3.2: Muestreo aleatorio sistemático
N <- nrow(personas)
n = 10
saltos <- round(N / n, 0)
inicio <- round(sample(N, 1) / n, 0)
#inicio
cuales <- seq(from = inicio, to =N, by= saltos)
kable(personas[cuales, ], caption = "La muestra sistematizada de personas")
La muestra sistematizada de personas
10 |
JESÚS |
M |
NO |
NO |
SI |
NO |
NO |
SI |
NO |
NO |
SI |
NO |
NO |
NO |
20 |
DANIEL |
M |
NO |
NO |
NO |
NO |
NO |
NO |
SI |
NO |
NO |
NO |
NO |
NO |
30 |
DAVID |
M |
NO |
NO |
NO |
NO |
NO |
NO |
NO |
NO |
NO |
NO |
NO |
NO |
40 |
MARÍA ELENA |
M |
NO |
NO |
NO |
NO |
NO |
NO |
SI |
SI |
NO |
NO |
NO |
NO |
50 |
ALBERTO |
M |
NO |
NO |
NO |
NO |
NO |
NO |
SI |
NO |
NO |
NO |
NO |
NO |
60 |
ROSA MARÍA |
F |
NO |
NO |
NO |
NO |
NO |
SI |
NO |
SI |
NO |
NO |
NO |
NO |
70 |
GABRIEL |
M |
SI |
NO |
SI |
NO |
NO |
SI |
NO |
NO |
NO |
NO |
NO |
NO |
80 |
MARÍA LUISA |
F |
SI |
NO |
NO |
NO |
NO |
NO |
NO |
NO |
NO |
NO |
NO |
NO |
90 |
ARACELI |
M |
NO |
NO |
NO |
NO |
NO |
NO |
NO |
NO |
NO |
NO |
SI |
NO |
100 |
GUSTAVO |
M |
NO |
NO |
NO |
NO |
NO |
NO |
NO |
SI |
NO |
NO |
NO |
NO |
- Con el conjunto de datos alumnos, hay que encontrar a 40 alumnos, ¿A cuáles?, bajo el muetreo sistematizado
N <- nrow(alumnos)
n = 100
saltos <- round(N / n, 0)
inicio <- round(sample(N, 1) / n, 0)
cuales <- seq(from = inicio, to =N, by= saltos)
kable(alumnos[cuales, ], caption = "La muestra de alumnos")
La muestra de alumnos
20190057 |
57 |
9 |
226 |
4 |
89.10 |
SISTEMAS |
20190116 |
116 |
7 |
165 |
34 |
93.67 |
SISTEMAS |
20190175 |
175 |
3 |
50 |
33 |
90.91 |
SISTEMAS |
20190234 |
234 |
7 |
105 |
22 |
84.00 |
SISTEMAS |
20190293 |
293 |
4 |
83 |
33 |
86.28 |
SISTEMAS |
20190352 |
352 |
8 |
176 |
32 |
80.47 |
SISTEMAS |
20190411 |
411 |
7 |
165 |
34 |
82.78 |
SISTEMAS |
20190470 |
470 |
9 |
198 |
29 |
83.33 |
ARQUITECTURA |
20190529 |
529 |
10 |
172 |
12 |
79.97 |
ARQUITECTURA |
20190588 |
588 |
4 |
80 |
30 |
90.28 |
ARQUITECTURA |
20190647 |
647 |
6 |
124 |
26 |
83.85 |
ARQUITECTURA |
20190706 |
706 |
1 |
NA |
26 |
0.00 |
ARQUITECTURA |
20190765 |
765 |
1 |
NA |
26 |
0.00 |
ARQUITECTURA |
20190824 |
824 |
6 |
132 |
30 |
82.96 |
ARQUITECTURA |
20190883 |
883 |
6 |
91 |
30 |
85.53 |
ARQUITECTURA |
20190942 |
942 |
5 |
88 |
30 |
83.32 |
ARQUITECTURA |
20191001 |
1001 |
3 |
52 |
24 |
90.50 |
ARQUITECTURA |
20191060 |
1060 |
1 |
NA |
26 |
0.00 |
ARQUITECTURA |
20191119 |
1119 |
1 |
NA |
26 |
0.00 |
ARQUITECTURA |
20191178 |
1178 |
9 |
140 |
23 |
82.81 |
BIOQUIMICA |
20191237 |
1237 |
5 |
79 |
31 |
81.78 |
BIOQUIMICA |
20191296 |
1296 |
8 |
95 |
28 |
76.81 |
BIOQUIMICA |
20191355 |
1355 |
1 |
NA |
23 |
0.00 |
BIOQUIMICA |
20191414 |
1414 |
1 |
NA |
23 |
0.00 |
BIOQUIMICA |
20191473 |
1473 |
2 |
18 |
29 |
82.60 |
BIOQUIMICA |
20191532 |
1532 |
3 |
47 |
25 |
87.09 |
BIOQUIMICA |
20191591 |
1591 |
10 |
225 |
15 |
80.28 |
CIVIL |
20191650 |
1650 |
9 |
235 |
10 |
91.00 |
CIVIL |
20191709 |
1709 |
5 |
67 |
8 |
82.71 |
CIVIL |
20191768 |
1768 |
6 |
139 |
30 |
85.21 |
CIVIL |
20191827 |
1827 |
1 |
NA |
27 |
0.00 |
CIVIL |
20191886 |
1886 |
4 |
51 |
31 |
78.83 |
CIVIL |
20191945 |
1945 |
3 |
55 |
30 |
87.33 |
CIVIL |
20192004 |
2004 |
4 |
78 |
18 |
81.06 |
CIVIL |
20192063 |
2063 |
