Data Export

Residence Info

StarRez <- read_csv("Data 12-2-20/StarRez Data.csv", 
                    col_types = cols(Location = col_factor(levels = c("Shoemaker Hall", 
                                                                      "Mitchell Hall", 
                                                                      "Sherburne Hall", 
                                                                      "Stearns Hall", 
                                                                      "Case Hall", 
                                                                      "Hill Hall", 
                                                                      "Stateview North",
                                                                      "Stateview South",
                                                                      "Lawrence Hall")), 
                                     `Tech ID` = col_character()))

CA Data

Base Data

CA <- read_csv("Data 12-2-20/HC Survey - CAs.csv", 
               col_names = FALSE, col_types = cols(X18 = col_character()), 
               skip = 3)
CA <- CA %>% 
  select(-c(1:6, 8:17))
names(CA) <- c("Finished", "StudentID", "LastName", "FirstName", "Hall1", "Floor", 
               "Sched", "SchedOther", "SchedNT", "SchedNTOther", 
               "Comm", "CommOther", "CommNT", "CommNTOther", "Meet", "MeetOther", "MeetNT", "MeetNTOther", 
               "Feedback", "FeedbackOther", "FeedbackReason", 
               "SC1", "SC2", "SC3", "SC4", "SC5", "CM1", "CM2", "CM3", "CM4", "CM5", "VC1", "VC2", "VC3", "VC4", "VC5")

#Check Student ID entry error
for (i in 1:nrow(CA)) {
  if ((CA$StudentID[i] %in% StarRez$'Tech ID') == FALSE) {print(CA[i,c(2:6)])}
}

#Remove Unfinished Response
o <- vector()
for (k in 1:nrow(CA)) {
  if (CA$Finished[k] == FALSE) {o <- append(o, k, length(o))}
}
CA <- CA[-o, ]

#Check Duplicate Entry
l <- as.data.frame(table(CA$StudentID))
for (j in 1:nrow(l)) {
  if (l[j,2] != 1) {print(l[j,])}
}

#Fluency Score Convert

for (i in (ncol(CA)-14):ncol(CA)) {
  a <- vector()
  for (j in 1:nrow(CA)) {
    if (is.na(CA[j, i])) {a[j] <- 0}
    else if (CA[j, i] == "Know how to use this feature") {a[j] <- 1}
    else if (CA[j, i] == "Use this feature frequently") {a[j] <- 2}
    else if (CA[j, i] == "Know how to use this feature,Use this feature frequently") {a[j] <- 2}
  }
  CA[i] <- a
}

#Change "Other ..." Entry
for (i in 1:ncol(CA)) {
  for (j in 1:nrow(CA)) {
    if (startsWith(toString(CA[j, i]), "Other") == TRUE) {
      CA[j, i] <- "Other"
    }
  }
}



#Join StarRez Data
CA2 <- inner_join(CA, StarRez, by = c("StudentID" = "Tech ID")) %>% 
  select(StudentID, Location, Floor, Sched:VC5) %>% 
  mutate(SCkn = (SC1 %in% c(1,2)) + (SC2 %in% c(1,2)) + (SC3 %in% c(1,2)) + (SC4 %in% c(1,2)) + (SC5 %in% c(1,2)), 
         SCus = (SC1 == 1) + (SC2 == 1) + (SC3 == 1) + (SC4 == 1) + (SC5 == 1), 
         CMkn = (CM1 %in% c(1,2)) + (CM2 %in% c(1,2)) + (CM3 %in% c(1,2)) + (CM4 %in% c(1,2)) + (CM5 %in% c(1,2)), 
         CMus = (CM1 == 1) + (CM2 == 1) + (CM3 == 1) + (CM4 == 1) + (CM5 == 1), 
         VCkn = (VC1 %in% c(1,2)) + (VC2 %in% c(1,2)) + (VC3 %in% c(1,2)) + (VC4 %in% c(1,2)) + (VC5 %in% c(1,2)), 
         VCus = (VC1 == 1) + (VC2 == 1) + (VC3 == 1) + (VC4 == 1) + (VC5 == 1))

Clean Response

#Group/Rename Halls
Hall <- vector()
for (i in 1:nrow(CA2)) {
  if (CA2$Location[i]== "Shoemaker Hall") {Hall[i] <- "Shoemaker"}
  else if (CA2$Location[i]== "Mitchell Hall") {Hall[i] <- "Mitchell"}
  else if (CA2$Location[i]== "Sherburne Hall") {Hall[i] <- "Sherburne"}
  else if (CA2$Location[i]== "Stearns Hall") {Hall[i] <- "Stearns"}
  else if (CA2$Location[i]%in% c("Case Hall", "Hill Hall")) {Hall[i] <- "Case-Hill"}
  else if (CA2$Location[i]%in% c("Stateview North", "Stateview South")) {Hall[i] <- "Stateview"}
}
CA2 <- as.data.frame(cbind(Hall, CA2))

# Sched
for (i in 1:nrow(CA2)) {
  if (CA2$Sched[i] == "Hand-written schedule") {CA2$Sched[i] <- "Hand-Written"}
  else if (startsWith(CA2$Sched[i], "Online")) {CA2$Sched[i] <- "Online App"}
}

# SchedNT
for (i in 1:nrow(CA2)) {
  if (is.na(CA2$SchedNT[i]) == FALSE) {
    if (startsWith(CA2$SchedNT[i],"Hand-written schedule")) {CA2$SchedNT[i] <- "Easy to keep up"}
    else if (startsWith(CA2$SchedNT[i],"I am not")) {CA2$SchedNT[i] <- "Not fluent in such technology"}
    else if (startsWith(CA2$SchedNT[i],"It is")) {CA2$SchedNT[i] <- "Privacy"}
  }
}

# Comm
for (i in 1:nrow(CA2)) {
  if (startsWith(CA2$Comm[i], "Phone")) {CA2$Comm[i] <- "Phone/PhoneApp"}
}

# CommNT
for (i in 1:nrow(CA2)) {
  if (is.na(CA2$CommNT[i]) == FALSE) {
    if (startsWith(CA2$CommNT[i],"It is")) {CA2$CommNT[i] <- "Easy to get ahold"}
    else if (startsWith(CA2$CommNT[i],"I prefer")) {CA2$CommNT[i] <- "In-person Connections"}
    else if (startsWith(CA2$CommNT[i],"I am")) {CA2$CommNT[i] <- "Not fluent in other methods"}
  }
}

# Meet
for (i in 1:nrow(CA2)) {
  if (startsWith(CA2$Meet[i], "Video")) {CA2$Meet[i] <- "Online App"}
  else if (startsWith(CA2$Meet[i], "Phone")) {CA2$Meet[i] <- "Phone/PhoneApp"}
  else if (startsWith(CA2$Meet[i], "I will")) {CA2$Meet[i] <- "Still in-person"}
}

# MeetNT
for (i in 1:nrow(CA2)) {
  if (is.na(CA2$MeetNT[i]) == FALSE) {
    if (startsWith(CA2$MeetNT[i],"Possible")) {CA2$MeetNT[i] <- "In-person Connections"}
    else if (startsWith(CA2$MeetNT[i],"Easier")) {CA2$MeetNT[i] <- "Easy to facilitate"}
    else if (startsWith(CA2$MeetNT[i],"I am")) {CA2$MeetNT[i] <- "Not fluent in other methods"}
  }
}

Multiple Selection Data

# Feedback
CAFeedback <- vector()
for (i in 1:nrow(CA2)) {
  CAFeedback<- append(CAFeedback, unlist(strsplit(CA2$Feedback[i], ",")), length(CAFeedback))
}

Student Data

Base Data

Student <- read_csv("Data 12-2-20/HC Survey - Students.csv", 
               col_names = FALSE, col_types = cols(X18 = col_character()), 
               skip = 5)
Student <- Student %>% 
  select(-c(1:6, 8:17))
names(Student) <- c("Finished", "StudentID", "LastName", "FirstName", "Hall1", "Referral", 
               "SchedCA", "SchedCAApp", "SchedCAAppOther", "Sched", "SchedOther", "SchedNT", "SchedNTOther", 
               "CommCA", "CommCAOther", "CommCAApp", "CommCAAppOther", "Comm", "CommOther", "CommNT", "CommNTOther", 
               "MeetCA", "MeetCAOther", "MeetCAApp", "MeetCAAppOther", "Meet", "MeetOther", "MeetNT", "MeetNTOther", 
               "Feedback", "FeedbackOther", "FeedbackReason", 
               "SC1", "SC2", "SC3", "SC4", "SC5", "CM1", "CM2", "CM3", "CM4", "CM5", "VC1", "VC2", "VC3", "VC4", "VC5")


#Check Student ID entry error
for (i in 1:nrow(Student)) {
  if ((Student$StudentID[i] %in% StarRez$'Tech ID') == FALSE) {print(Student[i,c(2:6)])}
}

#Check CA entry in Student Survey and remove
c <- vector()
for (i in 1:nrow(Student)) {
  if ((Student$StudentID[i] %in% CA$'StudentID')) {
    c <- append(c, i, length(c))}
}
Student <- Student[-c,]

#Remove Unfinished Response
o <- vector()
for (k in 1:nrow(Student)) {
  if (Student$Finished[k] == FALSE) {o <- append(o, k, length(o))}
}
Student <- Student[-o, ]

#Check Duplicate Entry
l <- as.data.frame(table(Student$StudentID))
for (j in 1:nrow(l)) {
  if (l[j,2] != 1) {print(l[j,])}
}

#Fluency Score Convert
for (i in (ncol(Student)-14):ncol(Student)) {
  a <- vector()
  for (j in 1:nrow(Student)) {
    if (is.na(Student[j, i])) {a[j] <- 0}
    else if (Student[j, i] == "Know how to use this feature") {a[j] <- 1}
    else if (Student[j, i] == "Use this feature frequently") {a[j] <- 2}
    else if (Student[j, i] == "Know how to use this feature,Use this feature frequently") {a[j] <- 2}
  }
  Student[i] <- a
}

#Change "Other ..." Entry
for (i in 1:ncol(Student)) {
  for (j in 1:nrow(Student)) {
    if (startsWith(toString(Student[j, i]), "Other") == TRUE) {
      Student[j, i] <- "Other"
    }
  }
}

#Join StarRez Data
Student2 <- inner_join(Student, StarRez, by = c("StudentID" = "Tech ID")) %>% 
  select(StudentID, Location, Referral:VC5) %>% 
  mutate(SCkn = (SC1 %in% c(1,2)) + (SC2 %in% c(1,2)) + (SC3 %in% c(1,2)) + (SC4 %in% c(1,2)) + (SC5 %in% c(1,2)), 
         SCus = (SC1 == 1) + (SC2 == 1) + (SC3 == 1) + (SC4 == 1) + (SC5 == 1), 
         CMkn = (CM1 %in% c(1,2)) + (CM2 %in% c(1,2)) + (CM3 %in% c(1,2)) + (CM4 %in% c(1,2)) + (CM5 %in% c(1,2)), 
         CMus = (CM1 == 1) + (CM2 == 1) + (CM3 == 1) + (CM4 == 1) + (CM5 == 1), 
         VCkn = (VC1 %in% c(1,2)) + (VC2 %in% c(1,2)) + (VC3 %in% c(1,2)) + (VC4 %in% c(1,2)) + (VC5 %in% c(1,2)), 
         VCus = (VC1 == 1) + (VC2 == 1) + (VC3 == 1) + (VC4 == 1) + (VC5 == 1))

Clean Response

#Group/Rename Halls
Hall <- vector()
for (i in 1:nrow(Student2)) {
  if (Student2$Location[i]== "Shoemaker Hall") {Hall[i] <- "Shoemaker"}
  else if (Student2$Location[i]== "Mitchell Hall") {Hall[i] <- "Mitchell"}
  else if (Student2$Location[i]== "Sherburne Hall") {Hall[i] <- "Sherburne"}
  else if (Student2$Location[i]== "Stearns Hall") {Hall[i] <- "Stearns"}
  else if (Student2$Location[i]%in% c("Case Hall", "Hill Hall")) {Hall[i] <- "Case-Hill"}
  else if (Student2$Location[i]%in% c("Stateview North", "Stateview South")) {Hall[i] <- "Stateview"}
}
Student2 <- as.data.frame(cbind(Hall, Student2))

# Sched
for (i in 1:nrow(Student2)) {
  if (Student2$Sched[i] == "Hand-written schedule") {Student2$Sched[i] <- "Hand-Written"}
  else if (startsWith(Student2$Sched[i], "Online")) {Student2$Sched[i] <- "Online App"}
}

