Instal and Loaded Packages

#install.packages("psych")
#install.packages("tidyverse")

library(psych)
library(tidyverse)
Registered S3 methods overwritten by 'dbplyr':
  method         from
  print.tbl_lazy     
  print.tbl_sql      
── Attaching packages ─────────────────────────────────────────────── tidyverse 1.3.0 ──
✓ ggplot2 3.3.2     ✓ purrr   0.3.4
✓ tibble  3.0.3     ✓ dplyr   1.0.2
✓ tidyr   1.1.2     ✓ stringr 1.4.0
✓ readr   1.4.0     ✓ forcats 0.5.0
── Conflicts ────────────────────────────────────────────────── tidyverse_conflicts() ──
x ggplot2::%+%()   masks psych::%+%()
x ggplot2::alpha() masks psych::alpha()
x dplyr::filter()  masks stats::filter()
x dplyr::lag()     masks stats::lag()

Read in file for questions 1 and 2

Healthdataset <- read_csv("healthdata .csv")

── Column specification ────────────────────────────────────────────────────────────────
cols(
  age = col_double(),
  sex = col_double(),
  physhealrth = col_double(),
  memory = col_double(),
  memory2 = col_double(),
  visitGP = col_double(),
  visitER = col_double(),
  vigorousact = col_double(),
  moderateact = col_double(),
  walking = col_double(),
  sleep = col_double(),
  sleeptrouble = col_double()
)

Question 1

visitGPonPH<-lm(physhealrth ~visitGP, data = Healthdataset)
summary(visitGPonPH)

Call:
lm(formula = physhealrth ~ visitGP, data = Healthdataset)

Residuals:
    Min      1Q  Median      3Q     Max 
-3.2825 -2.0778  0.8681  1.0187  4.4822 

Coefficients:
            Estimate Std. Error t value Pr(>|t|)    
(Intercept)  4.28248    0.04811   89.02   <2e-16 ***
visitGP     -0.15059    0.01206  -12.49   <2e-16 ***
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 1.729 on 2210 degrees of freedom
  (3 observations deleted due to missingness)
Multiple R-squared:  0.06592,   Adjusted R-squared:  0.06549 
F-statistic:   156 on 1 and 2210 DF,  p-value: < 2.2e-16
confint(visitGPonPH)
                 2.5 %     97.5 %
(Intercept)  4.1881449  4.3768179
visitGP     -0.1742356 -0.1269415

Question 2

allpredictors<-lm(physhealrth ~ memory + visitGP + visitER + vigorousact + moderateact + walking, data = Healthdataset)
summary(allpredictors)

Call:
lm(formula = physhealrth ~ memory + visitGP + visitER + vigorousact + 
    moderateact + walking, data = Healthdataset)

Residuals:
    Min      1Q  Median      3Q     Max 
-3.5097 -1.8711  0.8128  1.0845  4.3657 

Coefficients:
             Estimate Std. Error t value Pr(>|t|)    
(Intercept)  4.675755   0.132445  35.303  < 2e-16 ***
memory      -0.158864   0.039952  -3.976 7.22e-05 ***
visitGP     -0.138165   0.012405 -11.138  < 2e-16 ***
visitER     -0.180477   0.070784  -2.550   0.0108 *  
vigorousact  0.007470   0.018991   0.393   0.6941    
moderateact -0.000933   0.014150  -0.066   0.9474    
walking     -0.006694   0.014932  -0.448   0.6540    
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 1.723 on 2194 degrees of freedom
  (14 observations deleted due to missingness)
Multiple R-squared:  0.07562,   Adjusted R-squared:  0.07309 
F-statistic: 29.91 on 6 and 2194 DF,  p-value: < 2.2e-16
confint(allpredictors)
                  2.5 %      97.5 %
(Intercept)  4.41602370  4.93548591
memory      -0.23721232 -0.08051587
visitGP     -0.16249162 -0.11383820
visitER     -0.31928748 -0.04166594
vigorousact -0.02977131  0.04471189
moderateact -0.02868226  0.02681628
walking     -0.03597684  0.02258907

Read in file for question 3

smallsleep <- read_csv("smallsleep .csv")