5 |
121 |
31 |
87.12 |
CIVIL |
20192122 |
2122 |
2 |
27 |
26 |
80.17 |
CIVIL |
20192181 |
2181 |
1 |
NA |
27 |
0.00 |
CIVIL |
20192240 |
2240 |
9 |
221 |
14 |
92.94 |
ELECTRICA |
20192299 |
2299 |
7 |
160 |
31 |
88.08 |
ELECTRICA |
20192358 |
2358 |
7 |
98 |
9 |
81.04 |
ELECTRICA |
20192417 |
2417 |
3 |
56 |
26 |
92.00 |
ELECTRICA |
20192476 |
2476 |
3 |
51 |
28 |
85.92 |
ELECTRICA |
20192535 |
2535 |
6 |
104 |
24 |
82.96 |
ELECTRONICA |
20192594 |
2594 |
1 |
NA |
25 |
0.00 |
ELECTRONICA |
20192653 |
2653 |
5 |
105 |
28 |
95.17 |
ELECTRONICA |
20192712 |
2712 |
11 |
235 |
10 |
80.68 |
INDUSTRIAL |
20192771 |
2771 |
4 |
75 |
32 |
80.59 |
INDUSTRIAL |
20192830 |
2830 |
8 |
174 |
36 |
81.22 |
INDUSTRIAL |
20192889 |
2889 |
5 |
112 |
30 |
90.72 |
INDUSTRIAL |
20192948 |
2948 |
6 |
120 |
26 |
79.30 |
INDUSTRIAL |
20193007 |
3007 |
6 |
142 |
25 |
83.56 |
INDUSTRIAL |
20193066 |
3066 |
7 |
149 |
25 |
87.74 |
INDUSTRIAL |
20193125 |
3125 |
3 |
55 |
27 |
84.08 |
INDUSTRIAL |
20193184 |
3184 |
6 |
139 |
28 |
84.48 |
INDUSTRIAL |
20193243 |
3243 |
3 |
51 |
29 |
86.83 |
INDUSTRIAL |
20193302 |
3302 |
5 |
95 |
27 |
81.18 |
INDUSTRIAL |
20193361 |
3361 |
5 |
87 |
31 |
84.70 |
INDUSTRIAL |
20193420 |
3420 |
7 |
132 |
27 |
83.52 |
MECANICA |
20193479 |
3479 |
7 |
142 |
35 |
80.45 |
MECANICA |
20193538 |
3538 |
5 |
108 |
29 |
84.88 |
MECANICA |
20193597 |
3597 |
5 |
103 |
34 |
81.17 |
MECANICA |
20193656 |
3656 |
6 |
113 |
29 |
79.72 |
MECANICA |
20193715 |
3715 |
10 |
178 |
8 |
79.81 |
MECATRONICA |
20193774 |
3774 |
7 |
159 |
30 |
87.76 |
MECATRONICA |
20193833 |
3833 |
7 |
151 |
31 |
82.44 |
MECATRONICA |
20193892 |
3892 |
6 |
76 |
20 |
81.18 |
MECATRONICA |
20193951 |
3951 |
6 |
47 |
4 |
82.09 |
MECATRONICA |
20194010 |
4010 |
1 |
NA |
25 |
0.00 |
MECATRONICA |
20194069 |
4069 |
5 |
105 |
24 |
86.74 |
MECATRONICA |
20194128 |
4128 |
11 |
161 |
32 |
81.21 |
QUIMICA |
20194187 |
4187 |
5 |
109 |
25 |
87.22 |
QUIMICA |
20194246 |
4246 |
9 |
230 |
5 |
85.70 |
QUIMICA |
20194305 |
4305 |
2 |
11 |
25 |
91.67 |
QUIMICA |
20194364 |
4364 |
4 |
86 |
28 |
88.50 |
QUIMICA |
20194423 |
4423 |
9 |
215 |
20 |
83.36 |
QUIMICA |
20194482 |
4482 |
2 |
25 |
30 |
82.00 |
QUIMICA |
20194541 |
4541 |
5 |
88 |
29 |
84.84 |
QUIMICA |
20194600 |
4600 |
9 |
204 |
20 |
82.31 |
QUIMICA |
20194659 |
4659 |
7 |
162 |
30 |
88.71 |
QUIMICA |
20194718 |
4718 |
10 |
225 |
10 |
85.17 |
GESTION EMPRESARIAL |
20194777 |
4777 |
5 |
107 |
33 |
87.87 |
GESTION EMPRESARIAL |
20194836 |
4836 |
1 |
NA |
27 |
0.00 |
GESTION EMPRESARIAL |
20194895 |
4895 |
3 |
53 |
29 |
87.92 |
GESTION EMPRESARIAL |
20194954 |
4954 |
2 |
22 |
26 |
91.20 |
GESTION EMPRESARIAL |
20195013 |
5013 |
2 |
27 |
27 |
84.50 |
GESTION EMPRESARIAL |
20195072 |
5072 |
3 |
54 |
28 |
93.08 |
GESTION EMPRESARIAL |
20195131 |
5131 |
3 |
54 |
28 |
90.75 |
GESTION EMPRESARIAL |
20195190 |
5190 |
3 |
45 |
33 |
85.10 |
GESTION EMPRESARIAL |
20195249 |
5249 |
2 |
22 |
27 |
92.40 |
GESTION EMPRESARIAL |
20195308 |
5308 |
1 |
NA |
26 |
0.00 |
TIC |
20195367 |
5367 |
7 |
85 |
18 |
82.58 |
INFORMATICA |
20195426 |
5426 |
7 |
156 |
33 |
90.29 |
INFORMATICA |
20195485 |
5485 |
9 |
262 |
10 |
92.09 |
ADMINISTRACION |
20195544 |
5544 |
5 |