# SchedNT
for (i in 1:nrow(Student2)) {
  if (is.na(Student2$SchedNT[i]) == FALSE) {
    if (startsWith(Student2$SchedNT[i],"Hand-written schedule")) {Student2$SchedNT[i] <- "Easy to keep up"}
    else if (startsWith(Student2$SchedNT[i],"I am not")) {Student2$SchedNT[i] <- "Not fluent in such technology"}
    else if (startsWith(Student2$SchedNT[i],"It is")) {Student2$SchedNT[i] <- "Privacy"}
  }
}

# Comm
for (i in 1:nrow(Student2)) {
  if (startsWith(Student2$Comm[i], "Phone")) {Student2$Comm[i] <- "Phone/PhoneApp"}
}

# CommNT
for (i in 1:nrow(Student2)) {
  if (is.na(Student2$CommNT[i]) == FALSE) {
    if (startsWith(Student2$CommNT[i],"It is")) {Student2$CommNT[i] <- "Easy to get ahold"}
    else if (startsWith(Student2$CommNT[i],"I prefer")) {Student2$CommNT[i] <- "In-person Connections"}
    else if (startsWith(Student2$CommNT[i],"I am")) {Student2$CommNT[i] <- "Not fluent in other methods"}
  }
}

# MeetCA
for (i in 1:nrow(Student2)) {
  if (startsWith(Student2$MeetCA[i], "Video")) {Student2$MeetCA[i] <- "Online App"}
  else if (startsWith(Student2$MeetCA[i], "Phone")) {Student2$MeetCA[i] <- "Phone/PhoneApp"}
  else if (startsWith(Student2$MeetCA[i], "In-")) {Student2$MeetCA[i] <- "In-Person"}
}

# Meet
for (i in 1:nrow(Student2)) {
  if (startsWith(Student2$Meet[i], "Video")) {Student2$Meet[i] <- "Online App"}
  else if (startsWith(Student2$Meet[i], "Phone")) {Student2$Meet[i] <- "Phone/PhoneApp"}
  else if (startsWith(Student2$Meet[i], "I will")) {Student2$Meet[i] <- "Still in-person"}
}

# MeetNT
for (i in 1:nrow(Student2)) {
  if (is.na(Student2$MeetNT[i]) == FALSE) {
    if (startsWith(Student2$MeetNT[i],"Possible")) {Student2$MeetNT[i] <- "In-person Connections"}
    else if (startsWith(Student2$MeetNT[i],"Easier")) {Student2$MeetNT[i] <- "Easy to be part of"}
    else if (startsWith(Student2$MeetNT[i],"I am")) {Student2$MeetNT[i] <- "Not fluent in other methods"}
  }
}

Multiple Selection Data

# SchedCAApp
StudentSchedCAApp <- vector()
for (i in 1:nrow(Student2)) {
  if (is.na(Student2$SchedCAApp[i]) == FALSE) {
    StudentSchedCAApp <- append(StudentSchedCAApp, unlist(strsplit(Student2$SchedCAApp[i], ",")), length(StudentSchedCAApp))
  }
}
for (i in 1:length(StudentSchedCAApp)) {
  if (startsWith(StudentSchedCAApp[i], "Other") == TRUE) {StudentSchedCAApp[i] <- "Other"}
  else if (startsWith(StudentSchedCAApp[i], "Outlook") == TRUE) {StudentSchedCAApp[i] <- "Outlook"}
}

# CommCAApp
StudentCommCAApp <- vector()
for (i in 1:nrow(Student2)) {
  if (is.na(Student2$CommCAApp[i]) == FALSE) {
    StudentCommCAApp <- append(StudentCommCAApp, unlist(strsplit(Student2$CommCAApp[i], ",")), length(StudentCommCAApp))
  }
}
for (i in 1:length(StudentCommCAApp)) {
  if (startsWith(StudentCommCAApp[i], "Other") == TRUE) {StudentCommCAApp[i] <- "Other"}
  else if (startsWith(StudentCommCAApp[i], "Phone") == TRUE) {StudentCommCAApp[i] <- "Phone"}
  else if (startsWith(StudentCommCAApp[i], "Outlook") == TRUE) {StudentCommCAApp[i] <- "Outlook"}
}

# MeetCAApp
StudentMeetCAApp <- vector()
for (i in 1:nrow(Student2)) {
  if (is.na(Student2$MeetCAApp[i]) == FALSE) {
    StudentMeetCAApp <- append(StudentMeetCAApp, unlist(strsplit(Student2$MeetCAApp[i], ",")), length(StudentMeetCAApp))
  }
}
for (i in 1:length(StudentMeetCAApp)) {
  if (startsWith(StudentMeetCAApp[i], "Other") == TRUE) {StudentMeetCAApp[i] <- "Other"}
  else if (startsWith(StudentMeetCAApp[i], "Phone") == TRUE) {StudentMeetCAApp[i] <- "Phone"}
  else if (startsWith(StudentMeetCAApp[i], "Outlook") == TRUE) {StudentMeetCAApp[i] <- "Outlook"}
}

# Feedback
StudentFeedback <- vector()
for (i in 1:nrow(Student2)) {
  StudentFeedback<- append(StudentFeedback, unlist(strsplit(Student2$Feedback[i], ",")), length(StudentFeedback))
}

Student Data Student ID List

Join Demographic Data

library(readxl)
library(eeptools)
## Warning: package 'eeptools' was built under R version 4.0.3
Dem <- read_excel("Data 12-2-20/HC Demographic Data.xlsx", 
                  col_types = c("text", "text", "date", "text", "text", "text"))
Dem$Class <- factor(Dem$Class,levels = c("FR", "SO", "JR", "SR"))
Dem <- mutate(Dem, Age = floor(age_calc(as.Date(Dem$DOB), unit = "years")))
Student2 <- inner_join(Student2, Dem, by = c("StudentID" = "StudentID"))

Use of Technology

Completion by Hall

library(tidyverse)
## -- Attaching packages ------------------------------------------------------ tidyverse 1.3.0 --
## v tibble  3.0.3     v purrr   0.3.4
## v tidyr   1.1.2     v forcats 0.5.0
## -- Conflicts --------------------------------------------------------- tidyverse_conflicts() --
## x gridExtra::combine() masks dplyr::combine()
## x dplyr::filter()      masks stats::filter()
## x dplyr::lag()         masks stats::lag()
# CA
p <- ggplot(CA2, aes(x = Location)) +
  geom_bar() +
  theme(axis.text.x = element_text(angle = 15), 
        axis.title.x = element_blank())
k <- tableGrob(unname(as.data.frame(table(CA2$Location))), rows = NULL)  
grid.arrange(p, k, ncol=2, widths = c(3, 1), top = textGrob("CA Completion Count", gp = gpar(fontsize = 30)))

# Student
m <- as.data.frame(cbind(round(table(Student2$Location)/table(StarRez$Location) * 100, 2), table(Student2$Location), round(table(StarRez$Location)*0.2)))
names(m) <- c("Prop", "Count", "Goal")
m <- m %>% 
  arrange(desc(Prop))
k <- tableGrob(m)  
grid.arrange(k, top = textGrob("Student Completion", gp = gpar(fontsize = 30)))

Scheduling

Scheduling Method Preference

# a. CA Preference
ggplot(CA2, aes(x = Sched)) +
  geom_bar() +
  geom_text(stat='count', aes(label=..count..), vjust=1, size = 8, color = "blue") +
  labs(title = "CA Scheduling Preference") +
  theme(plot.title = element_text(hjust = 0.5, size = 20), 
        axis.title.x = element_blank(),
        axis.text.x = element_text(size = 15),
        axis.text.y = element_text(size = 12))

# b. Student Experience from CA
ggplot(Student2, aes(x = SchedCA)) +
  geom_bar() +
  geom_text(stat='count', aes(label=..count..), vjust=1, size = 8, color = "blue") +
  labs(title = "Has your CA use any online app to schedule an event with you?") +
  theme(plot.title = element_text(hjust = 0.5, size = 17), 
        axis.title.x = element_blank(),
        axis.text.x = element_text(size = 15),
        axis.text.y = element_text(size = 12))

# c. Student Preference
ggplot(Student2, aes(x = Sched)) +
  geom_bar() +
  geom_text(stat='count', aes(label=..count..), vjust=1, size = 8, color = "blue") +
  labs(title = "Student Scheduling Preference") +
  theme(plot.title = element_text(hjust = 0.5, size = 20), 
        axis.title.x = element_blank(),
        axis.text.x = element_text(size = 15),
        axis.text.y = element_text(size = 12))

Online Scheduling App

ggplot(as.data.frame(StudentSchedCAApp), aes(x = StudentSchedCAApp)) +
  geom_bar() +
  geom_text(stat='count', aes(label=..count..), vjust=1, size = 8, color = "blue") +
  labs(title = "What online app did your CA use to schedule an event with you?") +
  theme(plot.title = element_text(hjust = 0.5, size = 17), 
        axis.title.x = element_blank(),
        axis.text.x = element_text(size = 15),
        axis.text.y = element_text(size = 12))

Hand-Written Scheduling Reason

# a. CA Reason
ggplot(drop_na(CA2, SchedNT), aes(x = SchedNT)) +
  geom_bar() +
  geom_text(stat='count', aes(label=..count..), vjust=1, size = 8, color = "blue") +
  labs(title = "CA Why Hand-Written Schedule?") +
  theme(plot.title = element_text(hjust = 0.5, size = 20), 
        axis.title.x = element_blank(),
        axis.text.x = element_text(size = 14),
        axis.text.y = element_text(size = 12))

# b. Student Reason
ggplot(drop_na(Student2, SchedNT), aes(x = SchedNT)) +
  geom_bar() +
  geom_text(stat='count', aes(label=..count..), vjust=1, size = 8, color = "blue") +
  labs(title = "Student Why Hand-Written Schedule?") +
  theme(plot.title = element_text(hjust = 0.5, size = 20), 
        axis.title.x = element_blank(),
        axis.text.x = element_text(size = 14),
        axis.text.y = element_text(size = 12))

Communication

Communication Method Preference

# a. CA Preference
ggplot(CA2, aes(x = Comm)) +
  geom_bar() +
  geom_text(stat='count', aes(label=..count..), vjust=1, size = 8, color = "blue") +
  labs(title = "CA Communication Preference") +
  theme(plot.title = element_text(hjust = 0.5, size = 20), 
        axis.title.x = element_blank(),
        axis.text.x = element_text(size = 15),
        axis.text.y = element_text(size = 12))

# b. Student Experience from CA
ggplot(Student2, aes(x = CommCA)) +
  geom_bar() +
  geom_text(stat='count', aes(label=..count..), vjust=1, size = 8, color = "blue") +
  labs(title = "What method does your CA primarily use to contact you?") +
  theme(plot.title = element_text(hjust = 0.5, size = 17), 
        axis.title.x = element_blank(),
        axis.text.x = element_text(size = 15),
        axis.text.y = element_text(size = 12))

# c. Student Preference
ggplot(Student2, aes(x = Comm)) +
  geom_bar() +
  geom_text(stat='count', aes(label=..count..), vjust=1, size = 8, color = "blue") +
  labs(title = "Student Communication Preference") +
  theme(plot.title = element_text(hjust = 0.5, size = 20), 
        axis.title.x = element_blank(),
        axis.text.x = element_text(size = 15),
        axis.text.y = element_text(size = 12))

Online Communication App

ggplot(as.data.frame(StudentCommCAApp), aes(x = StudentCommCAApp)) +
  geom_bar() +
  geom_text(stat='count', aes(label=..count..), vjust=1, size = 8, color = "blue") +
  labs(title = "What online app did your CA use to communicate with you?") +
  theme(plot.title = element_text(hjust = 0.5, size = 17),
        axis.title.x = element_blank(),
        axis.text.x = element_text(size = 15),
        axis.text.y = element_text(size = 12))

In-Person Communication Reason

# a. CA Reason
ggplot(drop_na(CA2, CommNT), aes(x = CommNT)) +
  geom_bar() +
  geom_text(stat='count', aes(label=..count..), vjust=1, size = 8, color = "blue") +
  labs(title = "CA Why in-person communication?") +
  theme(plot.title = element_text(hjust = 0.5, size = 20), 
        axis.title.x = element_blank(),
        axis.text.x = element_text(size = 15),
        axis.text.y = element_text(size = 12))

