAL |
| 20194867 |
4867 |
1 |
NA |
27 |
0.00 |
GESTION EMPRESARIAL |
| 20191967 |
1967 |
1 |
NA |
27 |
0.00 |
CIVIL |
| 20193638 |
3638 |
7 |
170 |
27 |
86.59 |
MECANICA |
| 20190934 |
934 |
7 |
170 |
28 |
88.58 |
ARQUITECTURA |
| 20194100 |
4100 |
9 |
225 |
5 |
87.96 |
QUIMICA |
| 20195193 |
5193 |
6 |
138 |
33 |
86.21 |
GESTION EMPRESARIAL |
| 20195450 |
5450 |
10 |
262 |
10 |
88.60 |
ADMINISTRACION |
| 20191067 |
1067 |
1 |
NA |
26 |
0.00 |
ARQUITECTURA |
| 20193404 |
3404 |
10 |
172 |
18 |
81.13 |
MECANICA |
| 20194217 |
4217 |
12 |
225 |
10 |
78.46 |
QUIMICA |
| 20191449 |
1449 |
1 |
NA |
23 |
0.00 |
BIOQUIMICA |
| 20192720 |
2720 |
9 |
202 |
24 |
82.28 |
INDUSTRIAL |
| 20195151 |
5151 |
1 |
NA |
27 |
0.00 |
GESTION EMPRESARIAL |
| 20193110 |
3110 |
1 |
NA |
27 |
0.00 |
INDUSTRIAL |
| 20191051 |
1051 |
6 |
127 |
24 |
88.19 |
ARQUITECTURA |
| 20194783 |
4783 |
1 |
NA |
27 |
0.00 |
GESTION EMPRESARIAL |
| 20195643 |
5643 |
2 |
27 |
28 |
92.67 |
ADMINISTRACION |
| 20194482 |
4482 |
2 |
25 |
30 |
82.00 |
QUIMICA |
| 20194046 |
4046 |
1 |
NA |
25 |
0.00 |
MECATRONICA |
| 20192183 |
2183 |
2 |
27 |
30 |
83.50 |
CIVIL |
| 20190659 |
659 |
1 |
NA |
26 |
0.00 |
ARQUITECTURA |
| 20195318 |
5318 |
1 |
NA |
26 |
0.00 |
TIC |
| 20192101 |
2101 |
2 |
23 |
25 |
80.80 |
CIVIL |
| 20191758 |
1758 |
4 |
80 |
34 |
85.94 |
CIVIL |
| 20192297 |
2297 |
5 |
94 |
33 |
84.77 |
ELECTRICA |
| 20193793 |
3793 |
7 |
128 |
31 |
84.46 |
MECATRONICA |
| 20190822 |
822 |
3 |
48 |
32 |
90.45 |
ARQUITECTURA |
| 20190352 |
352 |
8 |
176 |
32 |
80.47 |
SISTEMAS |
| 20193467 |
3467 |
3 |
42 |
32 |
82.30 |
MECANICA |
| 20190443 |
443 |
7 |
160 |
34 |
90.34 |
SISTEMAS |
| 20190241 |
241 |
5 |
112 |
25 |
91.63 |
SISTEMAS |
| 20194569 |
4569 |
3 |
51 |
30 |
88.64 |
QUIMICA |
| 20193456 |
3456 |
6 |
89 |
32 |
78.30 |
MECANICA |
| 20195534 |
5534 |
8 |
177 |
34 |
86.89 |
ADMINISTRACION |
| 20193666 |
3666 |
12 |
190 |
5 |
78.35 |
MECATRONICA |
| 20192155 |
2155 |
2 |
22 |
26 |
93.40 |
CIVIL |
| 20193527 |
3527 |
1 |
NA |
26 |
0.00 |
MECANICA |
| 20191607 |
1607 |
10 |
231 |
4 |
83.15 |
CIVIL |
Muestreo aleatorio sistemático
- Con el conjunto de datos personas, iniciar en un valor aletorio e identificar los siguientes de 10 en 10 hasta tener diez personas.
N <- nrow(personas)
n = 10
saltos <- round(N / n, 0)
inicio <- round(sample(N, 1) / n, 0)
#inicio
cuales <- seq(from = inicio, to =N, by= saltos)
kable(personas[cuales, ], caption = "La muestra sistematizada de personas")
La muestra sistematizada de personas
| 6 |
GUADALUPE |
F |
NO |
NO |
NO |
NO |
NO |
NO |
NO |
NO |
NO |
NO |
NO |
NO |
| 16 |
MARÃA DEL CARMEN |
F |
NO |
NO |
NO |
NO |
NO |
SI |
NO |
NO |
NO |
NO |
NO |
NO |
| 26 |
JAVIER |
F |
NO |
NO |
NO |
NO |
NO |
SI |
NO |
NO |
NO |
NO |
SI |
NO |
| 36 |
FRANCISCO JAVIER |
F |
SI |
NO |
NO |
NO |
NO |
NO |
NO |
SI |
NO |
NO |
SI |
NO |
| 46 |
TERESA |
F |
NO |
NO |
NO |
NO |
NO |
NO |
NO |
SI |
NO |
NO |
NO |
NO |
| 56 |
YOLANDA |
F |
SI |
NO |
NO |
NO |
SI |
NO |
NO |
NO |
NO |
NO |
NO |
NO |
| 66 |
VÃCTOR MANUEL |
M |
NO |
SI |
SI |
SI |
NO |
NO |
NO |
NO |
NO |
NO |
NO |
NO |
| 76 |
MARÃA ISABEL |
F |
NO |
SI |
NO |
NO |
NO |
NO |
NO |
NO |
NO |
NO |
NO |
SI |
| 86 |
JOSÉ GUADALUPE |
M |
NO |
NO |
NO |
NO |
NO |
SI |
NO |
NO |
NO |
NO |
NO |
SI |
| 96 |
LUCÃA |
F |
NO |
SI |
NO |
SI |
NO |
NO |
NO |
SI |
NO |
NO |
SI |
SI |
- Con el conjunto de datos alumnos, hay que encontrar a 100 alumnos, ¿A cuáles?, bajo el muetreo sistematizado
N <- nrow(alumnos)
n = 100
saltos <- round(N / n, 0)
inicio <- round(sample(N, 1) / n, 0)
cuales <- seq(from = inicio, to =N, by= saltos)
kable(alumnos[cuales, ], caption = "La muestra de alumnos")
La muestra de alumnos
| 20190040 |
40 |
9 |
217 |
18 |
92.00 |
SISTEMAS |
| 20190099 |
99 |
1 |
NA |
27 |
0.00 |
SISTEMAS |
| 20190158 |
158 |
1 |
NA |
27 |
0.00 |
SISTEMAS |
| 20190217 |
217 |
1 |
NA |
27 |
0.00 |
SISTEMAS |
| 20190276 |
276 |
3 |
8 |
22 |
80.00 |
SISTEMAS |
| 20190335 |
335 |
3 |
50 |
28 |
92.00 |
SISTEMAS |
| 20190394 |
394 |
3 |
50 |
28 |
88.55 |
SISTEMAS |
| 20190453 |
453 |
9 |
219 |
16 |
89.98 |
ARQUITECTURA |
| 20190512 |
512 |
9 |
223 |
4 |
90.24 |
ARQUITECTURA |
| 20190571 |
571 |
1 |
NA |
26 |
0.00 |
ARQUITECTURA |
| 20190630 |
630 |
1 |
NA |
26 |
0.00 |
ARQUITECTURA |
| 20190689 |
689 |
1 |
NA |
26 |
0.00 |
ARQUITECTURA |
| 20190748 |
748 |
6 |
117 |
33 |
86.38 |
ARQUITECTURA |
| 20190807 |
807 |
3 |
48 |
32 |
89.82 |
ARQUITECTURA |
| 20190866 |
866 |
6 |
142 |
28 |
88.53 |
ARQUITECTURA |
| 20190925 |
925 |
4 |
80 |
30 |
93.39 |
ARQUITECTURA |
| 20190984 |
984 |
6 |
120 |
28 |
85.59 |
ARQUITECTURA |
| 20191043 |
1043 |
2 |
26 |
26 |
88.33 |
ARQUITECTURA |
| 20191102 |
1102 |
3 |
52 |
28 |
88.33 |
ARQUITECTURA |
| 20191161 |
1161 |
9 |
247 |
11 |
90.62 |
BIOQUIMICA |
| 20191220 |
1220 |
5 |
81 |
34 |
85.44 |
BIOQUIMICA |
| 20191279 |
1279 |
3 |
52 |
30 |
97.92 |
BIOQUIMICA |
| 20191338 |
1338 |
4 |
77 |
22 |
80.47 |
BIOQUIMICA |
| 20191397 |
1397 |
4 |
77 |
28 |
85.71 |
BIOQUIMICA |
| 20191456 |
1456 |
6 |
118 |
34 |
84.35 |
BIOQUIMICA |
| 20191515 |
1515 |
5 |
99 |
26 |
86.86 |
BIOQUIMICA |
| 20191574 |
1574 |
12 |
230 |
5 |
79.42 |
CIVIL |
| 20191633 |
1633 |
11 |
206 |
29 |
79.65 |
CIVIL |
| 20191692 |
1692 |
8 |
193 |
27 |
80.38 |
CIVIL |
| 20191751 |
1751 |
7 |
175 |
24 |
87.25 |
CIVIL |
| 20191810 |
1810 |
5 |
109 |
30 |
82.48 |
CIVIL |
| 20191869 |
1869 |
3 |
57 |
24 |
90.83 |
CIVIL |
| 20191928 |
1928 |
5 |
100 |
19 |
80.00 |
CIVIL |
| 20191987 |
1987 |
5 |
101 |
28 |
83.71 |
CIVIL |
| 20192046 |
2046 |
8 |
150 |
33 |
81.77 |
CIVIL |
| 20192105 |
2105 |
8 |
178 |
30 |
79.41 |
CIVIL |
| 20192164 |
2164 |
1 |
NA |
27 |
0.00 |
CIVIL |
| 20192223 |
2223 |
9 |
220 |
15 |
83.30 |
ELECTRICA |
| 20192282 |
2282 |
5 |
94 |
26 |
84.09 |
ELECTRICA |
| 20192341 |
2341 |
3 |
46 |
28 |
91.55 |
ELECTRICA |
| 20192400 |
2400 |
1 |
NA |
24 |
0.00 |
ELECTRICA |
| 20192459 |
2459 |
1 |
NA |
24 |
0.00 |
ELECTRICA |
| 20192518 |
2518 |
11 |
192 |
23 |
83.88 |
ELECTRONICA |
| 20192577 |
2577 |
3 |
52 |
25 |
87.67 |
ELECTRONICA |
| 20192636 |
2636 |
5 |
105 |
28 |
92.65 |
ELECTRONICA |
| 20192695 |
2695 |
9 |
226 |
4 |
85.18 |
INDUSTRIAL |
| 20192754 |
2754 |
5 |
93 |
34 |
83.29 |
INDUSTRIAL |
| 20192813 |
2813 |
5 |
98 |
32 |
83.41 |
INDUSTRIAL |
| 20192872 |
2872 |
7 |
156 |
36 |
84.71 |
INDUSTRIAL |
| 20192931 |
2931 |
2 |
27 |
24 |
82.83 |
INDUSTRIAL |
| 20192990 |
2990 |
9 |
235 |
10 |
84.96 |
INDUSTRIAL |
| 20193049 |
3049 |
2 |
27 |
24 |
81.50 |
INDUSTRIAL |
| 20193108 |
3108 |
8 |
123 |
34 |
82.50 |
INDUSTRIAL |
| 20193167 |
3167 |
2 |
27 |
28 |
88.33 |
INDUSTRIAL |
| 20193226 |
3226 |
1 |
NA |
27 |
0.00 |
INDUSTRIAL |
| 20193285 |
3285 |
2 |
27 |
24 |
81.00 |
INDUSTRIAL |
| 20193344 |
3344 |
5 |
55 |
27 |
86.69 |
INDUSTRIAL |
| 20193403 |
3403 |
9 |
175 |
28 |
83.45 |
MECANICA |
| 20193462 |
3462 |
7 |
83 |
30 |
78.05 |
MECANICA |
| 20193521 |
3521 |
7 |
137 |
34 |
86.20 |
MECANICA |
| 20193580 |
3580 |
8 |
175 |
21 |
85.34 |
MECANICA |
| 20193639 |
3639 |
3 |
30 |
22 |
83.00 |
MECANICA |
| 20193698 |
3698 |
9 |
219 |
16 |
89.63 |
MECATRONICA |
| 20193757 |
3757 |
1 |
NA |
25 |
0.00 |
MECATRONICA |
| 20193816 |
3816 |
5 |
108 |
30 |
86.71 |
MECATRONICA |
| 20193875 |
3875 |
4 |
67 |
23 |
79.07 |
MECATRONICA |
| 20193934 |
3934 |
3 |
53 |
27 |
86.50 |
MECATRONICA |
| 20193993 |
3993 |
8 |
151 |
27 |
79.53 |
MECATRONICA |
| 20194052 |
4052 |
5 |
110 |
24 |
85.17 |
MECATRONICA |
| 20194111 |
4111 |
9 |
224 |
6 |
91.26 |
QUIMICA |
| 20194170 |
4170 |
10 |
211 |
24 |
80.44 |
QUIMICA |
| 20194229 |
4229 |
3 |
36 |
30 |
89.25 |
QUIMICA |
| 20194288 |
4288 |
13 |
235 |
10 |
78.98 |
QUIMICA |
| 20194347 |
4347 |
7 |
138 |
24 |
85.07 |
QUIMICA |
| 20194406 |
4406 |
4 |
86 |
28 |
81.44 |
QUIMICA |
| 20194465 |
4465 |
9 |
214 |
21 |
89.05 |
QUIMICA |
| 20194524 |
4524 |
10 |
127 |
13 |
78.89 |
QUIMICA |
| 20194583 |
4583 |
7 |
150 |
22 |
86.16 |
QUIMICA |
| 20194642 |
4642 |
2 |
25 |
31 |
89.17 |
QUIMICA |
| 20194701 |
4701 |
9 |
230 |
5 |
94.75 |
GESTION EMPRESARIAL |
| 20194760 |
4760 |
9 |
215 |
20 |
87.38 |
GESTION EMPRESARIAL |
| 20194819 |
4819 |
3 |
54 |
28 |
87.08 |
GESTION EMPRESARIAL |
| 20194878 |
4878 |
3 |
54 |
28 |
87.42 |
GESTION EMPRESARIAL |
| 20194937 |
4937 |
7 |
167 |
33 |
88.00 |
GESTION EMPRESARIAL |
| 20194996 |
4996 |
3 |
54 |
28 |
95.33 |
GESTION EMPRESARIAL |
| 20195055 |
5055 |
1 |
NA |
27 |
0.00 |
GESTION EMPRESARIAL |
| 20195114 |
5114 |
7 |
185 |
25 |
95.74 |
GESTION EMPRESARIAL |
| 20195173 |
5173 |
2 |
37 |
30 |
93.25 |
GESTION EMPRESARIAL |
| 20195232 |
5232 |
3 |
54 |
28 |
89.08 |
GESTION EMPRESARIAL |
| 20195291 |
5291 |
5 |
101 |
28 |
81.27 |
TIC |
| 20195350 |
5350 |
9 |
215 |
16 |
84.57 |
INFORMATICA |
| 20195409 |
5409 |
3 |
55 |
27 |
87.92 |
INFORMATICA |
| 20195468 |
5468 |
11 |
240 |
22 |
84.88 |
ADMINISTRACION |
| 20195527 |
5527 |
1 |
NA |
27 |
0.00 |
ADMINISTRACION |
| 20195586 |
5586 |
1 |
NA |
27 |
0.00 |
ADMINISTRACION |
| 20195645 |
5645 |
3 |
55 |
29 |
97.67 |
ADMINISTRACION |
| 20195704 |
5704 |
5 |
79 |
29 |
86.06 |
ADMINISTRACION |
| 20195763 |
5763 |
5 |
113 |
27 |
92.83 |
ADMINISTRACION |
| 20195822 |
5822 |
5 |
113 |
27 |
95.63 |
ADMINISTRACION |
| 20195881 |
5881 |
7 |
135 |
34 |
83.90 |
ADMINISTRACION |
Muestreo aleatorio estratificado
- Con el conjunto de datos de personas se trata de encontrar 10 , pero que sea representativa de acuerdo y conforme al género femenino y masculino.
- ¿Cuál es la frecuencia relativa del género femenino?
- ¿Cuál es la frecuencia relativa del género masculino?
- Ambas frecuencias multiplicar por el tamaño de la muestra para garantizar imparcialidad en la muestra.
N <- nrow(personas)
n <- 10
femeninos <- filter(personas, generos=='F')
masculinos <- filter(personas, generos=='M')
frfem <- nrow(femeninos) / N
frmas <- nrow(masculinos) / N
frfem
## [1] 0.42
frmas
## [1] 0.58
muestraFem <- sample(femeninos, n * frfem)
kable(muestraFem, caption = "La muestra de personas Femenino")
La muestra de personas Femenino
| 26 |
GABRIELA |
F |
NO |
NO |
NO |
NO |
NO |
NO |
NO |
NO |
NO |
NO |
NO |
NO |
26 |
| 36 |
ISABEL |
F |
NO |
NO |
NO |
NO |
NO |
NO |
NO |
NO |
NO |
NO |
NO |
NO |
36 |
| 39 |
CARMEN |
F |
NO |
NO |
NO |
NO |
NO |
NO |
NO |
NO |
NO |
NO |
NO |
NO |
39 |
| 10 |
FRANCISCO JAVIER |
F |
SI |
NO |
NO |
NO |
NO |
NO |
NO |
SI |
NO |
NO |
SI |
NO |
10 |
muestraMas <- sample(masculinos, n * frmas)
kable(muestraMas, caption = "La muestra de personas Masculino")
La muestra de personas Masculino
| 58 |
GUSTAVO |
M |
NO |
NO |
NO |
NO |
NO |
NO |
NO |
SI |
NO |
NO |
NO |
NO |
58 |
| 20 |
RAFAEL |
M |
NO |
NO |
NO |
NO |
NO |
NO |
NO |
SI |
NO |
NO |
NO |
NO |
20 |
| 3 |
JOSÉ |
M |
NO |
SI |
NO |
SI |
NO |
NO |
NO |
NO |
NO |
NO |
SI |
SI |
3 |
| 31 |
ALFREDO |
M |
NO |
NO |
NO |
SI |
NO |
NO |
NO |
NO |
NO |
SI |
NO |
NO |
31 |
| 47 |
RUBEN |
M |
NO |
SI |
NO |
NO |
NO |
NO |
NO |
NO |
NO |
NO |
SI |
NO |
47 |
- Simular muestreo estratificado por carreas de alumnos determinando las frecuencias relativas por medio de la función fdt_cat()
N <- nrow(alumnos)
n <- 100
tabla_frec <- data.frame(fdt_cat(alumnos$Carrera))
tabla_frec$muestra <- round(tabla_frec$rf * n, 0)
kable(tabla_frec, caption = "Tabla de frecuencia de alumnos")
Tabla de frecuencia de alumnos
| INDUSTRIAL |
707 |
0.1192444 |
11.924439 |
707 |
11.92444 |
12 |
| ARQUITECTURA |
675 |
0.1138472 |
11.384719 |
1382 |
23.30916 |
11 |
| CIVIL |
648 |
0.1092933 |
10.929330 |
2030 |
34.23849 |
11 |
| GESTION EMPRESARIAL |
585 |
0.0986676 |
9.866757 |
2615 |
44.10525 |
10 |
| QUIMICA |
568 |
0.0958003 |
9.580030 |
3183 |
53.68528 |
10 |
| ADMINISTRACION |
497 |
0.0838253 |
8.382527 |
3680 |
62.06780 |
8 |
| SISTEMAS |
452 |
0.0762355 |
7.623545 |
4132 |
69.69135 |
8 |
| BIOQUIMICA |
441 |
0.0743802 |
7.438016 |
4573 |
77.12936 |
7 |
| MECATRONICA |
432 |
0.0728622 |
7.286220 |
5005 |
84.41558 |
7 |
| MECANICA |
301 |
0.0507674 |
5.076741 |
5306 |
89.49233 |
5 |
| ELECTRICA |
280 |
0.0472255 |
4.722550 |
5586 |
94.21488 |
5 |
| ELECTRONICA |
161 |
0.0271547 |
2.715466 |
5747 |
96.93034 |
3 |
| INFORMATICA |
101 |
0.0170349 |
1.703491 |
5848 |
98.63383 |
2 |
| TIC |
81 |
0.0136617 |
1.366166 |
5929 |
100.00000 |
1 |
- ¿Cuáles alumnos?
- Sólo simular carreras de SISTEMAS Y CIVIL
N <- nrow(alumnos)
n <- 100
sistemas <- filter(alumnos, Carrera =='SISTEMAS')
civil <- filter(alumnos, Carrera == 'CIVIL')
frsistemas <- nrow(sistemas) / N
frcivil <- nrow(civil) / N
frsistemas
## [1] 0.07623545
frcivil
## [1] 0.1092933
muestrasistemas <- sample(sistemas, round(n * frsistemas, 0))
kable(muestrasistemas, caption = "La muestra de alumnos de Sistemas")
La muestra de alumnos de Sistemas
| 20190046 |
46 |
9 |
221 |
14 |
90.71 |
SISTEMAS |
46 |
| 20190130 |
130 |
4 |
87 |
33 |
87.89 |
SISTEMAS |
130 |
| 20190335 |
335 |
3 |
50 |
28 |
92.00 |
SISTEMAS |
335 |
| 20190142 |
142 |
3 |
36 |
23 |
89.13 |
SISTEMAS |
142 |
| 20190199 |
199 |
1 |
NA |
27 |
0.00 |
SISTEMAS |
199 |
| 20190030 |
30 |
11 |
226 |
9 |
81.78 |
SISTEMAS |
30 |
| 20190052 |
52 |
10 |
138 |
31 |
79.33 |
SISTEMAS |
52 |
| 20190448 |
448 |
1 |
NA |
27 |
0.00 |
SISTEMAS |
448 |
muestracivil <- sample(civil, round(n * frcivil, 0))
kable(muestracivil, caption = "La muestra de alumnos de Civil")
La muestra de alumnos de Civil
| 20191982 |
1982 |
6 |
120 |
31 |
81.36 |
CIVIL |
414 |
| 20191847 |
1847 |
5 |
122 |
30 |
86.00 |
CIVIL |
279 |
| 20192207 |
2207 |
6 |
38 |
35 |
77.38 |
CIVIL |
639 |
| 20192128 |
2128 |
6 |
118 |
34 |
78.44 |
CIVIL |
560 |
| 20192184 |
2184 |
1 |
NA |
27 |
0.00 |
CIVIL |
616 |
| 20191794 |
1794 |
6 |
137 |
34 |
87.66 |
CIVIL |
226 |
| 20191740 |
1740 |
5 |
113 |
30 |
88.63 |
CIVIL |
172 |
| 20192009 |
2009 |
4 |
82 |
31 |
82.71 |
CIVIL |
441 |
| 20191578 |
1578 |
10 |
205 |
25 |
81.95 |
CIVIL |
10 |
| 20191905 |
1905 |
7 |
154 |
32 |
82.64 |
CIVIL |
337 |
| 20191984 |
1984 |
6 |
133 |
30 |
86.79 |
CIVIL |
416 |
Muestreo por conglomerados
- En un proceso de simulación, al conjunto de datos alumnos agregar tres columnas: la localidad, latidud y longitud
- Primero cargar datos de localidades de Durango
N <- nrow(alumnos)
n <- 100
locdurangomx <- read.csv("https://raw.githubusercontent.com/rpizarrog/probabilidad-y-estad-stica/master/datos/locdurangomx.csv", encoding = "UTF-8")
Segundo por medio de función sample() generar cinco registros aleatorios de localidades y agregar un sexto registro de Victoria de Durango.
set.seed(1000)
localidades6 <- locdurangomx[sample(nrow(locdurangomx), 5), ]
localidades6 <- rbind(localidades6, locdurangomx[1,])
- Tercero agregar las columnas: nombre de localidad, latitud y longitud al conjunto de datos alumnos con una probabilidad de que sean de Victoria de Durango del 60%.
- Mostrar los primeros diez y últimos diez alumnos verificando las tres nuevas columnas.
registros <- locdurangomx[sample(localidades6$X, N, replace = TRUE, prob = c(.10, 0.12, 0.05, 0.07, 0.06, 0.60)),c("Nom_Loc", "Lat_Decimal", "Lon_Decimal")]
alumnos$localidad <- registros$Nom_Loc
alumnos$latitud <- registros$Lat_Decimal
alumnos$longitud <- registros$Lon_Decimal
kable(head(alumnos, 10), caption = "Los primeros diez registros de alumnos")
Los primeros diez registros de alumnos
| 20190001 |
1 |
11 |
198 |
19 |
80.21 |
SISTEMAS |
Las Aves |
23.94883 |
-104.5715 |
| 20190002 |
2 |
11 |
235 |
10 |
84.33 |
SISTEMAS |
Victoria de Durango |
24.02399 |
-104.6702 |
| 20190003 |
3 |
9 |
235 |
10 |
95.25 |
SISTEMAS |
Victoria de Durango |
24.02399 |
-104.6702 |
| 20190004 |
4 |
9 |
226 |
19 |
95.00 |
SISTEMAS |
Victoria de Durango |
24.02399 |
-104.6702 |
| 20190005 |
5 |
10 |
231 |
14 |
82.32 |
SISTEMAS |
Victoria de Durango |
24.02399 |
-104.6702 |
| 20190006 |
6 |
9 |
212 |
23 |
95.02 |
SISTEMAS |
Las Aves |
23.94883 |
-104.5715 |
| 20190007 |
7 |
12 |
221 |
10 |
79.06 |
SISTEMAS |
Victoria de Durango |
24.02399 |
-104.6702 |
| 20190008 |
8 |
9 |
226 |
9 |
92.47 |
SISTEMAS |
Los Fresnos |
24.08339 |
-104.6095 |
| 20190009 |
9 |
9 |
231 |
4 |
91.08 |
SISTEMAS |
Las Aves |
23.94883 |
-104.5715 |
| 20190010 |
10 |
11 |
222 |
13 |
80.42 |
SISTEMAS |
Victoria de Durango |
24.02399 |
-104.6702 |
kable(tail(alumnos, 10), caption = "Las útimos diez registros de alumnos")
Las útimos diez registros de alumnos
| 20195920 |
5920 |
7 |
169 |
23 |
89.14 |
ADMINISTRACION |
Victoria de Durango |
24.02399 |
-104.6702 |
| 20195921 |
5921 |
5 |
109 |
26 |
87.83 |
ADMINISTRACION |
Los Fresnos |
24.08339 |
-104.6095 |
| 20195922 |
5922 |
3 |
55 |
29 |
92.83 |
ADMINISTRACION |
Victoria de Durango |
24.02399 |
-104.6702 |
| 20195923 |
5923 |
2 |
23 |
23 |
88.60 |
ADMINISTRACION |
Michel [Granja] |
24.00545 |
-104.7152 |
| 20195924 |
5924 |
2 |
27 |
28 |
92.83 |
ADMINISTRACION |
Las Brisas |
23.97352 |
-104.5800 |
| 20195925 |
5925 |
7 |
94 |
13 |
80.95 |
ADMINISTRACION |
Victoria de Durango |
24.02399 |
-104.6702 |
| 20195926 |
5926 |
5 |
103 |
32 |
92.68 |
ADMINISTRACION |
Las Aves |
23.94883 |
-104.5715 |
| 20195927 |
5927 |
4 |
79 |
34 |
86.18 |
ADMINISTRACION |
Victoria de Durango |
24.02399 |
-104.6702 |
| 20195928 |
5928 |
5 |
108 |
32 |
90.48 |
ADMINISTRACION |
Victoria de Durango |
24.02399 |
-104.6702 |
| 20195929 |
5929 |
7 |
169 |
32 |
92.33 |
ADMINISTRACION |
Microondas el Tecolote |
24.05248 |
-104.8519 |
- Cuarto encontrar frecuencias por localidad
N <- nrow(alumnos)
n <- 100
tabla_frec <- data.frame(fdt_cat(alumnos$localidad))
tabla_frec$muestra <- round(tabla_frec$rf * n, 0)
kable(tabla_frec, caption = "Tabla de frecuencia de alumnos por localidad")
Tabla de frecuencia de alumnos por localidad
| Victoria de Durango |
3564 |
0.6011132 |
60.111317 |
3564 |
60.11132 |
60 |
| Las Brisas |
691 |
0.1165458 |
11.654579 |
4255 |
71.76590 |
12 |
| Las Aves |
626 |
0.1055827 |
10.558273 |
4881 |
82.32417 |
11 |
| Los Fresnos |
431 |
0.0726935 |
7.269354 |
5312 |
89.59352 |
7 |
| Microondas el Tecolote |
329 |
0.0554900 |
5.548997 |
5641 |
95.14252 |
6 |
| Michel [Granja] |
288 |
0.0485748 |
4.857480 |
5929 |
100.00000 |
5 |
Quinto Determinar el porcentaje que le corresponde a cada conglomerado conforme a la frecuencia relativa.
¿Cuáles alumnos?, de acuerdo al conglomerado o la localidad
Simular por las seis localidades
N <- nrow(alumnos)
n <- 100
loc1 <- filter(alumnos, localidad == tabla_frec$Category[1])
loc2 <- filter(alumnos, localidad == tabla_frec$Category[2])
loc3 <- filter(alumnos, localidad == tabla_frec$Category[3])
loc4 <- filter(alumnos, localidad == tabla_frec$Category[4])
loc5 <- filter(alumnos, localidad == tabla_frec$Category[5])
loc6 <- filter(alumnos, localidad == tabla_frec$Category[6])
frloc1 <- nrow(loc1) / N
frloc2 <- nrow(loc2) / N
frloc3 <- nrow(loc3) / N
frloc4 <- nrow(loc4) / N
frloc5 <- nrow(loc5) / N
frloc6 <- nrow(loc6) / N
muestraloc1 <- sample(loc1, round(n * frloc1, 0))
kable(muestraloc1, caption = paste("La muestra de alumnos de Localidad ",tabla_frec$Category[1] ))
La muestra de alumnos de Localidad Victoria de Durango
| 20195752 |
5752 |
3 |
55 |
29 |
95.67 |
ADMINISTRACION |
Victoria de Durango |
24.02399 |
-104.6702 |
3462 |
| 20191354 |
1354 |
7 |
167 |
34 |
86.40 |
BIOQUIMICA |
Victoria de Durango |
24.02399 |
-104.6702 |
809 |
| 20195197 |
5197 |
8 |
195 |
25 |
87.88 |
GESTION EMPRESARIAL |
Victoria de Durango |
24.02399 |
-104.6702 |
3142 |
| 20194694 |
4694 |
9 |
230 |
15 |
92.17 |
GESTION EMPRESARIAL |
Victoria de Durango |
24.02399 |
-104.6702 |
2835 |
| 20191656 |
1656 |
12 |
179 |
33 |
77.27 |
CIVIL |
Victoria de Durango |
24.02399 |
-104.6702 |
995 |
| 20193520 |
3520 |
1 |
NA |
26 |
0.00 |
MECANICA |
Victoria de Durango |
24.02399 |
-104.6702 |
2155 |
| 20191220 |
1220 |
5 |
81 |
34 |
85.44 |
BIOQUIMICA |
Victoria de Durango |
24.02399 |
-104.6702 |
728 |
| 20191366 |
1366 |
2 |
23 |
29 |
90.17 |
BIOQUIMICA |
Victoria de Durango |
24.02399 |
-104.6702 |
818 |
| 20190579 |
579 |
4 |
80 |
30 |
89.11 |
ARQUITECTURA |
Victoria de Durango |
24.02399 |
-104.6702 |
331 |
| 20192440 |
2440 |
1 |
NA |
24 |
0.00 |
ELECTRICA |
Victoria de Durango |
24.02399 |
-104.6702 |
1484 |
| 20195184 |
5184 |
3 |
60 |
29 |
84.85 |
GESTION EMPRESARIAL |
Victoria de Durango |
24.02399 |
-104.6702 |
3132 |
| 20191337 |
1337 |
8 |
186 |
24 |
84.36 |
BIOQUIMICA |
Victoria de Durango |
24.02399 |
-104.6702 |
798 |
| 20190945 |
945 |
6 |
134 |
24 |
87.86 |
ARQUITECTURA |
Victoria de Durango |
24.02399 |
-104.6702 |
563 |
| 20194561 |
4561 |
1 |
NA |
25 |
0.00 |
QUIMICA |
Victoria de Durango |
24.02399 |
-104.6702 |
2751 |
| 20190949 |
949 |
2 |
26 |
26 |
87.67 |
ARQUITECTURA |
Victoria de Durango |
24.02399 |
-104.6702 |
565 |
| 20190853 |
853 |
2 |
24 |
22 |
87.00 |
ARQUITECTURA |
Victoria de Durango |
24.02399 |
-104.6702 |
511 |
| 20194009 |
4009 |
2 |
25 |
28 |
80.67 |
MECATRONICA |
Victoria de Durango |
24.02399 |
-104.6702 |
2423 |
| 20190981 |
981 |
5 |
110 |
32 |
89.50 |
ARQUITECTURA |
Victoria de Durango |
24.02399 |
-104.6702 |
587 |
| 20193423 |
3423 |
7 |
102 |
30 |
80.91 |
MECANICA |
Victoria de Durango |
24.02399 |
-104.6702 |
2093 |
| 20195597 |
5597 |
8 |
207 |
27 |
93.09 |
ADMINISTRACION |
Victoria de Durango |
24.02399 |
-104.6702 |
3369 |
| 20192461 |
2461 |
7 |
150 |
28 |
82.79 |
ELECTRICA |
Victoria de Durango |
24.02399 |
-104.6702 |
1496 |
| 20191351 |
1351 |
3 |
52 |
30 |
85.75 |
BIOQUIMICA |
Victoria de Durango |
24.02399 |
-104.6702 |
807 |
| 20190343 |
343 |
8 |
165 |
28 |
81.31 |
SISTEMAS |
Victoria de Durango |
24.02399 |
-104.6702 |
201 |
| 20194890 |
4890 |
7 |
170 |
35 |
87.44 |
GESTION EMPRESARIAL |
Victoria de Durango |
24.02399 |
-104.6702 |
2947 |
| 20191348 |
1348 |
7 |
164 |
32 |
91.03 |
BIOQUIMICA |
Victoria de Durango |
24.02399 |
-104.6702 |
806 |
| 20190739 |
739 |
1 |
NA |
26 |
0.00 |
ARQUITECTURA |
Victoria de Durango |
24.02399 |
-104.6702 |
433 |
| 20191212 |
1212 |
7 |
165 |
36 |
86.37 |
BIOQUIMICA |
Victoria de Durango |
24.02399 |
-104.6702 |
723 |
| 20193020 |
3020 |
3 |
55 |
29 |
92.15 |
INDUSTRIAL |
Victoria de Durango |
24.02399 |
-104.6702 |
1848 |
| 20191394 |
1394 |
2 |
23 |
29 |
86.83 |
BIOQUIMICA |
Victoria de Durango |
24.02399 |
-104.6702 |
836 |
| 20194023 |
4023 |
1 |
NA |
25 |
0.00 |
MECATRONICA |
Victoria de Durango |
24.02399 |
-104.6702 |
2434 |
| 20192358 |
2358 |
7 |
98 |
9 |
81.04 |
ELECTRICA |
Victoria de Durango |
24.02399 |
-104.6702 |
1435 |
| 20194165 |
4165 |
4 |
53 |
20 |
77.91 |
QUIMICA |
Victoria de Durango |
24.02399 |
-104.6702 |
2522 |
| 20194937 |
4937 |
7 |
167 |
33 |
88.00 |
GESTION EMPRESARIAL |
Victoria de Durango |
24.02399 |
-104.6702 |
2978 |
| 20192500 |
2500 |
9 |
197 |
20 |
84.05 |
ELECTRONICA |
Victoria de Durango |
24.02399 |
-104.6702 |
1518 |
| 20190866 |
866 |
6 |
142 |
28 |
88.53 |
ARQUITECTURA |
Victoria de Durango |
24.02399 |
-104.6702 |
518 |
| 20190307 |
307 |
2 |
27 |
28 |
77.00 |
SISTEMAS |
Victoria de Durango |
24.02399 |
-104.6702 |
180 |
| 20195480 |
5480 |
9 |
228 |
24 |
86.23 |
ADMINISTRACION |
Victoria de Durango |
24.02399 |
-104.6702 |
3304 |
| 20195413 |
5413 |
1 |
NA |
27 |
0.00 |
INFORMATICA |
Victoria de Durango |
24.02399 |
-104.6702 |
3267 |
| 20195861 |
5861 |
7 |
169 |
32 |
93.89 |
ADMINISTRACION |
Victoria de Durango |
24.02399 |
-104.6702 |
3521 |
| 20190661 |
661 |
3 |
52 |
28 |
83.42 |
ARQUITECTURA |
Victoria de Durango |
24.02399 |
-104.6702 |
384 |
| 20191654 |
1654 |
10 |
171 |
32 |
78.42 |
CIVIL |
Victoria de Durango |
24.02399 |
-104.6702 |
994 |
| 20194474 |
4474 |
8 |
205 |
20 |
83.76 |
QUIMICA |
Victoria de Durango |
24.02399 |
-104.6702 |
2699 |
| 20194055 |
4055 |
3 |
43 |
14 |
81.10 |
MECATRONICA |
Victoria de Durango |
24.02399 |
-104.6702 |
2453 |
| 20190746 |
746 |
4 |
76 |
28 |
89.29 |
ARQUITECTURA |
Victoria de Durango |
24.02399 |
-104.6702 |
436 |
| 20193336 |
3336 |
7 |
179 |
26 |
89.12 |
INDUSTRIAL |
Victoria de Durango |
24.02399 |
-104.6702 |
2038 |
| 20195409 |
5409 |
3 |
55 |
27 |
87.92 |
INFORMATICA |
Victoria de Durango |
24.02399 |
-104.6702 |
3266 |
| 20195033 |
5033 |
3 |
50 |
28 |
94.45 |
GESTION EMPRESARIAL |
Victoria de Durango |
24.02399 |
-104.6702 |
3034 |
| 20190549 |
549 |
9 |
218 |
17 |
88.69 |
ARQUITECTURA |
Victoria de Durango |
24.02399 |
-104.6702 |
313 |
| 20192620 |
2620 |
3 |
47 |
23 |
86.91 |
ELECTRONICA |
Victoria de Durango |
24.02399 |
-104.6702 |
1591 |
| 20190186 |
186 |
3 |
41 |
28 |
83.89 |
SISTEMAS |
Victoria de Durango |
24.02399 |
-104.6702 |
110 |
| 20191297 |
1297 |
3 |
52 |
30 |
87.00 |
BIOQUIMICA |
Victoria de Durango |
24.02399 |
-104.6702 |
775 |
| 20193034 |
3034 |
5 |
85 |
31 |
88.21 |
INDUSTRIAL |
Victoria de Durango |
24.02399 |
-104.6702 |
1858 |
| 20194007 |
4007 |
7 |
115 |
27 |
82.96 |
MECATRONICA |
Victoria de Durango |
24.02399 |
-104.6702 |
2421 |
| 20195690 |
5690 |
4 |
79 |
29 |
88.53 |
ADMINISTRACION |
Victoria de Durango |
24.02399 |
-104.6702 |
3421 |
| 20194231 |
4231 |
7 |
172 |
32 |
88.94 |
QUIMICA |
Victoria de Durango |
24.02399 |
-104.6702 |
2561 |
| 20193544 |
3544 |
3 |
48 |
27 |
82.82 |
MECANICA |
Victoria de Durango |
24.02399 |
-104.6702 |
2165 |
| 20192218 |
2218 |
11 |
235 |
10 |
84.19 |
ELECTRICA |
Victoria de Durango |
24.02399 |
-104.6702 |
1345 |
| 20195545 |
5545 |
7 |
145 |
29 |
85.77 |
ADMINISTRACION |
Victoria de Durango |
24.02399 |
-104.6702 |
3341 |
| 20194135 |
4135 |
7 |
172 |
26 |
85.39 |
QUIMICA |
Victoria de Durango |
24.02399 |
-104.6702 |
2500 |
| 20193613 |
3613 |
3 |
52 |
24 |
85.50 |
MECANICA |
Victoria de Durango |
24.02399 |
-104.6702 |
2207 |
muestraloc2 <- sample(loc2, round(n * frloc2, 0))
kable(muestraloc2, caption = paste("La muestra de alumnos de Localidad ",tabla_frec$Category[2] ))
La muestra de alumnos de Localidad Las Brisas
| 20192268 |
2268 |
10 |
216 |
14 |
83.80 |
ELECTRICA |
Las Brisas |
23.97352 |
-104.58 |
262 |
| 20195323 |
5323 |
1 |
NA |
26 |
0.00 |
TIC |
Las Brisas |
23.97352 |
-104.58 |
631 |
| 20192994 |
2994 |
7 |
172 |
33 |
86.44 |
INDUSTRIAL |
Las Brisas |
23.97352 |
-104.58 |
344 |
| 20194348 |
4348 |
5 |
114 |
30 |
89.92 |
QUIMICA |
Las Brisas |
23.97352 |
-104.58 |
515 |
| 20193182 |
3182 |
2 |
27 |
24 |
83.00 |
INDUSTRIAL |
Las Brisas |
23.97352 |
-104.58 |
375 |
| 20192346 |
2346 |
5 |
99 |
28 |
84.35 |
ELECTRICA |
Las Brisas |
23.97352 |
-104.58 |
271 |
| 20192814 |
2814 |
7 |
163 |
35 |
84.35 |
INDUSTRIAL |
Las Brisas |
23.97352 |
-104.58 |
326 |
| 20195766 |
5766 |
1 |
NA |
27 |
0.00 |
ADMINISTRACION |
Las Brisas |
23.97352 |
-104.58 |
678 |
| 20192753 |
2753 |
6 |
158 |
26 |
88.00 |
INDUSTRIAL |
Las Brisas |
23.97352 |
-104.58 |
321 |
| 20194882 |
4882 |
3 |
32 |
31 |
84.43 |
GESTION EMPRESARIAL |
Las Brisas |
23.97352 |
-104.58 |
577 |
| 20193378 |
3378 |
10 |
225 |
10 |
82.12 |
MECANICA |
Las Brisas |
23.97352 |
-104.58 |
391 |
| 20191305 |
1305 |
1 |
NA |
23 |
0.00 |
BIOQUIMICA |
Las Brisas |
23.97352 |
-104.58 |
161 |
muestraloc3 <- sample(loc3, round(n * frloc3, 0))
kable(muestraloc3, caption = paste("La muestra de alumnos de Localidad ",tabla_frec$Category[3] ))
La muestra de alumnos de Localidad Las Aves
| 20193085 |
3085 |
5 |
NA |
26 |
0.00 |
INDUSTRIAL |
Las Aves |
23.94883 |
-104.5715 |
320 |
| 20190244 |
244 |
5 |
112 |
25 |
87.54 |
SISTEMAS |
Las Aves |
23.94883 |
-104.5715 |
23 |
| 20191061 |
1061 |
8 |
168 |
32 |
82.86 |
ARQUITECTURA |
Las Aves |
23.94883 |
-104.5715 |
121 |
| 20190039 |
39 |
9 |
222 |
13 |
92.21 |
SISTEMAS |
Las Aves |
23.94883 |
-104.5715 |
6 |
| 20194015 |
4015 |
4 |
62 |
26 |
85.00 |
MECATRONICA |
Las Aves |
23.94883 |
-104.5715 |
439 |
| 20191448 |
1448 |
7 |
174 |
27 |
87.08 |
BIOQUIMICA |
Las Aves |
23.94883 |
-104.5715 |
165 |
| 20194301 |
4301 |
6 |
129 |
26 |
84.96 |
QUIMICA |
Las Aves |
23.94883 |
-104.5715 |
462 |
| 20190390 |
390 |
5 |
107 |
30 |
80.26 |
SISTEMAS |
Las Aves |
23.94883 |
-104.5715 |
41 |
| 20193641 |
3641 |
5 |
57 |
23 |
78.85 |
MECANICA |
Las Aves |
23.94883 |
-104.5715 |
387 |
| 20193522 |
3522 |
1 |
NA |
26 |
0.00 |
MECANICA |
Las Aves |
23.94883 |
-104.5715 |
366 |
| 20190306 |
306 |
4 |
87 |
33 |
93.26 |
SISTEMAS |
Las Aves |
23.94883 |
-104.5715 |
34 |
muestraloc4 <- sample(loc4, round(n * frloc4, 0))
kable(muestraloc4, caption = paste("La muestra de alumnos de Localidad ",tabla_frec$Category[4] ))
La muestra de alumnos de Localidad Los Fresnos
| 20194732 |
4732 |
12 |
225 |
10 |
86.83 |
GESTION EMPRESARIAL |
Los Fresnos |
24.08339 |
-104.6095 |
310 |
| 20194974 |
4974 |
8 |
205 |
30 |
88.56 |
GESTION EMPRESARIAL |
Los Fresnos |
24.08339 |
-104.6095 |
332 |
| 20195248 |
5248 |
1 |
NA |
27 |
0.00 |
GESTION EMPRESARIAL |
Los Fresnos |
24.08339 |
-104.6095 |
356 |
| 20194853 |
4853 |
2 |
32 |
27 |
94.57 |
GESTION EMPRESARIAL |
Los Fresnos |
24.08339 |
-104.6095 |
325 |
| 20192243 |
2243 |
10 |
226 |
9 |
82.25 |
ELECTRICA |
Los Fresnos |
24.08339 |
-104.6095 |
154 |
| 20195503 |
5503 |
10 |
262 |
10 |
93.87 |
ADMINISTRACION |
Los Fresnos |
24.08339 |
-104.6095 |
388 |
| 20191152 |
1152 |
11 |
108 |
17 |
78.00 |
BIOQUIMICA |
Los Fresnos |
24.08339 |
-104.6095 |
72 |
muestraloc5 <- sample(loc5, round(n * frloc5, 0))
kable(muestraloc5, caption = paste("La muestra de alumnos de Localidad ",tabla_frec$Category[5] ))
La muestra de alumnos de Localidad Microondas el Tecolote
| 20192935 |
2935 |
5 |
104 |
34 |
86.39 |
INDUSTRIAL |
Microondas el Tecolote |
24.05248 |
-104.8519 |
168 |
| 20192340 |
2340 |
1 |
NA |
24 |
0.00 |
ELECTRICA |
Microondas el Tecolote |
24.05248 |
-104.8519 |
133 |
| 20191209 |
1209 |
5 |
104 |
30 |
82.91 |
BIOQUIMICA |
Microondas el Tecolote |
24.05248 |
-104.8519 |
62 |
| 20190236 |
236 |
1 |
NA |
27 |
0.00 |
SISTEMAS |
Microondas el Tecolote |
24.05248 |
-104.8519 |
15 |
| 20195268 |
5268 |
5 |
101 |
28 |
82.55 |
TIC |
Microondas el Tecolote |
24.05248 |
-104.8519 |
294 |
| 20192138 |
2138 |
5 |
99 |
33 |
84.43 |
CIVIL |
Microondas el Tecolote |
24.05248 |
-104.8519 |
116 |
muestraloc6 <- sample(loc6, round(n * frloc6, 0))
kable(muestraloc6, caption = paste("La muestra de alumnos de Localidad ",tabla_frec$Category[6] ))
La muestra de alumnos de Localidad Michel [Granja]
| 20193554 |
3554 |
3 |
52 |
31 |
86.33 |
MECANICA |
Michel [Granja] |
24.00545 |
-104.7152 |
175 |
| 20194555 |
4555 |
6 |
133 |
23 |
83.14 |
QUIMICA |
Michel [Granja] |
24.00545 |
-104.7152 |
223 |
| 20192499 |
2499 |
11 |
205 |
15 |
79.93 |
ELECTRONICA |
Michel [Granja] |
24.00545 |
-104.7152 |
119 |
| 20192495 |
2495 |
3 |
51 |
28 |
92.50 |
ELECTRICA |
Michel [Granja] |
24.00545 |
-104.7152 |
118 |
| 20192977 |
2977 |
8 |
201 |
28 |
83.67 |
INDUSTRIAL |
Michel [Granja] |
24.00545 |
-104.7152 |
143 |
Visualizar con mapas
- Cargar la librerías para mapas
library(leaflet)
## Warning: package 'leaflet' was built under R version 4.0.3
- Usando los valores de latitud y longitud
map<-leaflet() %>%
addTiles() %>%
addMarkers(lat=localidades6$Lat_Decimal[1],lng=localidades6$Lon_Decimal[1] ,popup=localidades6$Nom_Loc[1]) %>%
addMarkers(lat=localidades6$Lat_Decimal[2],lng=localidades6$Lon_Decimal[2] ,popup=localidades6$Nom_Loc[2]) %>%
addMarkers(lat=localidades6$Lat_Decimal[3],lng=localidades6$Lon_Decimal[3] ,popup=localidades6$Nom_Loc[3]) %>%
addMarkers(lat=localidades6$Lat_Decimal[4],lng=localidades6$Lon_Decimal[4] ,popup=localidades6$Nom_Loc[4]) %>%
addMarkers (lat=localidades6$Lat_Decimal[5],lng=localidades6$Lon_Decimal[5] ,popup=localidades6$Nom_Loc[5]) %>%
addMarkers (lat=localidades6$Lat_Decimal[6],lng=localidades6$Lon_Decimal[6] ,popup=localidades6$Nom_Loc[6])
# Mostrar el mapa
map
Interpretación
Finalizamos el semestre con este caso #22, en el cual tratamos con los tipos de muestreo. En la estadística, se conoce como a la técnica para la selección de una muestra a partir de una población estadística Al elegir una muestra aleatoria se espera conseguir que sus propiedades sean extrapolables a la población. Este proceso permite ahorrar recursos, y a la vez obtener resultados parecidos a los que se alcanzarían si se realizase un estudio de toda la población. En las investigaciones llevadas por empresarios y de la medicina se usa muestreo extensivamente en recoger información sobre poblaciones.
Al realizar el edbido caso, obtenemos los siguientes resultados:
1-) Muestreo aleatorio simple Este mismo es de las 100 personas que están en el conjunto, únicamente escogeremos a 10 de ellas y por lo tanto van a ser aleatoriamente las que entrevistas.
2-) Muestreo aleatorio sistemático En este ejercicio de los 100 alumnos que tenemos escogeremos uno al azar, de los 10 primeros escogeremos el que este y así sucesivamente iremos de 10 en 10 para finalizar a completar las 10 personas y como podemos observar en la tabla de las personas escogidas ah la entrevista fue la 6,16,26,36,46,56,66,76,86,96.
3-) Muestreo aleatorio estratificado En este muestreo en el conjunto de personas las 10 que se tomaran tienen que ser representativas en cuanto al genero sea hombre o mujer para eso se tiene que sacar las frecuencias relativas de ambos géneros, y como resultado de estas frecuencias nos dan 0.42 y 0.58 el cual este se multiplica por los 10 que son las personas y en Femenino tenemos que son 4 personas y en masculino 5 esto varia dependiendo de las personas que entrevistemos.
4-) Muestreo por Conglomerados Este es el ultimo tipo de muestreo y trata sobre un proceso de simulación, para este se tiene que agregar una tabla con tres columnas que son la localidad, latitud y longitud, como son personas de durango se busca la localidad de dicho estado y finalmente para darle un toque extra ponemos lo que es el mapa y las hubicaciones en este mismo de donde se ubican, este muestreo como emos podido ver es uno de los mas complejos.