── Column specification ────────────────────────────────────────────────────────────────
cols(
  sex = col_double(),
  sleep = col_double(),
  sleeptrouble = col_double()
)

Question 3 ANOVA

smallsleep <- mutate(smallsleep,
                     sleep.f = factor(sleep,
                                      levels = c(1,2,3,4),
                                      labels = c("1", "2", "3", "4")))
smallsleep <- mutate(smallsleep,
                     sex.f = factor(sex,
                                    levels = c(1,2),
                                    labels = c("female", "male")))
SxSA2 <- select(smallsleep, sleep.f, sex.f, sleeptrouble)

SSA <- lm(sleeptrouble ~sleep.f * sex.f, data = SxSA2)
anova(SSA)
Analysis of Variance Table

Response: sleeptrouble
               Df Sum Sq Mean Sq F value  Pr(>F)  
sleep.f         3   0.36 0.12000  0.2903 0.83236  
sex.f           1   0.32 0.32000  0.7742 0.38002  
sleep.f:sex.f   3   2.68 0.89333  2.1613 0.09397 .
Residuals     192  79.36 0.41333                  
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
aggregate(x=SxSA2$sleeptrouble, by=list(SxSA2$sleep.f, SxSA2$sex.f), FUN=mean)
NA

eta squared = 3.36/ 82.72 = 0.04

Question 4

##GM = 50 ##TOTss = 25, 000 + 465 = 25, 465 ##SSB = S ni (Mi – GM)2 ### = 50(35-50)2 + 50(45-50)2 + 50(65-50)2 + 50(55-50)2 ###= 11250 + 1250 + 11250 + 1250 = 25,000 ##SSW = S (Y – Mi)2 ### = (50-35)2 + (50-45)2 + (50-65)2 + (50-55)2 ###= 465 ##eta2 = 25,000 / 25, 465 = .98, large effect – 98% of the variability in scores is due to treatment and 2% of the variability is due to other things. ##• eta2 = 25,000 / 25, 465 = .98, large effect – 98% of the variability in scores is due to treatment and 2% of the variability is due to other things. ### T4 (55)1 ### T1 (35)-.5 ### T2 (45)-.5 ### C = (((35+45-110)2)*50)/4 = 11250

Question 5

health2 <- read_csv("healthdata2 .csv")

── Column specification ────────────────────────────────────────────────────────────────
cols(
  control = col_double(),
  autonomy = col_double(),
  pleasure = col_double(),
  worry = col_double(),
  lonley = col_double(),
  alcoholuse = col_double(),
  mentalhealth = col_double()
)
install.packages("olsrr")
trying URL 'https://cran.rstudio.com/bin/macosx/contrib/4.0/olsrr_0.5.3.tgz'
Content type 'application/x-gzip' length 2205054 bytes (2.1 MB)
==================================================
downloaded 2.1 MB

The downloaded binary packages are in
    /var/folders/0t/jr6fgwg97214m2gdnbw5pbw40000gn/T//Rtmp7HAAsQ/downloaded_packages
library(olsrr)
Registered S3 method overwritten by 'data.table':
  method           from
  print.data.table     

Attaching package: ‘olsrr’

The following object is masked from ‘package:datasets’:

    rivers
CAPW <- lm(lonley ~ control + autonomy + pleasure + worry, data = health2)
ols_regress(CAPW)
                        Model Summary                          
--------------------------------------------------------------
R                       0.626       RMSE                1.563 
R-Squared               0.392       Coef. Var          95.080 
Adj. R-Squared          0.391       MSE                 2.442 
Pred R-Squared          0.387       MAE                 1.168 
--------------------------------------------------------------
 RMSE: Root Mean Square Error 
 MSE: Mean Square Error 
 MAE: Mean Absolute Error 

                                 ANOVA                                  
-----------------------------------------------------------------------
                Sum of                                                 
               Squares          DF    Mean Square       F         Sig. 
-----------------------------------------------------------------------
Regression    2213.894           4        553.473    226.602    0.0000 
Residual      3429.253        1404          2.442                      
Total         5643.147        1408                                     
-----------------------------------------------------------------------