# b. Student Reason
ggplot(drop_na(Student2, CommNT), aes(x = CommNT)) +
  geom_bar() +
  geom_text(stat='count', aes(label=..count..), vjust=1, size = 8, color = "blue") +
  labs(title = "Student Why in-person communication?") +
  theme(plot.title = element_text(hjust = 0.5, size = 20), 
        axis.title.x = element_blank(),
        axis.text.x = element_text(size = 15),
        axis.text.y = element_text(size = 12))

Meeting

Meeting Method Preference

# a. CA Preference
ggplot(CA2, aes(x = Meet)) +
  geom_bar() +
  geom_text(stat='count', aes(label=..count..), vjust=1, size = 8, color = "blue") +
  labs(title = "CA Meeting Preference") +
  theme(plot.title = element_text(hjust = 0.5, size = 20), 
        axis.title.x = element_blank(),
        axis.text.x = element_text(size = 15),
        axis.text.y = element_text(size = 12))

# b. Student Experience from CA
ggplot(Student2, aes(x = MeetCA)) +
  geom_bar() +
  geom_text(stat='count', aes(label=..count..), vjust=1, size = 8, color = "blue") +
  labs(title = "Which method did your CA used in meeting with you?") +
  theme(plot.title = element_text(hjust = 0.5, size = 18), 
        axis.title.x = element_blank(),
        axis.text.x = element_text(size = 15),
        axis.text.y = element_text(size = 12))

# c. Student Preference
ggplot(Student2, aes(x = Meet)) +
  geom_bar() +
  geom_text(stat='count', aes(label=..count..), vjust=1, size = 8, color = "blue") +
  labs(title = "Student Meeting Preference") +
  theme(plot.title = element_text(hjust = 0.5, size = 20), 
        axis.title.x = element_blank(),
        axis.text.x = element_text(size = 15),
        axis.text.y = element_text(size = 12))

Online Meeting App

ggplot(as.data.frame(StudentMeetCAApp), aes(x = StudentMeetCAApp)) +
  geom_bar() +
  geom_text(stat='count', aes(label=..count..), vjust=1, size = 8, color = "blue") +
  labs(title = "What online app did your CA use to facilitate meetings with you?") +
  theme(plot.title = element_text(hjust = 0.5, size = 17),
        axis.title.x = element_blank(),
        axis.text.x = element_text(size = 14),
        axis.text.y = element_text(size = 12))

In-Person Reason

# a. CA Reason
ggplot(drop_na(CA2, MeetNT), aes(x = MeetNT)) +
  geom_bar() +
  geom_text(stat='count', aes(label=..count..), vjust=1, size = 8, color = "blue") +
  labs(title = "CA Why in-person meeting?") +
  theme(plot.title = element_text(hjust = 0.5, size = 20), 
        axis.title.x = element_blank(),
        axis.text.x = element_text(size = 15),
        axis.text.y = element_text(size = 12))

# b. Student Reason
ggplot(drop_na(Student2, MeetNT), aes(x = MeetNT)) +
  geom_bar() +
  geom_text(stat='count', aes(label=..count..), vjust=1, size = 8, color = "blue") +
  labs(title = "Student Why in-person meeting?") +
  theme(plot.title = element_text(hjust = 0.5, size = 20), 
        axis.title.x = element_blank(),
        axis.text.x = element_text(size = 15),
        axis.text.y = element_text(size = 12))

Technology Area Feedback

# a. CA Feedback
ggplot(as.data.frame(CAFeedback), aes(x = CAFeedback)) +
  geom_bar() +
  geom_text(stat='count', aes(label=..count..), vjust=1, size = 8, color = "blue") +
  labs(title = "CA Which areas in Res Life need more use of technology?") +
  theme(plot.title = element_text(hjust = 0.5, size = 17), 
        axis.title.x = element_blank(), 
        axis.text.x = element_text(angle = 15, size = 15),
        axis.text.y = element_text(size = 12))

# b. Student Reason
ggplot(as.data.frame(StudentFeedback), aes(x = StudentFeedback)) +
  geom_bar() +
  geom_text(stat='count', aes(label=..count..), vjust=1, size = 8, color = "blue") +
  labs(title = "Student CA Which areas in Res Life need more use of technology?") +
  theme(plot.title = element_text(hjust = 0.5, size = 17), 
        axis.title.x = element_blank(), 
        axis.text.x = element_text(angle = 15, size = 15),
        axis.text.y = element_text(size = 12))

Technology Fluency & Usage

Fluency vs Usage

#Scheduling
t.test(Student2$SCkn, Student2$SCus, paired = TRUE, alternative = "greater")
## 
##  Paired t-test
## 
## data:  Student2$SCkn and Student2$SCus
## t = 11.737, df = 100, p-value < 2.2e-16
## alternative hypothesis: true difference in means is greater than 0
## 95 percent confidence interval:
##  1.802106      Inf
## sample estimates:
## mean of the differences 
##                 2.09901
#Communication
t.test(Student2$CMkn, Student2$CMus, paired = TRUE, alternative = "greater")
## 
##  Paired t-test
## 
## data:  Student2$CMkn and Student2$CMus
## t = 13.975, df = 100, p-value < 2.2e-16
## alternative hypothesis: true difference in means is greater than 0
## 95 percent confidence interval:
##  2.268441      Inf
## sample estimates:
## mean of the differences 
##                2.574257
#Meeting
t.test(Student2$VCkn, Student2$VCus, paired = TRUE, alternative = "greater")
## 
##  Paired t-test
## 
## data:  Student2$VCkn and Student2$VCus
## t = 9.0852, df = 100, p-value = 5.002e-15
## alternative hypothesis: true difference in means is greater than 0
## 95 percent confidence interval:
##  1.359402      Inf
## sample estimates:
## mean of the differences 
##                1.663366

Three Scores

Fluency

mean(Student2$SCkn)
## [1] 3.594059
mean(Student2$CMkn)
## [1] 3.752475
mean(Student2$VCkn)
## [1] 3.059406
#Scheduling vs Communication
t.test(Student2$SCkn, Student2$CMkn, paired = TRUE)
## 
##  Paired t-test
## 
## data:  Student2$SCkn and Student2$CMkn
## t = -1.1387, df = 100, p-value = 0.2575
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
##  -0.4344162  0.1175845
## sample estimates:
## mean of the differences 
##              -0.1584158
#Scheduling vs Meeting
t.test(Student2$SCkn, Student2$VCkn, paired = TRUE)
## 
##  Paired t-test
## 
## data:  Student2$SCkn and Student2$VCkn
## t = 3.9071, df = 100, p-value = 0.00017
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
##  0.2631637 0.8061432
## sample estimates:
## mean of the differences 
##               0.5346535
#Communication vs Meeting
t.test(Student2$CMkn, Student2$VCkn, paired = TRUE)
## 
##  Paired t-test
## 
## data:  Student2$CMkn and Student2$VCkn
## t = 4.578, df = 100, p-value = 1.353e-05
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
##  0.3927133 0.9934253
## sample estimates:
## mean of the differences 
##               0.6930693

Usage

mean(Student2$SCus)
## [1] 1.49505
mean(Student2$CMus)
## [1] 1.178218
mean(Student2$VCus)
## [1] 1.39604
#Scheduling vs Communication
t.test(Student2$SCus, Student2$CMus, paired = TRUE)
## 
##  Paired t-test
## 
## data:  Student2$SCus and Student2$CMus
## t = 2.2869, df = 100, p-value = 0.02431
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
##  0.04196608 0.59169729
## sample estimates:
## mean of the differences 
##               0.3168317
#Scheduling vs Meeting
t.test(Student2$SCus, Student2$VCus, paired = TRUE)
## 
##  Paired t-test
## 
## data:  Student2$SCus and Student2$VCus
## t = 0.60443, df = 100, p-value = 0.5469
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
##  -0.2259781  0.4239979
## sample estimates:
## mean of the differences 
##               0.0990099
#Communication vs Meeting
t.test(Student2$CMus, Student2$VCus, paired = TRUE)
## 
##  Paired t-test
## 
## data:  Student2$CMus and Student2$VCus
## t = -1.4213, df = 100, p-value = 0.1583
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
##  -0.52186781  0.08622425
## sample estimates:
## mean of the differences 
##              -0.2178218

CA vs Students

Fluency

#Scheduling
SCkn <- data.frame(score <- c(CA2$SCkn, Student2$SCkn),
                   group <- c(rep("CA", nrow(CA2)), rep("Student", nrow(Student2))))
ggplot(SCkn, aes(x = group, y = score, color = group)) +
  geom_point(position = "jitter", show.legend = FALSE) +
  geom_hline(yintercept = mean(CA2$SCkn), color = "pink") +
  geom_hline(yintercept = mean(Student2$SCkn), color = "skyblue") +
  labs(title = "Scheduling Technology Fluency") +
  theme(plot.title = element_text(hjust = 0.5, size = 20), 
        axis.title.x = element_blank(),
        axis.text.x = element_text(size = 15),
        axis.text.y = element_text(size = 12))

t.test(score ~ group, data = SCkn, alternative = "greater")
## 
##  Welch Two Sample t-test
## 
## data:  score by group
## t = 0.22414, df = 49.527, p-value = 0.4118
## alternative hypothesis: true difference in means is greater than 0
## 95 percent confidence interval:
##  -0.5400525        Inf
## sample estimates:
##      mean in group CA mean in group Student 
##              3.677419              3.594059
mean(CA2$SCkn) - mean(Student2$SCkn)
## [1] 0.08335995
#Communication
CMkn <- data.frame(score <- c(CA2$CMkn, Student2$CMkn),
                   group <- c(rep("CA", nrow(CA2)), rep("Student", nrow(Student2))))
ggplot(CMkn, aes(x = group, y = score, color = group)) +
  geom_point(position = "jitter", show.legend = FALSE) +
  geom_hline(yintercept = mean(CA2$CMkn), color = "pink") +
  geom_hline(yintercept = mean(Student2$CMkn), color = "skyblue") +
  labs(title = "Communication Technology Fluency") +
  theme(plot.title = element_text(hjust = 0.5, size = 20), 
        axis.title.x = element_blank(),
        axis.text.x = element_text(size = 15),
        axis.text.y = element_text(size = 12))

t.test(score ~ group, data = CMkn, alternative = "greater")
## 
##  Welch Two Sample t-test
## 
## data:  score by group
## t = 0.6139, df = 61.416, p-value = 0.2708
## alternative hypothesis: true difference in means is greater than 0
## 95 percent confidence interval:
##  -0.3148485        Inf
## sample estimates:
##      mean in group CA mean in group Student 
##              3.935484              3.752475
mean(CA2$CMkn) - mean(Student2$CMkn)
## [1] 0.1830086
#Meeting
VCkn <- data.frame(score <- c(CA2$VCkn, Student2$VCkn),
                   group <- c(rep("CA", nrow(CA2)), rep("Student", nrow(Student2))))
ggplot(VCkn, aes(x = group, y = score, color = group)) +
  geom_point(position = "jitter", show.legend = FALSE) +
  geom_hline(yintercept = mean(CA2$VCkn), color = "pink") +
  geom_hline(yintercept = mean(Student2$VCkn), color = "skyblue") +
  labs(title = "Meeting Technology Fluency") +
  theme(plot.title = element_text(hjust = 0.5, size = 20), 
        axis.title.x = element_blank(),
        axis.text.x = element_text(size = 15),
        axis.text.y = element_text(size = 12))

t.test(score ~ group, data = VCkn, alternative = "greater")
## 
##  Welch Two Sample t-test
## 
## data:  score by group
## t = 1.4779, df = 67.571, p-value = 0.07205
## alternative hypothesis: true difference in means is greater than 0
## 95 percent confidence interval:
##  -0.06696099         Inf
## sample estimates:
##      mean in group CA mean in group Student 
##              3.580645              3.059406
mean(CA2$VCkn) - mean(Student2$VCkn)
## [1] 0.5212392