89 |
28 |
85.63 |
ADMINISTRACION |
20195603 |
5603 |
1 |
NA |
27 |
0.00 |
ADMINISTRACION |
20195662 |
5662 |
1 |
NA |
27 |
0.00 |
ADMINISTRACION |
20195721 |
5721 |
8 |
180 |
34 |
85.00 |
ADMINISTRACION |
20195780 |
5780 |
4 |
84 |
33 |
89.94 |
ADMINISTRACION |
20195839 |
5839 |
6 |
140 |
28 |
91.93 |
ADMINISTRACION |
20195898 |
5898 |
2 |
23 |
28 |
87.80 |
ADMINISTRACION |
3.3: Muestreo aleatorio estratificado
N <- nrow(personas)
n <- 10
femeninos <- filter(personas, generos=='F')
masculinos <- filter(personas, generos=='M')
frfem <- nrow(femeninos) / N
frmas <- nrow(masculinos) / N
frfem
## [1] 0.42
frmas
## [1] 0.58
muestraFem <- sample(femeninos, n * frfem)
kable(muestraFem, caption = "La muestra de personas Femenino")
La muestra de personas Femenino
2 |
GUADALUPE |
F |
NO |
NO |
NO |
NO |
NO |
NO |
NO |
NO |
NO |
NO |
NO |
NO |
2 |
15 |
TERESA |
F |
NO |
NO |
NO |
NO |
NO |
NO |
NO |
SI |
NO |
NO |
NO |
NO |
15 |
14 |
FRANCISCA |
F |
NO |
NO |
SI |
NO |
NO |
NO |
SI |
NO |
NO |
NO |
NO |
NO |
14 |
7 |
JAVIER |
F |
NO |
NO |
NO |
NO |
NO |
SI |
NO |
NO |
NO |
NO |
SI |
NO |
7 |
muestraMas <- sample(masculinos, n * frmas)
kable(muestraMas, caption = "La muestra de personas Masculino")
La muestra de personas Masculino
30 |
MARIO |
M |
NO |
NO |
SI |
SI |
NO |
NO |
NO |
NO |
NO |
NO |
NO |
NO |
30 |
52 |
JOSÉ GUADALUPE |
M |
NO |
NO |
NO |
NO |
NO |
SI |
NO |
NO |
NO |
NO |
NO |
SI |
52 |
7 |
MIGUEL ÁNGEL |
M |
NO |
NO |
NO |
NO |
NO |
NO |
NO |
NO |
SI |
NO |
NO |
NO |
7 |
58 |
GUSTAVO |
M |
NO |
NO |
NO |
NO |
NO |
NO |
NO |
SI |
NO |
NO |
NO |
NO |
58 |
34 |
LUIS |
M |
NO |
NO |
NO |
NO |
NO |
NO |
NO |
NO |
SI |
NO |
NO |
SI |
34 |
N <- nrow(alumnos)
n <- 100
tabla_frec <- data.frame(fdt_cat(alumnos$Carrera))
tabla_frec$muestra <- round(tabla_frec$rf * n, 0)
kable(tabla_frec, caption = "Tabla de frecuencia de alumnos")
Tabla de frecuencia de alumnos
INDUSTRIAL |
707 |
0.1192444 |
11.924439 |
707 |
11.92444 |
12 |
ARQUITECTURA |
675 |
0.1138472 |
11.384719 |
1382 |
23.30916 |
11 |
CIVIL |
648 |
0.1092933 |
10.929330 |
2030 |
34.23849 |
11 |
GESTION EMPRESARIAL |
585 |
0.0986676 |
9.866757 |
2615 |
44.10525 |
10 |
QUIMICA |
568 |
0.0958003 |
9.580030 |
3183 |
53.68528 |
10 |
ADMINISTRACION |
497 |
0.0838253 |
8.382527 |
3680 |
62.06780 |
8 |
SISTEMAS |
452 |
0.0762355 |
7.623545 |
4132 |
69.69135 |
8 |
BIOQUIMICA |
441 |
0.0743802 |
7.438016 |
4573 |
77.12936 |
7 |
MECATRONICA |
432 |
0.0728622 |
7.286220 |
5005 |
84.41558 |
7 |
MECANICA |
301 |
0.0507674 |
5.076741 |
5306 |
89.49233 |
5 |
ELECTRICA |
280 |
0.0472255 |
4.722550 |
5586 |
94.21488 |
5 |
ELECTRONICA |
161 |
0.0271547 |
2.715466 |
5747 |
96.93034 |
3 |
INFORMATICA |
101 |
0.0170349 |
1.703491 |
5848 |
98.63383 |
2 |
TIC |
81 |
0.0136617 |
1.366166 |
5929 |
100.00000 |
1 |
N <- nrow(alumnos)
n <- 100
sistemas <- filter(alumnos, Carrera =='SISTEMAS')
civil <- filter(alumnos, Carrera == 'CIVIL')
frsistemas <- nrow(sistemas) / N
frcivil <- nrow(civil) / N
frsistemas
## [1] 0.07623545
frcivil
## [1] 0.1092933
muestrasistemas <- sample(sistemas, round(n * frsistemas, 0))
kable(muestrasistemas, caption = "La muestra de alumnos de Sistemas")
La muestra de alumnos de Sistemas
20190279 |
279 |
8 |
177 |
31 |
88.82 |
SISTEMAS |
279 |
20190127 |
127 |
4 |
68 |
34 |
80.53 |
SISTEMAS |
127 |
20190048 |
48 |
9 |
212 |
4 |
91.28 |
SISTEMAS |
48 |
20190104 |
104 |
3 |
50 |
33 |
86.55 |
SISTEMAS |
104 |
20190452 |
452 |
2 |
27 |
28 |
84.50 |
SISTEMAS |
452 |
20190226 |
226 |
6 |
128 |
32 |
83.18 |
SISTEMAS |
226 |
20190184 |
184 |
5 |
116 |
26 |
92.64 |
SISTEMAS |
184 |
20190356 |
356 |
3 |
55 |
28 |
91.67 |
SISTEMAS |
356 |
muestracivil <- sample(civil, round(n * frcivil, 0))
kable(muestracivil, caption = "La muestra de alumnos de Civil")
La muestra de alumnos de Civil
20191740 |
1740 |
5 |
113 |
30 |
88.63 |
CIVIL |
172 |
20192009 |
2009 |
4 |
82 |
31 |
82.71 |
CIVIL |
441 |
20191578 |
1578 |
10 |
205 |
25 |
81.95 |
CIVIL |
10 |
20191905 |
1905 |
7 |
154 |
32 |
82.64 |
CIVIL |
337 |
20191984 |
1984 |
6 |
133 |
30 |
86.79 |
CIVIL |
416 |
20191731 |
1731 |
8 |
187 |
25 |
86.03 |
CIVIL |
163 |
20191798 |
1798 |
6 |
116 |
34 |
84.04 |
CIVIL |
230 |
20191829 |
1829 |
6 |
97 |
28 |
79.57 |
CIVIL |
261 |
20192158 |
2158 |
2 |
27 |
30 |
93.17 |
CIVIL |
590 |
20192056 |
2056 |
8 |
172 |
21 |
88.53 |
CIVIL |
488 |
20191587 |
1587 |
10 |
216 |
14 |
78.87 |
CIVIL |
19 |
3.4: Muestreo por conglomerados
#Primero cargar datos de localidades de Durango.
N <- nrow(alumnos)
n <- 100
locdurangomx <- read.csv("https://raw.githubusercontent.com/rpizarrog/probabilidad-y-estad-stica/master/datos/locdurangomx.csv", encoding = "UTF-8")
# Segundo por medio de función sample() generar cinco registros aleatorios de localidades y agregar un sexto registro de Victoria de Durango.
set.seed(1000)
localidades6 <- locdurangomx[sample(nrow(locdurangomx), 5), ]
localidades6 <- rbind(localidades6, locdurangomx[1,])
# Tercero agregar las columnas con el nombre de localidad, latitud y longitud al conjunto de datos alumnos.
registros <- locdurangomx[sample(localidades6$X, N, replace = TRUE, prob = c(.10, 0.12, 0.05, 0.07, 0.06, 0.60)),c("Nom_Loc", "Lat_Decimal", "Lon_Decimal")]
alumnos$localidad <- registros$Nom_Loc
alumnos$latitud <- registros$Lat_Decimal
alumnos$longitud <- registros$Lon_Decimal
kable(head(alumnos, 10), caption = "Los primeros diez registros de alumnos")
Los primeros diez registros de alumnos
20190001 |
1 |
11 |
198 |
19 |
80.21 |
SISTEMAS |
Las Aves |
23.94883 |
-104.5715 |
20190002 |
2 |
11 |
235 |
10 |
84.33 |
SISTEMAS |
Victoria de Durango |
24.02399 |
-104.6702 |
20190003 |
3 |
9 |
235 |
10 |
95.25 |
SISTEMAS |
Victoria de Durango |
24.02399 |
-104.6702 |
20190004 |
4 |
9 |
226 |
19 |
95.00 |
SISTEMAS |
Victoria de Durango |
24.02399 |
-104.6702 |
20190005 |
5 |
10 |
231 |
14 |
82.32 |
SISTEMAS |
Victoria de Durango |
24.02399 |
-104.6702 |
20190006 |
6 |
9 |
212 |
23 |
95.02 |
SISTEMAS |
Las Aves |
23.94883 |
-104.5715 |
20190007 |
7 |
12 |
221 |
10 |
79.06 |
SISTEMAS |
Victoria de Durango |
24.02399 |
-104.6702 |
20190008 |
8 |
9 |
226 |
9 |
92.47 |
SISTEMAS |
Los Fresnos |
24.08339 |
-104.6095 |
20190009 |
9 |
9 |
231 |
4 |
91.08 |
SISTEMAS |
Las Aves |
23.94883 |
-104.5715 |
20190010 |
10 |
11 |
222 |
13 |
80.42 |
SISTEMAS |
Victoria de Durango |
24.02399 |
-104.6702 |
kable(tail(alumnos, 10), caption = "Las útimos diez registros de alumnos")
Las útimos diez registros de alumnos
20195920 |
5920 |
7 |
169 |
23 |
89.14 |
ADMINISTRACION |
Victoria de Durango |
24.02399 |
-104.6702 |
20195921 |
5921 |
5 |
109 |
26 |
87.83 |
ADMINISTRACION |
Los Fresnos |
24.08339 |
-104.6095 |
20195922 |
5922 |
3 |
55 |
29 |
92.83 |
ADMINISTRACION |
Victoria de Durango |
24.02399 |
-104.6702 |
20195923 |
5923 |
2 |
23 |
23 |
88.60 |
ADMINISTRACION |
Michel [Granja] |
24.00545 |
-104.7152 |
20195924 |
5924 |
2 |
27 |
28 |
92.83 |
ADMINISTRACION |
Las Brisas |
23.97352 |
-104.5800 |
20195925 |
5925 |
7 |
94 |
13 |
80.95 |
ADMINISTRACION |
Victoria de Durango |
24.02399 |
-104.6702 |
20195926 |
5926 |
5 |
103 |
32 |
92.68 |
ADMINISTRACION |
Las Aves |
23.94883 |
-104.5715 |
20195927 |
5927 |
4 |
79 |
34 |
86.18 |
ADMINISTRACION |
Victoria de Durango |
24.02399 |
-104.6702 |
20195928 |
5928 |
5 |
108 |
32 |
90.48 |
ADMINISTRACION |
Victoria de Durango |
24.02399 |
-104.6702 |
20195929 |
5929 |
7 |
169 |
32 |
92.33 |
ADMINISTRACION |
Microondas el Tecolote |
24.05248 |
-104.8519 |
# Cuarto encontrar frecuencias por localidad.
N <- nrow(alumnos)
n <- 100
tabla_frec <- data.frame(fdt_cat(alumnos$localidad))
tabla_frec$muestra <- round(tabla_frec$rf * n, 0)
kable(tabla_frec, caption = "Tabla de frecuencia de alumnos por localidad")
Tabla de frecuencia de alumnos por localidad
Victoria de Durango |
3564 |
0.6011132 |
60.111317 |
3564 |
60.11132 |
60 |
Las Brisas |
691 |
0.1165458 |
11.654579 |
4255 |
71.76590 |
12 |
Las Aves |
626 |
0.1055827 |
10.558273 |
4881 |
82.32417 |
11 |
Los Fresnos |
431 |
0.0726935 |
7.269354 |
5312 |
89.59352 |
7 |
Microondas el Tecolote |
329 |
0.0554900 |
5.548997 |
5641 |
95.14252 |
6 |
Michel [Granja] |
288 |
0.0485748 |
4.857480 |
5929 |
100.00000 |
5 |
# Quinto determinar el porcentaje que le corresponde a cada conglomerado conforme a la frecuencia relativa.
N <- nrow(alumnos)
n <- 100
loc1 <- filter(alumnos, localidad == tabla_frec$Category[1])
loc2 <- filter(alumnos, localidad == tabla_frec$Category[2])
loc3 <- filter(alumnos, localidad == tabla_frec$Category[3])
loc4 <- filter(alumnos, localidad == tabla_frec$Category[4])
loc5 <- filter(alumnos, localidad == tabla_frec$Category[5])
loc6 <- filter(alumnos, localidad == tabla_frec$Category[6])
frloc1 <- nrow(loc1) / N
frloc2 <- nrow(loc2) / N
frloc3 <- nrow(loc3) / N
frloc4 <- nrow(loc4) / N
frloc5 <- nrow(loc5) / N
frloc6 <- nrow(loc6) / N
muestraloc1 <- sample(loc1, round(n * frloc1, 0))
kable(muestraloc1, caption = paste("La muestra de alumnos de Localidad ",tabla_frec$Category[1] ))
La muestra de alumnos de Localidad Victoria de Durango
20195752 |
5752 |
3 |
55 |
29 |
95.67 |
ADMINISTRACION |
Victoria de Durango |
24.02399 |
-104.6702 |
3462 |
20191354 |
1354 |
7 |
167 |
34 |
86.40 |
BIOQUIMICA |
Victoria de Durango |
24.02399 |
-104.6702 |
809 |
20195197 |
5197 |
8 |
195 |
25 |
87.88 |
GESTION EMPRESARIAL |
Victoria de Durango |
24.02399 |
-104.6702 |
3142 |
20194694 |
4694 |
9 |
230 |
15 |
92.17 |
GESTION EMPRESARIAL |
Victoria de Durango |
24.02399 |
-104.6702 |
2835 |
20191656 |
1656 |
12 |
179 |
33 |
77.27 |
CIVIL |
Victoria de Durango |
24.02399 |
-104.6702 |
995 |
20193520 |
3520 |
1 |
NA |
26 |
0.00 |
MECANICA |
Victoria de Durango |
24.02399 |
-104.6702 |
2155 |
20191220 |
1220 |
5 |
81 |
34 |
85.44 |
BIOQUIMICA |
Victoria de Durango |
24.02399 |
-104.6702 |
728 |
20191366 |
1366 |
2 |
23 |
29 |
90.17 |
BIOQUIMICA |
Victoria de Durango |
24.02399 |
-104.6702 |
818 |
20190579 |
579 |
4 |
80 |
30 |
89.11 |
ARQUITECTURA |
Victoria de Durango |
24.02399 |
-104.6702 |
331 |
20192440 |
2440 |
1 |
NA |
24 |
0.00 |
ELECTRICA |
Victoria de Durango |
24.02399 |
-104.6702 |
1484 |
20195184 |
5184 |
3 |
60 |
29 |
84.85 |
GESTION EMPRESARIAL |
Victoria de Durango |
24.02399 |
-104.6702 |
3132 |
20191337 |
1337 |
8 |
186 |
24 |
84.36 |
BIOQUIMICA |
Victoria de Durango |
24.02399 |
-104.6702 |
798 |
20190945 |
945 |
6 |
134 |
24 |
87.86 |
ARQUITECTURA |
Victoria de Durango |
24.02399 |
-104.6702 |
563 |
20194561 |
4561 |
1 |
NA |
25 |
0.00 |
QUIMICA |
Victoria de Durango |
24.02399 |
-104.6702 |
2751 |
20190949 |
949 |
2 |
26 |
26 |
87.67 |
ARQUITECTURA |
Victoria de Durango |
24.02399 |
-104.6702 |
565 |
20190853 |
853 |
2 |
24 |
22 |
87.00 |
ARQUITECTURA |
Victoria de Durango |
24.02399 |
-104.6702 |
511 |
20194009 |
4009 |
2 |
25 |
28 |
80.67 |
MECATRONICA |
Victoria de Durango |
24.02399 |
-104.6702 |
2423 |
20190981 |
981 |
5 |
110 |
32 |
89.50 |
ARQUITECTURA |
Victoria de Durango |
24.02399 |
-104.6702 |
587 |
20193423 |
3423 |
7 |
102 |
30 |
80.91 |
MECANICA |
Victoria de Durango |
24.02399 |
-104.6702 |
2093 |
20195597 |
5597 |
8 |
207 |
27 |
93.09 |
ADMINISTRACION |
Victoria de Durango |
24.02399 |
-104.6702 |
3369 |
20192461 |
2461 |
7 |
150 |
28 |
82.79 |
ELECTRICA |
Victoria de Durango |
24.02399 |
-104.6702 |
1496 |
20191351 |
1351 |
3 |
52 |
30 |
85.75 |
BIOQUIMICA |
Victoria de Durango |
24.02399 |
-104.6702 |
807 |
20190343 |
343 |
8 |
165 |
28 |
81.31 |
SISTEMAS |
Victoria de Durango |
24.02399 |
-104.6702 |
201 |
20194890 |
4890 |
7 |
170 |
35 |
87.44 |
GESTION EMPRESARIAL |
Victoria de Durango |
24.02399 |
-104.6702 |
2947 |
20191348 |
1348 |
7 |
164 |
32 |
91.03 |
BIOQUIMICA |
Victoria de Durango |
24.02399 |
-104.6702 |
806 |
20190739 |
739 |
1 |
NA |
26 |
0.00 |
ARQUITECTURA |
Victoria de Durango |
24.02399 |
-104.6702 |
433 |
20191212 |
1212 |
7 |
165 |
36 |
86.37 |
BIOQUIMICA |
Victoria de Durango |
24.02399 |
-104.6702 |
723 |
20193020 |
3020 |
3 |
55 |
29 |
92.15 |
INDUSTRIAL |
Victoria de Durango |
24.02399 |
-104.6702 |
1848 |
20191394 |
1394 |
2 |
23 |
29 |
86.83 |
BIOQUIMICA |
Victoria de Durango |
24.02399 |
-104.6702 |
836 |
20194023 |
4023 |
1 |
NA |
25 |
0.00 |
MECATRONICA |
Victoria de Durango |
24.02399 |
-104.6702 |
2434 |
20192358 |
2358 |
7 |
98 |
9 |
81.04 |
ELECTRICA |
Victoria de Durango |
24.02399 |
-104.6702 |
1435 |
20194165 |
4165 |
4 |
53 |
20 |
77.91 |
QUIMICA |
Victoria de Durango |
24.02399 |
-104.6702 |
2522 |
20194937 |
4937 |
7 |
167 |
33 |
88.00 |
GESTION EMPRESARIAL |
Victoria de Durango |
24.02399 |
-104.6702 |
2978 |
20192500 |
2500 |
9 |
197 |
20 |
84.05 |
ELECTRONICA |
Victoria de Durango |
24.02399 |
-104.6702 |
1518 |
20190866 |
866 |
6 |
142 |
28 |
88.53 |
ARQUITECTURA |
Victoria de Durango |
24.02399 |
-104.6702 |
518 |
20190307 |
307 |
2 |
27 |
28 |
77.00 |
SISTEMAS |
Victoria de Durango |
24.02399 |
-104.6702 |
180 |
20195480 |
5480 |
9 |
228 |
24 |
86.23 |
ADMINISTRACION |
Victoria de Durango |
24.02399 |
-104.6702 |
3304 |
20195413 |
5413 |
1 |
NA |
27 |
0.00 |
INFORMATICA |
Victoria de Durango |
24.02399 |
-104.6702 |
3267 |
20195861 |
5861 |
7 |
169 |
32 |
93.89 |
ADMINISTRACION |
Victoria de Durango |
24.02399 |
-104.6702 |
3521 |
20190661 |
661 |
3 |
52 |
28 |
83.42 |
ARQUITECTURA |
Victoria de Durango |
24.02399 |
-104.6702 |
384 |
20191654 |
1654 |
10 |
171 |
32 |
78.42 |
CIVIL |
Victoria de Durango |
24.02399 |
-104.6702 |
994 |
20194474 |
4474 |
8 |
205 |
20 |
83.76 |
QUIMICA |
Victoria de Durango |
24.02399 |
-104.6702 |
2699 |
20194055 |
4055 |
3 |
43 |
14 |
81.10 |
MECATRONICA |
Victoria de Durango |
24.02399 |
-104.6702 |
2453 |
20190746 |
746 |
4 |
76 |
28 |
89.29 |
ARQUITECTURA |
Victoria de Durango |
24.02399 |
-104.6702 |
436 |
20193336 |
3336 |
7 |
179 |
26 |
89.12 |
INDUSTRIAL |
Victoria de Durango |
24.02399 |
-104.6702 |
2038 |
20195409 |
5409 |
3 |
55 |
27 |
87.92 |
INFORMATICA |
Victoria de Durango |
24.02399 |
-104.6702 |
3266 |
20195033 |
5033 |
3 |
50 |
28 |
94.45 |
GESTION EMPRESARIAL |
Victoria de Durango |
24.02399 |
-104.6702 |
3034 |
20190549 |
549 |
9 |
218 |
17 |
88.69 |
ARQUITECTURA |
Victoria de Durango |
24.02399 |
-104.6702 |
313 |
20192620 |
2620 |
3 |
47 |
23 |
86.91 |
ELECTRONICA |
Victoria de Durango |
24.02399 |
-104.6702 |
1591 |
20190186 |
186 |
3 |
41 |
28 |
83.89 |
SISTEMAS |
Victoria de Durango |
24.02399 |
-104.6702 |
110 |
20191297 |
1297 |
3 |
52 |
30 |
87.00 |
BIOQUIMICA |
Victoria de Durango |
24.02399 |
-104.6702 |
775 |
20193034 |
3034 |
5 |
85 |
31 |
88.21 |
INDUSTRIAL |
Victoria de Durango |
24.02399 |
-104.6702 |
1858 |
20194007 |
4007 |
7 |
115 |
27 |
82.96 |
MECATRONICA |
Victoria de Durango |
24.02399 |
-104.6702 |
2421 |
20195690 |
5690 |
4 |
79 |
29 |
88.53 |
ADMINISTRACION |
Victoria de Durango |
24.02399 |
-104.6702 |
3421 |
20194231 |
4231 |
7 |
172 |
32 |
88.94 |
QUIMICA |
Victoria de Durango |
24.02399 |
-104.6702 |
2561 |
20193544 |
3544 |
3 |
48 |
27 |
82.82 |
MECANICA |
Victoria de Durango |
24.02399 |
-104.6702 |
2165 |
20192218 |
2218 |
11 |
235 |
10 |
84.19 |
ELECTRICA |
Victoria de Durango |
24.02399 |
-104.6702 |
1345 |
20195545 |
5545 |
7 |
145 |
29 |
85.77 |
ADMINISTRACION |
Victoria de Durango |
24.02399 |
-104.6702 |
3341 |
20194135 |
4135 |
7 |
172 |
26 |
85.39 |
QUIMICA |
Victoria de Durango |
24.02399 |
-104.6702 |
2500 |
20193613 |
3613 |
3 |
52 |
24 |
85.50 |
MECANICA |
Victoria de Durango |
24.02399 |
-104.6702 |
2207 |
muestraloc2 <- sample(loc2, round(n * frloc2, 0))
kable(muestraloc2, caption = paste("La muestra de alumnos de Localidad ",tabla_frec$Category[2] ))
La muestra de alumnos de Localidad Las Brisas
20192268 |
2268 |
10 |
216 |
14 |
83.80 |
ELECTRICA |
Las Brisas |
23.97352 |
-104.58 |
262 |
20195323 |
5323 |
1 |
NA |
26 |
0.00 |
TIC |
Las Brisas |
23.97352 |
-104.58 |
631 |
20192994 |
2994 |
7 |
172 |
33 |
86.44 |
INDUSTRIAL |
Las Brisas |
23.97352 |
-104.58 |
344 |
20194348 |
4348 |
5 |
114 |
30 |
89.92 |
QUIMICA |
Las Brisas |
23.97352 |
-104.58 |
515 |
20193182 |
3182 |
2 |
27 |
24 |
83.00 |
INDUSTRIAL |
Las Brisas |
23.97352 |
-104.58 |
375 |
20192346 |
2346 |
5 |
99 |
28 |
84.35 |
ELECTRICA |
Las Brisas |
23.97352 |
-104.58 |
271 |
20192814 |
2814 |
7 |
163 |
35 |
84.35 |
INDUSTRIAL |
Las Brisas |
23.97352 |
-104.58 |
326 |
20195766 |
5766 |
1 |
NA |
27 |
0.00 |
ADMINISTRACION |
Las Brisas |
23.97352 |
-104.58 |
678 |
20192753 |
2753 |
6 |
158 |
26 |
88.00 |
INDUSTRIAL |
Las Brisas |
23.97352 |
-104.58 |
321 |
20194882 |
4882 |
3 |
32 |
31 |
84.43 |
GESTION EMPRESARIAL |
Las Brisas |
23.97352 |
-104.58 |
577 |
20193378 |
3378 |
10 |
225 |
10 |
82.12 |
MECANICA |
Las Brisas |
23.97352 |
-104.58 |
391 |
20191305 |
1305 |
1 |
NA |
23 |
0.00 |
BIOQUIMICA |
Las Brisas |
23.97352 |
-104.58 |
161 |
muestraloc3 <- sample(loc3, round(n * frloc3, 0))
kable(muestraloc3, caption = paste("La muestra de alumnos de Localidad ",tabla_frec$Category[3] ))
La muestra de alumnos de Localidad Las Aves
20193085 |
3085 |
5 |
NA |
26 |
0.00 |
INDUSTRIAL |
Las Aves |
23.94883 |
-104.5715 |
320 |
20190244 |
244 |
5 |
112 |
25 |
87.54 |
SISTEMAS |
Las Aves |
23.94883 |
-104.5715 |
23 |
20191061 |
1061 |
8 |
168 |
32 |
82.86 |
ARQUITECTURA |
Las Aves |
23.94883 |
-104.5715 |
121 |
20190039 |
39 |
9 |
222 |
13 |
92.21 |
SISTEMAS |
Las Aves |
23.94883 |
-104.5715 |
6 |
20194015 |
4015 |
4 |
62 |
26 |
85.00 |
MECATRONICA |
Las Aves |
23.94883 |
-104.5715 |
439 |
20191448 |
1448 |
7 |
174 |
27 |
87.08 |
BIOQUIMICA |
Las Aves |
23.94883 |
-104.5715 |
165 |
20194301 |
4301 |
6 |
129 |
26 |
84.96 |
QUIMICA |
Las Aves |
23.94883 |
-104.5715 |
462 |
20190390 |
390 |
5 |
107 |
30 |
80.26 |
SISTEMAS |
Las Aves |
23.94883 |
-104.5715 |
41 |
20193641 |
3641 |
5 |
57 |
23 |
78.85 |
MECANICA |
Las Aves |
23.94883 |
-104.5715 |
387 |
20193522 |
3522 |
1 |
NA |
26 |
0.00 |
MECANICA |
Las Aves |
23.94883 |
-104.5715 |
366 |
20190306 |
306 |
4 |
87 |
33 |
93.26 |
SISTEMAS |
Las Aves |
23.94883 |
-104.5715 |
34 |
muestraloc4 <- sample(loc4, round(n * frloc4, 0))
kable(muestraloc4, caption = paste("La muestra de alumnos de Localidad ",tabla_frec$Category[4] ))
La muestra de alumnos de Localidad Los Fresnos
20194732 |
4732 |
12 |
225 |
10 |
86.83 |
GESTION EMPRESARIAL |
Los Fresnos |
24.08339 |
-104.6095 |
310 |
20194974 |
4974 |
8 |
205 |
30 |
88.56 |
GESTION EMPRESARIAL |
Los Fresnos |
24.08339 |
-104.6095 |
332 |
20195248 |
5248 |
1 |
NA |
27 |
0.00 |
GESTION EMPRESARIAL |
Los Fresnos |
24.08339 |
-104.6095 |
356 |
20194853 |
4853 |
2 |
32 |
27 |
94.57 |
GESTION EMPRESARIAL |
Los Fresnos |
24.08339 |
-104.6095 |
325 |
20192243 |
2243 |
10 |
226 |
9 |
82.25 |
ELECTRICA |
Los Fresnos |
24.08339 |
-104.6095 |
154 |
20195503 |
5503 |
10 |
262 |
10 |
93.87 |
ADMINISTRACION |
Los Fresnos |
24.08339 |
-104.6095 |
388 |
20191152 |
1152 |
11 |
108 |
17 |
78.00 |
BIOQUIMICA |
Los Fresnos |
24.08339 |
-104.6095 |
72 |
muestraloc5 <- sample(loc5, round(n * frloc5, 0))
kable(muestraloc5, caption = paste("La muestra de alumnos de Localidad ",tabla_frec$Category[5] ))
La muestra de alumnos de Localidad Microondas el Tecolote
20192935 |
2935 |
5 |
104 |
34 |
86.39 |
INDUSTRIAL |
Microondas el Tecolote |
24.05248 |
-104.8519 |
168 |
20192340 |
2340 |
1 |
NA |
24 |
0.00 |
ELECTRICA |
Microondas el Tecolote |
24.05248 |
-104.8519 |
133 |
20191209 |
1209 |
5 |
104 |
30 |
82.91 |
BIOQUIMICA |
Microondas el Tecolote |
24.05248 |
-104.8519 |
62 |
20190236 |
236 |
1 |
NA |
27 |
0.00 |
SISTEMAS |
Microondas el Tecolote |
24.05248 |
-104.8519 |
15 |
20195268 |
5268 |
5 |
101 |
28 |
82.55 |
TIC |
Microondas el Tecolote |
24.05248 |
-104.8519 |
294 |
20192138 |
2138 |
5 |
99 |
33 |
84.43 |
CIVIL |
Microondas el Tecolote |
24.05248 |
-104.8519 |
116 |
muestraloc6 <- sample(loc6, round(n * frloc6, 0))
kable(muestraloc6, caption = paste("La muestra de alumnos de Localidad ",tabla_frec$Category[6] ))
La muestra de alumnos de Localidad Michel [Granja]
20193554 |
3554 |
3 |
52 |
31 |
86.33 |
MECANICA |
Michel [Granja] |
24.00545 |
-104.7152 |
175 |
20194555 |
4555 |
6 |
133 |
23 |
83.14 |
QUIMICA |
Michel [Granja] |
24.00545 |
-104.7152 |
223 |
20192499 |
2499 |
11 |
205 |
15 |
79.93 |
ELECTRONICA |
Michel [Granja] |
24.00545 |
-104.7152 |
119 |
20192495 |
2495 |
3 |
51 |
28 |
92.50 |
ELECTRICA |
Michel [Granja] |
24.00545 |
-104.7152 |
118 |
20192977 |
2977 |
8 |
201 |
28 |
83.67 |
INDUSTRIAL |
Michel [Granja] |
24.00545 |
-104.7152 |
143 |
- Usando los valores de latitud y longitud
map<-leaflet() %>%
addTiles() %>%
addMarkers(lat=localidades6$Lat_Decimal[1],lng=localidades6$Lon_Decimal[1] ,popup=localidades6$Nom_Loc[1]) %>%
addMarkers(lat=localidades6$Lat_Decimal[2],lng=localidades6$Lon_Decimal[2] ,popup=localidades6$Nom_Loc[2]) %>%
addMarkers(lat=localidades6$Lat_Decimal[3],lng=localidades6$Lon_Decimal[3] ,popup=localidades6$Nom_Loc[3]) %>%
addMarkers(lat=localidades6$Lat_Decimal[4],lng=localidades6$Lon_Decimal[4] ,popup=localidades6$Nom_Loc[4]) %>%
addMarkers (lat=localidades6$Lat_Decimal[5],lng=localidades6$Lon_Decimal[5] ,popup=localidades6$Nom_Loc[5]) %>%
addMarkers (lat=localidades6$Lat_Decimal[6],lng=localidades6$Lon_Decimal[6] ,popup=localidades6$Nom_Loc[6])
# Mostrar el mapa
map