                                   Parameter Estimates                                    
-----------------------------------------------------------------------------------------
      model      Beta    Std. Error    Std. Beta       t        Sig      lower     upper 
-----------------------------------------------------------------------------------------
(Intercept)     8.485         0.424                  20.003    0.000     7.653     9.317 
    control    -0.302         0.026       -0.320    -11.629    0.000    -0.353    -0.251 
   autonomy    -0.031         0.022       -0.037     -1.422    0.155    -0.073     0.012 
   pleasure    -0.322         0.027       -0.280    -11.793    0.000    -0.376    -0.269 
      worry     0.048         0.006        0.173      7.393    0.000     0.035     0.061 
-----------------------------------------------------------------------------------------
C <- lm(lonley ~ control,data = health2)
ols_regress(C)
                         Model Summary                          
---------------------------------------------------------------
R                       0.538       RMSE                 1.709 
R-Squared               0.290       Coef. Var          101.393 
Adj. R-Squared          0.289       MSE                  2.921 
Pred R-Squared          0.287       MAE                  1.314 
---------------------------------------------------------------
 RMSE: Root Mean Square Error 
 MSE: Mean Square Error 
 MAE: Mean Absolute Error 

                                 ANOVA                                  
-----------------------------------------------------------------------
                Sum of                                                 
               Squares          DF    Mean Square       F         Sig. 
-----------------------------------------------------------------------
Regression    1791.558           1       1791.558    613.442    0.0000 
Residual      4395.354        1505          2.921                      
Total         6186.912        1506                                     
-----------------------------------------------------------------------

                                   Parameter Estimates                                    
-----------------------------------------------------------------------------------------
      model      Beta    Std. Error    Std. Beta       t        Sig      lower     upper 
-----------------------------------------------------------------------------------------
(Intercept)     6.423         0.196                  32.724    0.000     6.038     6.808 
    control    -0.513         0.021       -0.538    -24.768    0.000    -0.554    -0.473 
-----------------------------------------------------------------------------------------
APW <- lm(lonley ~ autonomy + pleasure + worry, data = health2)
ols_regress(APW)
                        Model Summary                          
--------------------------------------------------------------
R                       0.580       RMSE                1.644 
R-Squared               0.336       Coef. Var          98.994 
Adj. R-Squared          0.335       MSE                 2.701 
Pred R-Squared          0.331       MAE                 1.241 
--------------------------------------------------------------
 RMSE: Root Mean Square Error 
 MSE: Mean Square Error 
 MAE: Mean Absolute Error 

                                 ANOVA                                  
-----------------------------------------------------------------------
                Sum of                                                 
               Squares          DF    Mean Square       F         Sig. 
-----------------------------------------------------------------------
Regression    1971.845           3        657.282    243.337    0.0000 
Residual      3892.316        1441          2.701                      
Total         5864.162        1444                                     
-----------------------------------------------------------------------

                                   Parameter Estimates                                    
-----------------------------------------------------------------------------------------
      model      Beta    Std. Error    Std. Beta       t        Sig      lower     upper 
-----------------------------------------------------------------------------------------
(Intercept)     7.730         0.431                  17.921    0.000     6.884     8.576 
   autonomy    -0.156         0.020       -0.188     -7.898    0.000    -0.194    -0.117 
   pleasure    -0.391         0.028       -0.338    -14.038    0.000    -0.445    -0.336 
      worry     0.064         0.007        0.232      9.889    0.000     0.052     0.077 
-----------------------------------------------------------------------------------------

Question 6

#install.packages("ppcor")
library(ppcor)
Loading required package: MASS

Attaching package: ‘MASS’

The following object is masked from ‘package:olsrr’:

    cement

The following object is masked from ‘package:dplyr’:

    select
alCpw <- lm(lonley ~ autonomy + pleasure + worry, health2)
summary(alCpw)

Call:
lm(formula = lonley ~ autonomy + pleasure + worry, data = health2)

Residuals:
    Min      1Q  Median      3Q     Max 
-4.8425 -1.0486 -0.3612  0.7710  6.8118 