Usage

#Scheduling
SCus <- data.frame(score <- c(CA2$SCus, Student2$SCus),
                   group <- c(rep("CA", nrow(CA2)), rep("Student", nrow(Student2))))
ggplot(SCus, aes(x = group, y = score, color = group)) +
  geom_point(position = "jitter", show.legend = FALSE) +
  geom_hline(yintercept = mean(CA2$SCus), color = "#F8766D") +
  geom_hline(yintercept = mean(Student2$SCus), color = "#00BFC4") +
  labs(title = "Scheduling Technology Usage") +
  theme(plot.title = element_text(hjust = 0.5, size = 20), 
        axis.title.x = element_blank(),
        axis.text.x = element_text(size = 15),
        axis.text.y = element_text(size = 12))

t.test(score ~ group, data = SCus, alternative = "less")
## 
##  Welch Two Sample t-test
## 
## data:  score by group
## t = -0.5968, df = 55.848, p-value = 0.2765
## alternative hypothesis: true difference in means is less than 0
## 95 percent confidence interval:
##       -Inf 0.3690453
## sample estimates:
##      mean in group CA mean in group Student 
##              1.290323              1.495050
mean(CA2$SCus) - mean(Student2$SCus)
## [1] -0.2047269
#Communication
CMus <- data.frame(score <- c(CA2$CMus, Student2$CMus),
                   group <- c(rep("CA", nrow(CA2)), rep("Student", nrow(Student2))))
ggplot(CMus, aes(x = group, y = score, color = group)) +
  geom_point(position = "jitter", show.legend = FALSE) +
  geom_hline(yintercept = mean(CA2$CMus), color = "#F8766D") +
  geom_hline(yintercept = mean(Student2$CMus), color = "#00BFC4") +
  labs(title = "Communication Technology Usage") +
  theme(plot.title = element_text(hjust = 0.5, size = 20), 
        axis.title.x = element_blank(),
        axis.text.x = element_text(size = 15),
        axis.text.y = element_text(size = 12))

t.test(score ~ group, data = CMus, alternative = "greater")
## 
##  Welch Two Sample t-test
## 
## data:  score by group
## t = 0.49093, df = 45.326, p-value = 0.3129
## alternative hypothesis: true difference in means is greater than 0
## 95 percent confidence interval:
##  -0.4274944        Inf
## sample estimates:
##      mean in group CA mean in group Student 
##              1.354839              1.178218
mean(CA2$CMus) - mean(Student2$CMus)
## [1] 0.1766209
#Meeting
VCus <- data.frame(score <- c(CA2$VCus, Student2$VCus),
                   group <- c(rep("CA", nrow(CA2)), rep("Student", nrow(Student2))))
ggplot(VCus, aes(x = group, y = score, color = group)) +
  geom_point(position = "jitter", show.legend = FALSE) +
  geom_hline(yintercept = mean(CA2$VCus), color = "#F8766D") +
  geom_hline(yintercept = mean(Student2$VCus), color = "#00BFC4") +
  labs(title = "Meeting Technology Usage") +
  theme(plot.title = element_text(hjust = 0.5, size = 20), 
        axis.title.x = element_blank(),
        axis.text.x = element_text(size = 15),
        axis.text.y = element_text(size = 12))

t.test(score ~ group, data = VCus, alternative = "less")
## 
##  Welch Two Sample t-test
## 
## data:  score by group
## t = -0.6104, df = 59.112, p-value = 0.272
## alternative hypothesis: true difference in means is less than 0
## 95 percent confidence interval:
##       -Inf 0.3518512
## sample estimates:
##      mean in group CA mean in group Student 
##              1.193548              1.396040
mean(CA2$VCus) - mean(Student2$VCus)
## [1] -0.2024912

Hall/Community

Fluency

#Scheduling
SCkn <- data.frame(score = Student2$SCkn,
                   group = as.factor(Student2$Hall))
ggplot(SCkn, aes(x = group, y = score, color = group)) +
  geom_point(position = "jitter", show.legend = FALSE) +
  geom_hline(yintercept = mean(filter(Student2, Hall == "Shoemaker")$SCkn), color = "#F8766D") +
  geom_hline(yintercept = mean(filter(Student2, Hall == "Mitchell")$SCkn), color = "#B79F00") +
  geom_hline(yintercept = mean(filter(Student2, Hall == "Sherburne")$SCkn), color = "#00BA38") +
  geom_hline(yintercept = mean(filter(Student2, Hall == "Stearns")$SCkn), color = "#00BFC4") +
  geom_hline(yintercept = mean(filter(Student2, Hall == "Case-Hill")$SCkn), color = "#619CFF") +
  geom_hline(yintercept = mean(filter(Student2, Hall == "Stateview")$SCkn), color = "#F564E3") +
  labs(title = "Scheduling Technology Fluency") +
  theme(plot.title = element_text(hjust = 0.5, size = 20), 
        axis.title.x = element_blank(),
        axis.text.x = element_text(size = 15),
        axis.text.y = element_text(size = 12))

meanSCkn <- data.frame(Mean = c(mean(filter(Student2, Hall == "Shoemaker")$SCkn),
                                 mean(filter(Student2, Hall == "Mitchell")$SCkn),
                                 mean(filter(Student2, Hall == "Sherburne")$SCkn),
                                 mean(filter(Student2, Hall == "Stearns")$SCkn),
                                 mean(filter(Student2, Hall == "Case-Hill")$SCkn),
                                 mean(filter(Student2, Hall == "Stateview")$SCkn)),
                       Hall = c("Shoemaker", "Mitchell", "Sherburne", "Stearns", "Case-Hill", "Stateview")) %>% 
  arrange(Mean)
meanSCkn
##       Mean      Hall
## 1 3.166667  Mitchell
## 2 3.652174 Case-Hill
## 3 3.666667 Shoemaker
## 4 3.666667 Sherburne
## 5 3.760000   Stearns
## 6 4.200000 Stateview
kruskal_test(score ~ group, data = SCkn, distribution = approximate())
## 
##  Approximative Kruskal-Wallis Test
## 
## data:  score by
##   group (Case-Hill, Mitchell, Sherburne, Shoemaker, Stateview, Stearns)
## chi-squared = 2.8201, p-value = 0.731
#Communication
CMkn <- data.frame(score <- Student2$CMkn,
                   group <- as.factor(Student2$Hall))
ggplot(CMkn, aes(x = group, y = score, color = group)) +
  geom_point(position = "jitter", show.legend = FALSE) +
  geom_hline(yintercept = mean(filter(Student2, Hall == "Shoemaker")$CMkn), color = "#F8766D") +
  geom_hline(yintercept = mean(filter(Student2, Hall == "Mitchell")$CMkn), color = "#B79F00") +
  geom_hline(yintercept = mean(filter(Student2, Hall == "Sherburne")$CMkn), color = "#00BA38") +
  geom_hline(yintercept = mean(filter(Student2, Hall == "Stearns")$CMkn), color = "#00BFC4") +
  geom_hline(yintercept = mean(filter(Student2, Hall == "Case-Hill")$CMkn), color = "#619CFF") +
  geom_hline(yintercept = mean(filter(Student2, Hall == "Stateview")$CMkn), color = "#F564E3") +
  labs(title = "Communication Technology Fluency") +
  theme(plot.title = element_text(hjust = 0.5, size = 20), 
        axis.title.x = element_blank(),
        axis.text.x = element_text(size = 15),
        axis.text.y = element_text(size = 12))

meanCMkn <- data.frame(Mean = c(mean(filter(Student2, Hall == "Shoemaker")$CMkn),
                                 mean(filter(Student2, Hall == "Mitchell")$CMkn),
                                 mean(filter(Student2, Hall == "Sherburne")$CMkn),
                                 mean(filter(Student2, Hall == "Stearns")$CMkn),
                                 mean(filter(Student2, Hall == "Case-Hill")$CMkn),
                                 mean(filter(Student2, Hall == "Stateview")$CMkn)),
                       Hall = c("Shoemaker", "Mitchell", "Sherburne", "Stearns", "Case-Hill", "Stateview")) %>% 
  arrange(Mean)
meanCMkn
##       Mean      Hall
## 1 3.416667  Mitchell
## 2 3.600000 Stateview
## 3 3.800000 Shoemaker
## 4 3.840000   Stearns
## 5 3.913043 Case-Hill
## 6 4.000000 Sherburne
kruskal_test(score ~ group, data = CMkn, distribution = approximate())
## 
##  Approximative Kruskal-Wallis Test
## 
## data:  score by
##   group (Case-Hill, Mitchell, Sherburne, Shoemaker, Stateview, Stearns)
## chi-squared = 2.8235, p-value = 0.7354
#Meeting
VCkn <- data.frame(score <- Student2$VCkn,
                   group <- as.factor(Student2$Hall))
ggplot(VCkn, aes(x = group, y = score, color = group)) +
  geom_point(position = "jitter", show.legend = FALSE) +
  geom_hline(yintercept = mean(filter(Student2, Hall == "Shoemaker")$VCkn), color = "#F8766D") +
  geom_hline(yintercept = mean(filter(Student2, Hall == "Mitchell")$VCkn), color = "#B79F00") +
  geom_hline(yintercept = mean(filter(Student2, Hall == "Sherburne")$VCkn), color = "#00BA38") +
  geom_hline(yintercept = mean(filter(Student2, Hall == "Stearns")$VCkn), color = "#00BFC4") +
  geom_hline(yintercept = mean(filter(Student2, Hall == "Case-Hill")$VCkn), color = "#619CFF") +
  geom_hline(yintercept = mean(filter(Student2, Hall == "Stateview")$VCkn), color = "#F564E3") +
  labs(title = "Meeting Technology Fluency") +
  theme(plot.title = element_text(hjust = 0.5, size = 20), 
        axis.title.x = element_blank(),
        axis.text.x = element_text(size = 15),
        axis.text.y = element_text(size = 12))

meanVCkn <- data.frame(Mean = c(mean(filter(Student2, Hall == "Shoemaker")$VCkn),
                                 mean(filter(Student2, Hall == "Mitchell")$VCkn),
                                 mean(filter(Student2, Hall == "Sherburne")$VCkn),
                                 mean(filter(Student2, Hall == "Stearns")$VCkn),
                                 mean(filter(Student2, Hall == "Case-Hill")$VCkn),
                                 mean(filter(Student2, Hall == "Stateview")$VCkn)),
                       Hall = c("Shoemaker", "Mitchell", "Sherburne", "Stearns", "Case-Hill", "Stateview")) %>% 
  arrange(Mean)
meanVCkn
##       Mean      Hall
## 1 2.458333  Mitchell
## 2 2.956522 Case-Hill
## 3 3.200000   Stearns
## 4 3.266667 Shoemaker
## 5 3.600000 Stateview
## 6 3.888889 Sherburne
kruskal_test(score ~ group, data = VCkn, distribution = approximate())
## 
##  Approximative Kruskal-Wallis Test
## 
## data:  score by
##   group (Case-Hill, Mitchell, Sherburne, Shoemaker, Stateview, Stearns)
## chi-squared = 4.3467, p-value = 0.5155

Usage

#Scheduling
SCus <- data.frame(score = Student2$SCus,
                   group = as.factor(Student2$Hall))
ggplot(SCus, aes(x = group, y = score, color = group)) +
  geom_point(position = "jitter", show.legend = FALSE) +
  geom_hline(yintercept = mean(filter(Student2, Hall == "Shoemaker")$SCus), color = "#F8766D") +
  geom_hline(yintercept = mean(filter(Student2, Hall == "Mitchell")$SCus), color = "#B79F00") +
  geom_hline(yintercept = mean(filter(Student2, Hall == "Sherburne")$SCus), color = "#00BA38") +
  geom_hline(yintercept = mean(filter(Student2, Hall == "Stearns")$SCus), color = "#00BFC4") +
  geom_hline(yintercept = mean(filter(Student2, Hall == "Case-Hill")$SCus), color = "#619CFF") +
  geom_hline(yintercept = mean(filter(Student2, Hall == "Stateview")$SCus), color = "#F564E3") +
  labs(title = "Scheduling Technology Usage") +
  theme(plot.title = element_text(hjust = 0.5, size = 20), 
        axis.title.x = element_blank(),
        axis.text.x = element_text(size = 15),
        axis.text.y = element_text(size = 12))

meanSCus <- data.frame(Mean = c(mean(filter(Student2, Hall == "Shoemaker")$SCus),
                                 mean(filter(Student2, Hall == "Mitchell")$SCus),
                                 mean(filter(Student2, Hall == "Sherburne")$SCus),
                                 mean(filter(Student2, Hall == "Stearns")$SCus),
                                 mean(filter(Student2, Hall == "Case-Hill")$SCus),
                                 mean(filter(Student2, Hall == "Stateview")$SCus)),
                       Hall = c("Shoemaker", "Mitchell", "Sherburne", "Stearns", "Case-Hill", "Stateview")) %>% 
  arrange(Mean)
meanSCus
##       Mean      Hall
## 1 1.043478 Case-Hill
## 2 1.066667 Shoemaker
## 3 1.222222 Sherburne
## 4 1.500000  Mitchell
## 5 1.600000 Stateview
## 6 2.240000   Stearns
kruskal_test(score ~ group, data = SCus, distribution = approximate())
## 
##  Approximative Kruskal-Wallis Test
## 
## data:  score by
##   group (Case-Hill, Mitchell, Sherburne, Shoemaker, Stateview, Stearns)
## chi-squared = 5.9111, p-value = 0.3139
#Communication
CMus <- data.frame(score <- Student2$CMus,
                   group <- as.factor(Student2$Hall))
ggplot(CMus, aes(x = group, y = score, color = group)) +
  geom_point(position = "jitter", show.legend = FALSE) +
  geom_hline(yintercept = mean(filter(Student2, Hall == "Shoemaker")$CMus), color = "#F8766D") +
  geom_hline(yintercept = mean(filter(Student2, Hall == "Mitchell")$CMus), color = "#B79F00") +
  geom_hline(yintercept = mean(filter(Student2, Hall == "Sherburne")$CMus), color = "#00BA38") +
  geom_hline(yintercept = mean(filter(Student2, Hall == "Stearns")$CMus), color = "#00BFC4") +
  geom_hline(yintercept = mean(filter(Student2, Hall == "Case-Hill")$CMus), color = "#619CFF") +
  geom_hline(yintercept = mean(filter(Student2, Hall == "Stateview")$CMus), color = "#F564E3") +
  labs(title = "Communication Technology Usage") +
  theme(plot.title = element_text(hjust = 0.5, size = 20), 
        axis.title.x = element_blank(),
        axis.text.x = element_text(size = 15),
        axis.text.y = element_text(size = 12))

meanCMus <- data.frame(Mean = c(mean(filter(Student2, Hall == "Shoemaker")$CMus),
                                 mean(filter(Student2, Hall == "Mitchell")$CMus),
                                 mean(filter(Student2, Hall == "Sherburne")$CMus),
                                 mean(filter(Student2, Hall == "Stearns")$CMus),
                                 mean(filter(Student2, Hall == "Case-Hill")$CMus),
                                 mean(filter(Student2, Hall == "Stateview")$CMus)),
                       Hall = c("Shoemaker", "Mitchell", "Sherburne", "Stearns", "Case-Hill", "Stateview")) %>% 
  arrange(Mean)
meanCMus
##        Mean      Hall
## 1 0.8260870 Case-Hill
## 2 0.9333333 Shoemaker
## 3 1.1111111 Sherburne
## 4 1.3750000  Mitchell
## 5 1.4000000 Stateview
## 6 1.4400000   Stearns
kruskal_test(score ~ group, data = CMus, distribution = approximate())
## 
##  Approximative Kruskal-Wallis Test
## 
## data:  score by
##   group (Case-Hill, Mitchell, Sherburne, Shoemaker, Stateview, Stearns)
## chi-squared = 1.8292, p-value = 0.8857
#Meeting
VCus <- data.frame(score <- Student2$VCus,
                   group <- as.factor(Student2$Hall))
ggplot(VCus, aes(x = group, y = score, color = group)) +
  geom_point(position = "jitter", show.legend = FALSE) +
  geom_hline(yintercept = mean(filter(Student2, Hall == "Shoemaker")$VCus), color = "#F8766D") +
  geom_hline(yintercept = mean(filter(Student2, Hall == "Mitchell")$VCus), color = "#B79F00") +
  geom_hline(yintercept = mean(filter(Student2, Hall == "Sherburne")$VCus), color = "#00BA38") +
  geom_hline(yintercept = mean(filter(Student2, Hall == "Stearns")$VCus), color = "#00BFC4") +
  geom_hline(yintercept = mean(filter(Student2, Hall == "Case-Hill")$VCus), color = "#619CFF") +
  geom_hline(yintercept = mean(filter(Student2, Hall == "Stateview")$VCus), color = "#F564E3") +
  labs(title = "Meeting Technology Usage") +
  theme(plot.title = element_text(hjust = 0.5, size = 20), 
        axis.title.x = element_blank(),
        axis.text.x = element_text(size = 15),
        axis.text.y = element_text(size = 12))

meanVCus <- data.frame(Mean = c(mean(filter(Student2, Hall == "Shoemaker")$VCus),
                                 mean(filter(Student2, Hall == "Mitchell")$VCus),
                                 mean(filter(Student2, Hall == "Sherburne")$VCus),
                                 mean(filter(Student2, Hall == "Stearns")$VCus),
                                 mean(filter(Student2, Hall == "Case-Hill")$VCus),
                                 mean(filter(Student2, Hall == "Stateview")$VCus)),
                       Hall = c("Shoemaker", "Mitchell", "Sherburne", "Stearns", "Case-Hill", "Stateview")) %>% 
  arrange(Mean)
meanVCus
##       Mean      Hall
## 1 1.000000 Shoemaker
## 2 1.208333  Mitchell
## 3 1.304348 Case-Hill
## 4 1.333333 Sherburne
## 5 1.720000   Stearns
## 6 2.400000 Stateview
kruskal_test(score ~ group, data = VCus, distribution = approximate())
## 
##  Approximative Kruskal-Wallis Test
## 
## data:  score by
##   group (Case-Hill, Mitchell, Sherburne, Shoemaker, Stateview, Stearns)
## chi-squared = 2.5871, p-value = 0.7787

Gender

table(Student2$Gender)
## 
##  Female    Male Unknown 
##      70      30       1
#Since there is only one unknown, let's only focus on Male and Female
#Remove Unknown
Student3 <- filter(Student2, Gender != "Unknown")

Fluency

#Scheduling
SCkn <- data.frame(score = Student3$SCkn,
                   gender = as.factor(Student3$Gender))
ggplot(SCkn, aes(x = gender, y = score, color = gender)) +
  geom_point(position = "jitter", show.legend = FALSE) +
  geom_hline(yintercept = mean(filter(Student2, Gender == "Female")$SCkn), color = "#F8766D") +
  geom_hline(yintercept = mean(filter(Student2, Gender == "Male")$SCkn), color = "#00BFC4") +
  labs(title = "Scheduling Technology Fluency") +
  theme(plot.title = element_text(hjust = 0.5, size = 20), 
        axis.title.x = element_blank(),
        axis.text.x = element_text(size = 15),
        axis.text.y = element_text(size = 12))

t.test(score ~ gender, data = SCkn)
## 
##  Welch Two Sample t-test
## 
## data:  score by gender
## t = -0.24541, df = 57.782, p-value = 0.807
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
##  -0.8721102  0.6816340
## sample estimates:
## mean in group Female   mean in group Male 
##             3.571429             3.666667
mean(filter(Student2, Gender == "Female")$SCkn) - mean(filter(Student2, Gender == "Male")$SCkn)
## [1] -0.0952381
#Communication
CMkn <- data.frame(score = Student3$CMkn,
                   gender = as.factor(Student3$Gender))
ggplot(CMkn, aes(x = gender, y = score, color = gender)) +
  geom_point(position = "jitter", show.legend = FALSE) +
  geom_hline(yintercept = mean(filter(Student2, Gender == "Female")$CMkn), color = "#F8766D") +
  geom_hline(yintercept = mean(filter(Student2, Gender == "Male")$CMkn), color = "#00BFC4") +
  labs(title = "Communication Technology Fluency") +
  theme(plot.title = element_text(hjust = 0.5, size = 20), 
        axis.title.x = element_blank(),
        axis.text.x = element_text(size = 15),
        axis.text.y = element_text(size = 12))

t.test(score ~ gender, data = CMkn)
## 
##  Welch Two Sample t-test
## 
## data:  score by gender
## t = 0.99445, df = 42.998, p-value = 0.3256
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
##  -0.4307584  1.2688536
## sample estimates:
## mean in group Female   mean in group Male 
##             3.885714             3.466667
mean(filter(Student2, Gender == "Female")$CMkn) - mean(filter(Student2, Gender == "Male")$CMkn)
## [1] 0.4190476
#Meeting
VCkn <- data.frame(score = Student3$VCkn,
                   gender = as.factor(Student3$Gender))
ggplot(VCkn, aes(x = gender, y = score, color = gender)) +
  geom_point(position = "jitter", show.legend = FALSE) +
  geom_hline(yintercept = mean(filter(Student2, Gender == "Female")$VCkn), color = "#F8766D") +
  geom_hline(yintercept = mean(filter(Student2, Gender == "Male")$VCkn), color = "#00BFC4") +
  labs(title = "Meeting Technology Fluency") +
  theme(plot.title = element_text(hjust = 0.5, size = 20), 
        axis.title.x = element_blank(),
        axis.text.x = element_text(size = 15),
        axis.text.y = element_text(size = 12))

t.test(score ~ gender, data = VCkn)
## 
##  Welch Two Sample t-test
## 
## data:  score by gender
## t = 0.47248, df = 53.004, p-value = 0.6385
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
##  -0.7262934  1.1739125
## sample estimates:
## mean in group Female   mean in group Male 
##             3.157143             2.933333
mean(filter(Student2, Gender == "Female")$VCkn) - mean(filter(Student2, Gender == "Male")$VCkn)
## [1] 0.2238095

Usage

#Scheduling
SCus <- data.frame(score = Student3$SCus,
                   gender = as.factor(Student3$Gender))
ggplot(SCus, aes(x = gender, y = score, color = gender)) +
  geom_point(position = "jitter", show.legend = FALSE) +
  geom_hline(yintercept = mean(filter(Student2, Gender == "Female")$SCus), color = "#F8766D") +
  geom_hline(yintercept = mean(filter(Student2, Gender == "Male")$SCus), color = "#00BFC4") +
  labs(title = "Scheduling Technology Usage") +
  theme(plot.title = element_text(hjust = 0.5, size = 20), 
        axis.title.x = element_blank(),
        axis.text.x = element_text(size = 15),
        axis.text.y = element_text(size = 12))

t.test(score ~ gender, data = SCus)
## 
##  Welch Two Sample t-test
## 
## data:  score by gender
## t = 0.047721, df = 56.298, p-value = 0.9621
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
##  -0.7804377  0.8185329
## sample estimates:
## mean in group Female   mean in group Male 
##             1.485714             1.466667
mean(filter(Student2, Gender == "Female")$SCus) - mean(filter(Student2, Gender == "Male")$SCus)
## [1] 0.01904762
#Communication
CMus <- data.frame(score = Student3$CMus,
                   gender = as.factor(Student3$Gender))
ggplot(CMus, aes(x = gender, y = score, color = gender)) +
  geom_point(position = "jitter", show.legend = FALSE) +
  geom_hline(yintercept = mean(filter(Student2, Gender == "Female")$CMus), color = "#F8766D") +
  geom_hline(yintercept = mean(filter(Student2, Gender == "Male")$CMus), color = "#00BFC4") +
  labs(title = "Communication Technology Usage") +
  theme(plot.title = element_text(hjust = 0.5, size = 20), 
        axis.title.x = element_blank(),
        axis.text.x = element_text(size = 15),
        axis.text.y = element_text(size = 12))

t.test(score ~ gender, data = CMus)
## 
##  Welch Two Sample t-test
## 
## data:  score by gender
## t = 0.71506, df = 51.592, p-value = 0.4778
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
##  -0.4646036  0.9788893
## sample estimates:
## mean in group Female   mean in group Male 
##             1.257143             1.000000
mean(filter(Student2, Gender == "Female")$CMus) - mean(filter(Student2, Gender == "Male")$CMus)
## [1] 0.2571429
#Meeting
VCus <- data.frame(score = Student3$VCus,
                   gender = as.factor(Student3$Gender))
ggplot(VCus, aes(x = gender, y = score, color = gender)) +
  geom_point(position = "jitter", show.legend = FALSE) +
  geom_hline(yintercept = mean(filter(Student2, Gender == "Female")$VCus), color = "#F8766D") +
  geom_hline(yintercept = mean(filter(Student2, Gender == "Male")$VCus), color = "#00BFC4") +
  labs(title = "Meeting Technology Usage") +
  theme(plot.title = element_text(hjust = 0.5, size = 20), 
        axis.title.x = element_blank(),
        axis.text.x = element_text(size = 15),
        axis.text.y = element_text(size = 12))

t.test(score ~ gender, data = VCus)
## 
##  Welch Two Sample t-test
## 
## data:  score by gender
## t = -0.079172, df = 50.889, p-value = 0.9372
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
##  -0.8786234  0.8119567
## sample estimates:
## mean in group Female   mean in group Male 
##             1.400000             1.433333
mean(filter(Student2, Gender == "Female")$VCus) - mean(filter(Student2, Gender == "Male")$VCus)
## [1] -0.03333333

Age

Fluency

mean(Student2$Age)
## [1] 20.0495
#Scheduling
cor.test(Student2$SCkn, Student2$Age)
## 
##  Pearson's product-moment correlation
## 
## data:  Student2$SCkn and Student2$Age
## t = 0.25336, df = 99, p-value = 0.8005
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
##  -0.1708335  0.2198014
## sample estimates:
##        cor 
## 0.02545569
ggplot(Student2, aes(x = Age, y = SCkn, color = Age)) +
  geom_point(position = "jitter", show.legend = FALSE) +
  labs(title = "Scheduling Technology Fluency") +
  theme(plot.title = element_text(hjust = 0.5, size = 20),
        axis.text.x = element_text(size = 15),
        axis.text.y = element_text(size = 12))

#Communication
cor.test(Student2$CMkn, Student2$Age)
## 
##  Pearson's product-moment correlation
## 
## data:  Student2$CMkn and Student2$Age
## t = 0.5032, df = 99, p-value = 0.6159
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
##  -0.1463753  0.2435440
## sample estimates:
##        cor 
## 0.05050889
ggplot(Student2, aes(x = Age, y = CMkn, color = Age)) +
  geom_point(position = "jitter", show.legend = FALSE) +
  labs(title = "Communication Technology Fluency") +
  theme(plot.title = element_text(hjust = 0.5, size = 20),
        axis.text.x = element_text(size = 15),
        axis.text.y = element_text(size = 12))

#Meeting
cor.test(Student2$VCkn, Student2$Age)
## 
##  Pearson's product-moment correlation
## 
## data:  Student2$VCkn and Student2$Age
## t = 0.49295, df = 99, p-value = 0.6231
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
##  -0.1473824  0.2425755
## sample estimates:
##        cor 
## 0.04948217
ggplot(Student2, aes(x = Age, y = VCkn, color = Age)) +
  geom_point(position = "jitter", show.legend = FALSE) +
  labs(title = "Meeting Technology Fluency") +
  theme(plot.title = element_text(hjust = 0.5, size = 20),
        axis.text.x = element_text(size = 15),
        axis.text.y = element_text(size = 12))

Usage

#Scheduling
cor.test(Student2$SCus, Student2$Age)
## 
##  Pearson's product-moment correlation
## 
## data:  Student2$SCus and Student2$Age
## t = -0.22276, df = 99, p-value = 0.8242
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
##  -0.2168730  0.1738171
## sample estimates:
##         cor 
## -0.02238248
ggplot(Student2, aes(x = Age, y = SCus, color = Age)) +
  geom_point(position = "jitter", show.legend = FALSE) +
  labs(title = "Scheduling Technology Usage") +
  theme(plot.title = element_text(hjust = 0.5, size = 20),
        axis.text.x = element_text(size = 15),
        axis.text.y = element_text(size = 12))

#Communication
cor.test(Student2$CMus, Student2$Age)
## 
##  Pearson's product-moment correlation
## 
## data:  Student2$CMus and Student2$Age
## t = -0.84082, df = 99, p-value = 0.4025
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
##  -0.2751171  0.1130950
## sample estimates:
##         cor 
## -0.08420549
ggplot(Student2, aes(x = Age, y = CMus, color = Age)) +
  geom_point(position = "jitter", show.legend = FALSE) +
  labs(title = "Communication Technology Usage") +
  theme(plot.title = element_text(hjust = 0.5, size = 20),
        axis.text.x = element_text(size = 15),
        axis.text.y = element_text(size = 12))

#Meeting
cor.test(Student2$VCus, Student2$Age)
## 
##  Pearson's product-moment correlation
## 
## data:  Student2$VCus and Student2$Age
## t = 0.87328, df = 99, p-value = 0.3846
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
##  -0.1098850  0.2781188
## sample estimates:
##        cor 
## 0.08743197
ggplot(Student2, aes(x = Age, y = VCus, color = Age)) +
  geom_point(position = "jitter", show.legend = FALSE) +
  labs(title = "Meeting Technology Usage") +
  theme(plot.title = element_text(hjust = 0.5, size = 20),
        axis.text.x = element_text(size = 15),
        axis.text.y = element_text(size = 12))

Class (Year in College)

table(Student2$Class)
## 
## FR SO JR SR 
## 56 19 16 10

Fluency

#Scheduling
SCkn <- data.frame(score = Student2$SCkn,
                   group = Student2$Class)
ggplot(SCkn, aes(x = group, y = score, color = group)) +
  geom_point(position = "jitter", show.legend = FALSE) +
  geom_hline(yintercept = mean(filter(Student2, Class == "FR")$SCkn), color = "#F8766D") +
  geom_hline(yintercept = mean(filter(Student2, Class == "SO")$SCkn), color = "#00BFC4") +
  geom_hline(yintercept = mean(filter(Student2, Class == "JR")$SCkn), color = "#7CAE00") +
  geom_hline(yintercept = mean(filter(Student2, Class == "SR")$SCkn), color = "#C77CFF") +
  labs(title = "Scheduling Technology Fluency") +
  theme(plot.title = element_text(hjust = 0.5, size = 20), 
        axis.title.x = element_blank(),
        axis.text.x = element_text(size = 15),
        axis.text.y = element_text(size = 12))

meanSCkn <- data.frame(Mean = c(mean(filter(Student2, Class == "FR")$SCkn),
                                mean(filter(Student2, Class == "SO")$SCkn),
                                mean(filter(Student2, Class == "FR")$SCkn),
                                mean(filter(Student2, Class == "SR")$SCkn)),
                       Class = c("FR", "SO", "JR", "SR")) %>%
  arrange(Mean)
meanSCkn
##       Mean Class
## 1 2.900000    SR
## 2 3.473684    SO
## 3 3.732143    FR
## 4 3.732143    JR
kruskal_test(score ~ group, data = SCkn, distribution = approximate())
## 
##  Approximative Kruskal-Wallis Test
## 
## data:  score by group (FR, SO, JR, SR)
## chi-squared = 2.2671, p-value = 0.5281
#Communication
CMkn <- data.frame(score = Student2$CMkn,
                   group = Student2$Class)
ggplot(CMkn, aes(x = group, y = score, color = group)) +
  geom_point(position = "jitter", show.legend = FALSE) +
  geom_hline(yintercept = mean(filter(Student2, Class == "FR")$CMkn), color = "#F8766D") +
  geom_hline(yintercept = mean(filter(Student2, Class == "SO")$CMkn), color = "#00BFC4") +
  geom_hline(yintercept = mean(filter(Student2, Class == "JR")$CMkn), color = "#7CAE00") +
  geom_hline(yintercept = mean(filter(Student2, Class == "SR")$CMkn), color = "#C77CFF") +
  labs(title = "Communication Technology Fluency") +
  theme(plot.title = element_text(hjust = 0.5, size = 20), 
        axis.title.x = element_blank(),
        axis.text.x = element_text(size = 15),
        axis.text.y = element_text(size = 12))

meanCMkn <- data.frame(Mean = c(mean(filter(Student2, Class == "FR")$CMkn),
                                mean(filter(Student2, Class == "SO")$CMkn),
                                mean(filter(Student2, Class == "FR")$CMkn),
                                mean(filter(Student2, Class == "SR")$CMkn)),
                       Class = c("FR", "SO", "JR", "SR")) %>%
  arrange(Mean)
meanCMkn
##       Mean Class
## 1 3.263158    SO
## 2 3.892857    FR
## 3 3.892857    JR
## 4 4.000000    SR
kruskal_test(score ~ group, data = CMkn, distribution = approximate())
## 
##  Approximative Kruskal-Wallis Test
## 
## data:  score by group (FR, SO, JR, SR)
## chi-squared = 2.5993, p-value = 0.4625
#Meeting
VCkn <- data.frame(score = Student2$VCkn,
                   group = Student2$Class)
ggplot(VCkn, aes(x = group, y = score, color = group)) +
  geom_point(position = "jitter", show.legend = FALSE) +
  geom_hline(yintercept = mean(filter(Student2, Class == "FR")$VCkn), color = "#F8766D") +
  geom_hline(yintercept = mean(filter(Student2, Class == "SO")$VCkn), color = "#00BFC4") +
  geom_hline(yintercept = mean(filter(Student2, Class == "JR")$VCkn), color = "#7CAE00") +
  geom_hline(yintercept = mean(filter(Student2, Class == "SR")$VCkn), color = "#C77CFF") +
  labs(title = "Meeting Technology Fluency") +
  theme(plot.title = element_text(hjust = 0.5, size = 20), 
        axis.title.x = element_blank(),
        axis.text.x = element_text(size = 15),
        axis.text.y = element_text(size = 12))

meanVCkn <- data.frame(Mean = c(mean(filter(Student2, Class == "FR")$VCkn),
                                mean(filter(Student2, Class == "SO")$VCkn),
                                mean(filter(Student2, Class == "FR")$VCkn),
                                mean(filter(Student2, Class == "SR")$VCkn)),
                       Class = c("FR", "SO", "JR", "SR")) %>%
  arrange(Mean)
meanVCkn
##       Mean Class
## 1 2.400000    SR
## 2 2.631579    SO
## 3 3.267857    FR
## 4 3.267857    JR
kruskal_test(score ~ group, data = VCkn, distribution = approximate())
## 
##  Approximative Kruskal-Wallis Test
## 
## data:  score by group (FR, SO, JR, SR)
## chi-squared = 2.1118, p-value = 0.5622

Usage

#Scheduling
SCus <- data.frame(score = Student2$SCus,
                   group = Student2$Class)
ggplot(SCus, aes(x = group, y = score, color = group)) +
  geom_point(position = "jitter", show.legend = FALSE) +
  geom_hline(yintercept = mean(filter(Student2, Class == "FR")$SCus), color = "#F8766D") +
  geom_hline(yintercept = mean(filter(Student2, Class == "SO")$SCus), color = "#00BFC4") +
  geom_hline(yintercept = mean(filter(Student2, Class == "JR")$SCus), color = "#7CAE00") +
  geom_hline(yintercept = mean(filter(Student2, Class == "SR")$SCus), color = "#C77CFF") +
  labs(title = "Scheduling Technology Usage") +
  theme(plot.title = element_text(hjust = 0.5, size = 20), 
        axis.title.x = element_blank(),
        axis.text.x = element_text(size = 15),
        axis.text.y = element_text(size = 12))

meanSCus <- data.frame(Mean = c(mean(filter(Student2, Class == "FR")$SCus),
                                mean(filter(Student2, Class == "SO")$SCus),
                                mean(filter(Student2, Class == "FR")$SCus),
                                mean(filter(Student2, Class == "SR")$SCus)),
                       Class = c("FR", "SO", "JR", "SR")) %>%
  arrange(Mean)
meanSCus
##        Mean Class
## 1 0.9473684    SO
## 2 1.4000000    SR
## 3 1.5714286    FR
## 4 1.5714286    JR
kruskal_test(score ~ group, data = SCus, distribution = approximate())
## 
##  Approximative Kruskal-Wallis Test
## 
## data:  score by group (FR, SO, JR, SR)
## chi-squared = 2.0063, p-value = 0.5741
#Communication
CMus <- data.frame(score = Student2$CMus,
                   group = Student2$Class)
ggplot(CMus, aes(x = group, y = score, color = group)) +
  geom_point(position = "jitter", show.legend = FALSE) +
  geom_hline(yintercept = mean(filter(Student2, Class == "FR")$CMus), color = "#F8766D") +
  geom_hline(yintercept = mean(filter(Student2, Class == "SO")$CMus), color = "#00BFC4") +
  geom_hline(yintercept = mean(filter(Student2, Class == "JR")$CMus), color = "#7CAE00") +
  geom_hline(yintercept = mean(filter(Student2, Class == "SR")$CMus), color = "#C77CFF") +
  labs(title = "Communication Technology Usage") +
  theme(plot.title = element_text(hjust = 0.5, size = 20), 
        axis.title.x = element_blank(),
        axis.text.x = element_text(size = 15),
        axis.text.y = element_text(size = 12))

meanCMus <- data.frame(Mean = c(mean(filter(Student2, Class == "FR")$CMus),
                                mean(filter(Student2, Class == "SO")$CMus),
                                mean(filter(Student2, Class == "FR")$CMus),
                                mean(filter(Student2, Class == "SR")$CMus)),
                       Class = c("FR", "SO", "JR", "SR")) %>%
  arrange(Mean)
meanCMus
##        Mean Class
## 1 0.7000000    SR
## 2 0.9473684    SO
## 3 1.2857143    FR
## 4 1.2857143    JR
kruskal_test(score ~ group, data = CMus, distribution = approximate())
## 
##  Approximative Kruskal-Wallis Test
## 
## data:  score by group (FR, SO, JR, SR)
## chi-squared = 1.8166, p-value = 0.6203
#Meeting
VCus <- data.frame(score = Student2$VCus,
                   group = Student2$Class)
ggplot(VCus, aes(x = group, y = score, color = group)) +
  geom_point(position = "jitter", show.legend = FALSE) +
  geom_hline(yintercept = mean(filter(Student2, Class == "FR")$VCus), color = "#F8766D") +
  geom_hline(yintercept = mean(filter(Student2, Class == "SO")$VCus), color = "#00BFC4") +
  geom_hline(yintercept = mean(filter(Student2, Class == "JR")$VCus), color = "#7CAE00") +
  geom_hline(yintercept = mean(filter(Student2, Class == "SR")$VCus), color = "#C77CFF") +
  labs(title = "Meeting Technology Usage") +
  theme(plot.title = element_text(hjust = 0.5, size = 20), 
        axis.title.x = element_blank(),
        axis.text.x = element_text(size = 15),
        axis.text.y = element_text(size = 12))

meanVCus <- data.frame(Mean = c(mean(filter(Student2, Class == "FR")$VCus),
                                mean(filter(Student2, Class == "SO")$VCus),
                                mean(filter(Student2, Class == "FR")$VCus),
                                mean(filter(Student2, Class == "SR")$VCus)),
                       Class = c("FR", "SO", "JR", "SR")) %>%
  arrange(Mean)
meanVCus
##       Mean Class
## 1 1.000000    SR
## 2 1.315789    SO
## 3 1.517857    FR
## 4 1.517857    JR
kruskal_test(score ~ group, data = VCus, distribution = approximate())
## 
##  Approximative Kruskal-Wallis Test
## 
## data:  score by group (FR, SO, JR, SR)
## chi-squared = 0.38322, p-value = 0.9449

College/School

table(Student2$`College/School`)
## 
##             College of Liberal Arts  College of Science and Engineering 
##                                  24                                  34 
##           Herberger Business School                 School of Education 
##                                  11                                   7 
## School of Health and Human Services            School of Public Affairs 
##                                  14                                   7 
##                  University College                             Unknown 
##                                   1                                   3
#Since there are only three unknown and one University College, let's remove them for simplicity.
Student3 <- filter(Student2, !(`College/School` %in% c("University College", "Unknown")))

#Recode school names into abbr.
for (i in 1:length(Student3$`College/School`)) {
  if (Student3$`College/School`[i] == "College of Liberal Arts") {Student3$`College/School`[i] <- "CLA"}
  else if (Student3$`College/School`[i] == "College of Science and Engineering") {Student3$`College/School`[i] <- "COSE"}
  else if (Student3$`College/School`[i] == "Herberger Business School") {Student3$`College/School`[i] <- "HBS"}
  else if (Student3$`College/School`[i] == "School of Education") {Student3$`College/School`[i] <- "SOE"}
  else if (Student3$`College/School`[i] == "School of Health and Human Services") {Student3$`College/School`[i] <- "SHHS"}
  else if (Student3$`College/School`[i] == "School of Public Affairs") {Student3$`College/School`[i] <- "SOPA"}
}

Fluency

#Scheduling
SCkn <- data.frame(score = Student3$SCkn,
                   group = as.factor(Student3$`College/School`))
ggplot(SCkn, aes(x = group, y = score, color = group)) +
  geom_point(position = "jitter", show.legend = FALSE) +
  geom_hline(yintercept = mean(filter(Student3, `College/School` == "CLA")$SCkn), color = "#F8766D") +
  geom_hline(yintercept = mean(filter(Student3, `College/School` == "COSE")$SCkn), color = "#B79F00") +
  geom_hline(yintercept = mean(filter(Student3, `College/School` == "HBS")$SCkn), color = "#00BA38") +
  geom_hline(yintercept = mean(filter(Student3, `College/School` == "SOE")$SCkn), color = "#00BFC4") +
  geom_hline(yintercept = mean(filter(Student3, `College/School` == "SHHS")$SCkn), color = "#619CFF") +
  geom_hline(yintercept = mean(filter(Student3, `College/School` == "SOPA")$SCkn), color = "#F564E3") +
  labs(title = "Scheduling Technology Fluency") +
  theme(plot.title = element_text(hjust = 0.5, size = 20), 
        axis.title.x = element_blank(), 
        axis.text.x = element_text(size = 15),
        axis.text.y = element_text(size = 12))

meanSCkn <- data.frame(Mean = c(mean(filter(Student3, `College/School` == "CLA")$SCkn),
                                mean(filter(Student3, `College/School` == "COSE")$SCkn),
                                mean(filter(Student3, `College/School` == "HBS")$SCkn),
                                mean(filter(Student3, `College/School` == "SOE")$SCkn),
                                mean(filter(Student3, `College/School` == "SHHS")$SCkn),
                                mean(filter(Student3, `College/School` == "SOPA")$SCkn)),
                       School = c("CLA", "COSE", 
                                  "HBS", "SOE", 
                                  "SHHS", "SOPA")) %>%
  arrange(Mean)
meanSCkn
##       Mean School
## 1 3.142857   SHHS
## 2 3.352941   COSE
## 3 3.428571   SOPA
## 4 3.750000    CLA
## 5 4.428571    SOE
## 6 4.454545    HBS
kruskal_test(score ~ group, data = SCkn, distribution = approximate())
## 
##  Approximative Kruskal-Wallis Test
## 
## data:  score by group (CLA, COSE, HBS, SHHS, SOE, SOPA)
## chi-squared = 7.1637, p-value = 0.2005
#Communication
CMkn <- data.frame(score = Student3$CMkn,
                   group = as.factor(Student3$`College/School`))
ggplot(CMkn, aes(x = group, y = score, color = group)) +
  geom_point(position = "jitter", show.legend = FALSE) +
  geom_hline(yintercept = mean(filter(Student3, `College/School` == "CLA")$CMkn), color = "#F8766D") +
  geom_hline(yintercept = mean(filter(Student3, `College/School` == "COSE")$CMkn), color = "#B79F00") +
  geom_hline(yintercept = mean(filter(Student3, `College/School` == "HBS")$CMkn), color = "#00BA38") +
  geom_hline(yintercept = mean(filter(Student3, `College/School` == "SOE")$CMkn), color = "#00BFC4") +
  geom_hline(yintercept = mean(filter(Student3, `College/School` == "SHHS")$CMkn), color = "#619CFF") +
  geom_hline(yintercept = mean(filter(Student3, `College/School` == "SOPA")$CMkn), color = "#F564E3") +
  labs(title = "Communication Technology Fluency") +
  theme(plot.title = element_text(hjust = 0.5, size = 20), 
        axis.title.x = element_blank(), 
        axis.text.x = element_text(size = 15),
        axis.text.y = element_text(size = 12))

meanCMkn <- data.frame(Mean = c(mean(filter(Student3, `College/School` == "CLA")$CMkn),
                                mean(filter(Student3, `College/School` == "COSE")$CMkn),
                                mean(filter(Student3, `College/School` == "HBS")$CMkn),
                                mean(filter(Student3, `College/School` == "SOE")$CMkn),
                                mean(filter(Student3, `College/School` == "SHHS")$CMkn),
                                mean(filter(Student3, `College/School` == "SOPA")$CMkn)),
                       School = c("CLA", "COSE", 
                                  "HBS", "SOE", 
                                  "SHHS", "SOPA")) %>%
  arrange(Mean)
meanCMkn
##       Mean School
## 1 3.071429   SHHS
## 2 3.558824   COSE
## 3 3.571429   SOPA
## 4 3.958333    CLA
## 5 4.285714    SOE
## 6 4.545455    HBS
kruskal_test(score ~ group, data = CMkn, distribution = approximate())
## 
##  Approximative Kruskal-Wallis Test
## 
## data:  score by group (CLA, COSE, HBS, SHHS, SOE, SOPA)
## chi-squared = 5.6996, p-value = 0.3449
#Meeting
VCkn <- data.frame(score = Student3$VCkn,
                   group = as.factor(Student3$`College/School`))
ggplot(VCkn, aes(x = group, y = score, color = group)) +
  geom_point(position = "jitter", show.legend = FALSE) +
  geom_hline(yintercept = mean(filter(Student3, `College/School` == "CLA")$VCkn), color = "#F8766D") +
  geom_hline(yintercept = mean(filter(Student3, `College/School` == "COSE")$VCkn), color = "#B79F00") +
  geom_hline(yintercept = mean(filter(Student3, `College/School` == "HBS")$VCkn), color = "#00BA38") +
  geom_hline(yintercept = mean(filter(Student3, `College/School` == "SOE")$VCkn), color = "#00BFC4") +
  geom_hline(yintercept = mean(filter(Student3, `College/School` == "SHHS")$VCkn), color = "#619CFF") +
  geom_hline(yintercept = mean(filter(Student3, `College/School` == "SOPA")$VCkn), color = "#F564E3") +
  labs(title = "Meeting Technology Fluency") +
  theme(plot.title = element_text(hjust = 0.5, size = 20), 
        axis.title.x = element_blank(), 
        axis.text.x = element_text(size = 15),
        axis.text.y = element_text(size = 12))

meanVCkn <- data.frame(Mean = c(mean(filter(Student3, `College/School` == "CLA")$VCkn),
                                mean(filter(Student3, `College/School` == "COSE")$VCkn),
                                mean(filter(Student3, `College/School` == "HBS")$VCkn),
                                mean(filter(Student3, `College/School` == "SOE")$VCkn),
                                mean(filter(Student3, `College/School` == "SHHS")$VCkn),
                                mean(filter(Student3, `College/School` == "SOPA")$VCkn)),
                       School = c("CLA", "COSE", 
                                  "HBS", "SOE", 
                                  "SHHS", "SOPA")) %>%
  arrange(Mean)
meanVCkn
##       Mean School
## 1 2.071429   SHHS
## 2 2.714286   SOPA
## 3 3.000000   COSE
## 4 3.458333    CLA
## 5 3.727273    HBS
## 6 4.285714    SOE
kruskal_test(score ~ group, data = VCkn, distribution = approximate())
## 
##  Approximative Kruskal-Wallis Test
## 
## data:  score by group (CLA, COSE, HBS, SHHS, SOE, SOPA)
## chi-squared = 7.4559, p-value = 0.1854

Usage

#Scheduling
SCus <- data.frame(score = Student3$SCus,
                   group = as.factor(Student3$`College/School`))
ggplot(SCus, aes(x = group, y = score, color = group)) +
  geom_point(position = "jitter", show.legend = FALSE) +
  geom_hline(yintercept = mean(filter(Student3, `College/School` == "CLA")$SCus), color = "#F8766D") +
  geom_hline(yintercept = mean(filter(Student3, `College/School` == "COSE")$SCus), color = "#B79F00") +
  geom_hline(yintercept = mean(filter(Student3, `College/School` == "HBS")$SCus), color = "#00BA38") +
  geom_hline(yintercept = mean(filter(Student3, `College/School` == "SOE")$SCus), color = "#00BFC4") +
  geom_hline(yintercept = mean(filter(Student3, `College/School` == "SHHS")$SCus), color = "#619CFF") +
  geom_hline(yintercept = mean(filter(Student3, `College/School` == "SOPA")$SCus), color = "#F564E3") +
  labs(title = "Scheduling Technology Usage") +
  theme(plot.title = element_text(hjust = 0.5, size = 20), 
        axis.title.x = element_blank(), 
        axis.text.x = element_text(size = 15),
        axis.text.y = element_text(size = 12))

meanSCus <- data.frame(Mean = c(mean(filter(Student3, `College/School` == "CLA")$SCus),
                                mean(filter(Student3, `College/School` == "COSE")$SCus),
                                mean(filter(Student3, `College/School` == "HBS")$SCus),
                                mean(filter(Student3, `College/School` == "SOE")$SCus),
                                mean(filter(Student3, `College/School` == "SHHS")$SCus),
                                mean(filter(Student3, `College/School` == "SOPA")$SCus)),
                       School = c("CLA", "COSE", 
                                  "HBS", "SOE", 
                                  "SHHS", "SOPA")) %>%
  arrange(Mean)
meanSCus
##       Mean School
## 1 1.142857   SOPA
## 2 1.250000    CLA
## 3 1.500000   COSE
## 4 1.545455    HBS
## 5 1.571429   SHHS
## 6 1.857143    SOE
kruskal_test(score ~ group, data = SCus, distribution = approximate())
## 
##  Approximative Kruskal-Wallis Test
## 
## data:  score by group (CLA, COSE, HBS, SHHS, SOE, SOPA)
## chi-squared = 1.2693, p-value = 0.9441
#Communication
CMus <- data.frame(score = Student3$CMus,
                   group = as.factor(Student3$`College/School`))
ggplot(CMus, aes(x = group, y = score, color = group)) +
  geom_point(position = "jitter", show.legend = FALSE) +
  geom_hline(yintercept = mean(filter(Student3, `College/School` == "CLA")$CMus), color = "#F8766D") +
  geom_hline(yintercept = mean(filter(Student3, `College/School` == "COSE")$CMus), color = "#B79F00") +
  geom_hline(yintercept = mean(filter(Student3, `College/School` == "HBS")$CMus), color = "#00BA38") +
  geom_hline(yintercept = mean(filter(Student3, `College/School` == "SOE")$CMus), color = "#00BFC4") +
  geom_hline(yintercept = mean(filter(Student3, `College/School` == "SHHS")$CMus), color = "#619CFF") +
  geom_hline(yintercept = mean(filter(Student3, `College/School` == "SOPA")$CMus), color = "#F564E3") +
  labs(title = "Communication Technology Usage") +
  theme(plot.title = element_text(hjust = 0.5, size = 20), 
        axis.title.x = element_blank(), 
        axis.text.x = element_text(size = 15),
        axis.text.y = element_text(size = 12))

meanCMus <- data.frame(Mean = c(mean(filter(Student3, `College/School` == "CLA")$CMus),
                                mean(filter(Student3, `College/School` == "COSE")$CMus),
                                mean(filter(Student3, `College/School` == "HBS")$CMus),
                                mean(filter(Student3, `College/School` == "SOE")$CMus),
                                mean(filter(Student3, `College/School` == "SHHS")$CMus),
                                mean(filter(Student3, `College/School` == "SOPA")$CMus)),
                       School = c("CLA", "COSE", 
                                  "HBS", "SOE", 
                                  "SHHS", "SOPA")) %>%
  arrange(Mean)
meanCMus
##        Mean School
## 1 0.2857143    SOE
## 2 0.7272727    HBS
## 3 0.8571429   SOPA
## 4 1.2916667    CLA
## 5 1.3529412   COSE
## 6 1.5000000   SHHS
kruskal_test(score ~ group, data = CMus, distribution = approximate())
## 
##  Approximative Kruskal-Wallis Test
## 
## data:  score by group (CLA, COSE, HBS, SHHS, SOE, SOPA)
## chi-squared = 3.9449, p-value = 0.5635
#Meeting
VCus <- data.frame(score = Student3$VCus,
                   group = as.factor(Student3$`College/School`))
ggplot(VCus, aes(x = group, y = score, color = group)) +
  geom_point(position = "jitter", show.legend = FALSE) +
  geom_hline(yintercept = mean(filter(Student3, `College/School` == "CLA")$VCus), color = "#F8766D") +
  geom_hline(yintercept = mean(filter(Student3, `College/School` == "COSE")$VCus), color = "#B79F00") +
  geom_hline(yintercept = mean(filter(Student3, `College/School` == "HBS")$VCus), color = "#00BA38") +
  geom_hline(yintercept = mean(filter(Student3, `College/School` == "SOE")$VCus), color = "#00BFC4") +
  geom_hline(yintercept = mean(filter(Student3, `College/School` == "SHHS")$VCus), color = "#619CFF") +
  geom_hline(yintercept = mean(filter(Student3, `College/School` == "SOPA")$VCus), color = "#F564E3") +
  labs(title = "Meeting Technology Usage") +
  theme(plot.title = element_text(hjust = 0.5, size = 20), 
        axis.title.x = element_blank(), 
        axis.text.x = element_text(size = 15),
        axis.text.y = element_text(size = 12))

meanVCus <- data.frame(Mean = c(mean(filter(Student3, `College/School` == "CLA")$VCus),
                                mean(filter(Student3, `College/School` == "COSE")$VCus),
                                mean(filter(Student3, `College/School` == "HBS")$VCus),
                                mean(filter(Student3, `College/School` == "SOE")$VCus),
                                mean(filter(Student3, `College/School` == "SHHS")$VCus),
                                mean(filter(Student3, `College/School` == "SOPA")$VCus)),
                       School = c("CLA", "COSE", 
                                  "HBS", "SOE", 
                                  "SHHS", "SOPA")) %>%
  arrange(Mean)
meanVCus
##        Mean School
## 1 0.4545455    HBS
## 2 1.0000000   SOPA
## 3 1.3823529   COSE
## 4 1.4285714   SHHS
## 5 1.7500000    CLA
## 6 2.4285714    SOE
kruskal_test(score ~ group, data = VCus, distribution = approximate())
## 
##  Approximative Kruskal-Wallis Test
## 
## data:  score by group (CLA, COSE, HBS, SHHS, SOE, SOPA)
## chi-squared = 5.203, p-value = 0.4077

Overall Scores

Student3 <- Student2 %>% 
  mutate(Fluency = SCkn + CMkn + VCkn,
         Usage = SCus + CMus + VCus)

Simple OLS

#Fluency
full <- lm(Fluency ~ Gender + Age + `College/School` + Class + Location, data = Student3)
summary(full)
## 
## Call:
## lm(formula = Fluency ~ Gender + Age + `College/School` + Class + 
##     Location, data = Student3)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -11.337  -3.056   1.091   3.232   8.418 
## 
## Coefficients:
##                                                     Estimate Std. Error t value
## (Intercept)                                           9.1269     3.8877   2.348
## GenderMale                                            1.1650     1.4495   0.804
## GenderUnknown                                        -3.1615     5.5911  -0.565
## Age                                                   0.1427     0.1917   0.744
## `College/School`College of Science and Engineering   -1.0961     1.5133  -0.724
## `College/School`Herberger Business School             0.9449     1.9511   0.484
## `College/School`School of Education                   1.1597     2.2747   0.510
## `College/School`School of Health and Human Services  -3.2149     1.9186  -1.676
## `College/School`School of Public Affairs             -0.3650     2.3965  -0.152
## `College/School`University College                   -7.6840     5.5845  -1.376
## `College/School`Unknown                              -4.3025     3.2610  -1.319
## ClassSO                                              -2.0417     1.5285  -1.336
## ClassJR                                              -0.3425     1.9383  -0.177
## ClassSR                                              -3.8453     2.1906  -1.755
## LocationMitchell Hall                                -1.6094     1.7382  -0.926
## LocationSherburne Hall                                0.7715     2.2542   0.342
## LocationStearns Hall                                  0.7381     1.9074   0.387
## LocationCase Hall                                    -3.5354     2.8527  -1.239
## LocationHill Hall                                     1.0265     1.9071   0.538
## LocationStateview North                               2.6087     3.6398   0.717
## LocationStateview South                              -4.0985     4.3724  -0.937
##                                                     Pr(>|t|)  
## (Intercept)                                           0.0214 *
## GenderMale                                            0.4240  
## GenderUnknown                                         0.5733  
## Age                                                   0.4589  
## `College/School`College of Science and Engineering    0.4710  
## `College/School`Herberger Business School             0.6295  
## `College/School`School of Education                   0.6116  
## `College/School`School of Health and Human Services   0.0977 .
## `College/School`School of Public Affairs              0.8793  
## `College/School`University College                    0.1727  
## `College/School`Unknown                               0.1908  
## ClassSO                                               0.1854  
## ClassJR                                               0.8602  
## ClassSR                                               0.0830 .
## LocationMitchell Hall                                 0.3573  
## LocationSherburne Hall                                0.7331  
## LocationStearns Hall                                  0.6998  
## LocationCase Hall                                     0.2189  
## LocationHill Hall                                     0.5919  
## LocationStateview North                               0.4756  
## LocationStateview South                               0.3514  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 5.13 on 80 degrees of freedom
## Multiple R-squared:  0.1911, Adjusted R-squared:  -0.01109 
## F-statistic: 0.9452 on 20 and 80 DF,  p-value: 0.5345
GenderAge <- lm(Fluency ~ Gender + Age, data = Student3)
summary(GenderAge)
## 
## Call:
## lm(formula = Fluency ~ Gender + Age, data = Student3)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -10.545  -4.545   2.534   4.455   5.125 
## 
## Coefficients:
##               Estimate Std. Error t value Pr(>|t|)   
## (Intercept)    9.05002    3.19121   2.836  0.00556 **
## GenderMale    -0.59070    1.12651  -0.524  0.60122   
## GenderUnknown -4.62328    5.18382  -0.892  0.37467   
## Age            0.07866    0.15747   0.500  0.61852   
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 5.147 on 97 degrees of freedom
## Multiple R-squared:  0.01249,    Adjusted R-squared:  -0.01805 
## F-statistic: 0.4091 on 3 and 97 DF,  p-value: 0.7468
SchoolClass <- lm(Fluency ~ `College/School` + Class, data = Student3)
summary(SchoolClass)
## 
## Call:
## lm(formula = Fluency ~ `College/School` + Class, data = Student3)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -12.284  -3.678   1.716   3.798   7.828 
## 
## Coefficients:
##                                                     Estimate Std. Error t value
## (Intercept)                                         11.67806    1.17264   9.959
## `College/School`College of Science and Engineering  -1.15342    1.36998  -0.842
## `College/School`Herberger Business School            1.44346    1.88822   0.764
## `College/School`School of Education                  1.60539    2.19495   0.731
## `College/School`School of Health and Human Services -3.07868    1.73949  -1.770
## `College/School`School of Public Affairs            -1.47641    2.18543  -0.676
## `College/School`University College                  -5.62347    5.30987  -1.059
## `College/School`Unknown                             -3.34473    3.15926  -1.059
## ClassSO                                             -1.42739    1.38296  -1.032
## ClassJR                                             -0.05459    1.49604  -0.036
## ClassSR                                             -1.92959    1.79241  -1.077
##                                                     Pr(>|t|)    
## (Intercept)                                         3.48e-16 ***
## `College/School`College of Science and Engineering    0.4021    
## `College/School`Herberger Business School             0.4466    
## `College/School`School of Education                   0.4664    
## `College/School`School of Health and Human Services   0.0801 .  
## `College/School`School of Public Affairs              0.5010    
## `College/School`University College                    0.2924    
## `College/School`Unknown                               0.2926    
## ClassSO                                               0.3048    
## ClassJR                                               0.9710    
## ClassSR                                               0.2846    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 5.081 on 90 degrees of freedom
## Multiple R-squared:  0.1071, Adjusted R-squared:  0.007919 
## F-statistic:  1.08 on 10 and 90 DF,  p-value: 0.3861
LocationClass <- lm(Fluency ~ Location + Class, data = Student3)
summary(LocationClass)
## 
## Call:
## lm(formula = Fluency ~ Location + Class, data = Student3)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -12.054  -4.020   1.935   3.605   6.271 
## 
## Coefficients:
##                         Estimate Std. Error t value Pr(>|t|)    
## (Intercept)              11.3954     1.3881   8.210 1.51e-12 ***
## LocationMitchell Hall    -1.8231     1.6946  -1.076    0.285    
## LocationSherburne Hall    0.4011     2.1857   0.183    0.855    
## LocationStearns Hall      0.6591     1.8223   0.362    0.718    
## LocationCase Hall        -2.2045     2.3683  -0.931    0.354    
## LocationHill Hall         0.6701     1.8550   0.361    0.719    
## LocationStateview North   4.3311     3.3804   1.281    0.203    
## LocationStateview South  -3.0517     4.1739  -0.731    0.467    
## ClassSO                  -2.1679     1.4296  -1.516    0.133    
## ClassJR                  -0.8436     1.8296  -0.461    0.646    
## ClassSR                  -2.3755     1.9311  -1.230    0.222    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 5.124 on 90 degrees of freedom
## Multiple R-squared:  0.09204,    Adjusted R-squared:  -0.008845 
## F-statistic: 0.9123 on 10 and 90 DF,  p-value: 0.5256