Coefficients:
             Estimate Std. Error t value Pr(>|t|)    
(Intercept)  7.730120   0.431350  17.921  < 2e-16 ***
autonomy    -0.155769   0.019722  -7.898 5.56e-15 ***
pleasure    -0.390549   0.027821 -14.038  < 2e-16 ***
worry        0.064290   0.006501   9.889  < 2e-16 ***
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 1.644 on 1441 degrees of freedom
  (263 observations deleted due to missingness)
Multiple R-squared:  0.3363,    Adjusted R-squared:  0.3349 
F-statistic: 243.3 on 3 and 1441 DF,  p-value: < 2.2e-16
LS0tCnRpdGxlOiAiUiBOb3RlYm9vayAtLSBEZUJvcmQgRXhhbSAyIgpvdXRwdXQ6IGh0bWxfbm90ZWJvb2sKLS0tCgojIEluc3RhbCBhbmQgTG9hZGVkIFBhY2thZ2VzIApgYGB7cn0KI2luc3RhbGwucGFja2FnZXMoInBzeWNoIikKI2luc3RhbGwucGFja2FnZXMoInRpZHl2ZXJzZSIpCgpsaWJyYXJ5KHBzeWNoKQpsaWJyYXJ5KHRpZHl2ZXJzZSkKYGBgCgojIFJlYWQgaW4gZmlsZSBmb3IgcXVlc3Rpb25zIDEgYW5kIDIKYGBge3J9CkhlYWx0aGRhdGFzZXQgPC0gcmVhZF9jc3YoImhlYWx0aGRhdGEgLmNzdiIpCmBgYAoKIyBRdWVzdGlvbiAxIApgYGB7cn0KdmlzaXRHUG9uUEg8LWxtKHBoeXNoZWFscnRoIH52aXNpdEdQLCBkYXRhID0gSGVhbHRoZGF0YXNldCkKc3VtbWFyeSh2aXNpdEdQb25QSCkKYGBgCmBgYHtyfQpjb25maW50KHZpc2l0R1BvblBIKQpgYGAKCiMgUXVlc3Rpb24gMiAKYGBge3J9CmFsbHByZWRpY3RvcnM8LWxtKHBoeXNoZWFscnRoIH4gbWVtb3J5ICsgdmlzaXRHUCArIHZpc2l0RVIgKyB2aWdvcm91c2FjdCArIG1vZGVyYXRlYWN0ICsgd2Fsa2luZywgZGF0YSA9IEhlYWx0aGRhdGFzZXQpCnN1bW1hcnkoYWxscHJlZGljdG9ycykKYGBgCmBgYHtyfQpjb25maW50KGFsbHByZWRpY3RvcnMpCmBgYAoKIyBSZWFkIGluIGZpbGUgZm9yIHF1ZXN0aW9uIDMgCmBgYHtyfQpzbWFsbHNsZWVwIDwtIHJlYWRfY3N2KCJzbWFsbHNsZWVwIC5jc3YiKQpgYGAKCgojIFF1ZXN0aW9uIDMgQU5PVkEKYGBge3J9CnNtYWxsc2xlZXAgPC0gbXV0YXRlKHNtYWxsc2xlZXAsCiAgICAgICAgICAgICAgICAgICAgIHNsZWVwLmYgPSBmYWN0b3Ioc2xlZXAsCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgbGV2ZWxzID0gYygxLDIsMyw0KSwKICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICBsYWJlbHMgPSBjKCIxIiwgIjIiLCAiMyIsICI0IikpKQpzbWFsbHNsZWVwIDwtIG11dGF0ZShzbWFsbHNsZWVwLAogICAgICAgICAgICAgICAgICAgICBzZXguZiA9IGZhY3RvcihzZXgsCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIGxldmVscyA9IGMoMSwyKSwKICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgbGFiZWxzID0gYygiZmVtYWxlIiwgIm1hbGUiKSkpClN4U0EyIDwtIHNlbGVjdChzbWFsbHNsZWVwLCBzbGVlcC5mLCBzZXguZiwgc2xlZXB0cm91YmxlKQoKU1NBIDwtIGxtKHNsZWVwdHJvdWJsZSB+c2xlZXAuZiAqIHNleC5mLCBkYXRhID0gU3hTQTIpCmFub3ZhKFNTQSkKCmFnZ3JlZ2F0ZSh4PVN4U0EyJHNsZWVwdHJvdWJsZSwgYnk9bGlzdChTeFNBMiRzbGVlcC5mLCBTeFNBMiRzZXguZiksIEZVTj1tZWFuKQoKYGBgCgojIyMjIGV0YSBzcXVhcmVkID0gMy4zNi8gODIuNzIgPSAwLjA0CgoKCiMgUXVlc3Rpb24gNAojI0dNID0gNTAKIyNUT1RzcyA9IDI1LCAwMDAgKyA0NjUgPSAyNSwgNDY1CiMjU1NCID0gUyBuaSAoTWkg4oCTIEdNKTIKIyMjID0gNTAoMzUtNTApMiArIDUwKDQ1LTUwKTIgKyA1MCg2NS01MCkyICsgNTAoNTUtNTApMgojIyM9IDExMjUwICsgMTI1MCArIDExMjUwICsgMTI1MCA9IDI1LDAwMCAKIyNTU1cgPSBTIChZIOKAkyBNaSkyCiMjIyA9ICg1MC0zNSkyICsgKDUwLTQ1KTIgKyAoNTAtNjUpMiArICg1MC01NSkyCQojIyM9IDQ2NQojI2V0YTIgPSAyNSwwMDAgLyAyNSwgNDY1ID0gLjk4LCBsYXJnZSBlZmZlY3Qg4oCTIDk4JSBvZiB0aGUgdmFyaWFiaWxpdHkgaW4gc2NvcmVzIGlzIGR1ZSB0byB0cmVhdG1lbnQgYW5kIDIlIG9mIHRoZSB2YXJpYWJpbGl0eSBpcyBkdWUgdG8gb3RoZXIgdGhpbmdzLiAKIyPigKIJZXRhMiA9IDI1LDAwMCAvIDI1LCA0NjUgPSAuOTgsIGxhcmdlIGVmZmVjdCDigJMgOTglIG9mIHRoZSB2YXJpYWJpbGl0eSBpbiBzY29yZXMgaXMgZHVlIHRvIHRyZWF0bWVudCBhbmQgMiUgb2YgdGhlIHZhcmlhYmlsaXR5IGlzIGR1ZSB0byBvdGhlciB0aGluZ3MuIAojIyMgVDQgKDU1KTEKIyMjIFQxICgzNSktLjUKIyMjIFQyICg0NSktLjUKIyMjCUMgPSAoKCgzNSs0NS0xMTApMikqNTApLzQgPSAxMTI1MAoKCiMgUXVlc3Rpb24gNSAKYGBge3J9CmhlYWx0aDIgPC0gcmVhZF9jc3YoImhlYWx0aGRhdGEyIC5jc3YiKQpgYGAKCmBgYHtyfQppbnN0YWxsLnBhY2thZ2VzKCJvbHNyciIpCmxpYnJhcnkob2xzcnIpCmBgYAoKYGBge3J9CkNBUFcgPC0gbG0obG9ubGV5IH4gY29udHJvbCArIGF1dG9ub215ICsgcGxlYXN1cmUgKyB3b3JyeSwgZGF0YSA9IGhlYWx0aDIpCm9sc19yZWdyZXNzKENBUFcpCmBgYAoKYGBge3J9CkMgPC0gbG0obG9ubGV5IH4gY29udHJvbCxkYXRhID0gaGVhbHRoMikKb2xzX3JlZ3Jlc3MoQykKYGBgCgoKYGBge3J9CkFQVyA8LSBsbShsb25sZXkgfiBhdXRvbm9teSArIHBsZWFzdXJlICsgd29ycnksIGRhdGEgPSBoZWFsdGgyKQpvbHNfcmVncmVzcyhBUFcpCmBgYAoKCiMgUXVlc3Rpb24gNiAKYGBge3J9CiNpbnN0YWxsLnBhY2thZ2VzKCJwcGNvciIpCmxpYnJhcnkocHBjb3IpCmBgYAoKCmBgYHtyfQphbENwdyA8LSBsbShsb25sZXkgfiBhdXRvbm9teSArIHBsZWFzdXJlICsgd29ycnksIGhlYWx0aDIpCnN1bW1hcnkoYWxDcHcpCmBgYAoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCg==