does not work because of chinese character in name and directory.Retry it in "destop" should be able to OK
(1).请把mtcars数据集的第一列标题改为“mileage”
> colnames(mtcars)[1]<-"mileage"
> names(mtcars)
## [1] "mileage" "cyl" "disp" "hp" "drat" "wt" "qsec"
## [8] "vs" "am" "gear" "carb"
(2).在(1)的基础上请根据条件[cyl>4]筛选mtcars的数据
> cyl4.data<-subset(mtcars,cyl==4)
> head(cyl4.data)
## mileage cyl disp hp drat wt qsec vs am gear carb
## Datsun 710 22.8 4 108.0 93 3.85 2.320 18.61 1 1 4 1
## Merc 240D 24.4 4 146.7 62 3.69 3.190 20.00 1 0 4 2
## Merc 230 22.8 4 140.8 95 3.92 3.150 22.90 1 0 4 2
## Fiat 128 32.4 4 78.7 66 4.08 2.200 19.47 1 1 4 1
## Honda Civic 30.4 4 75.7 52 4.93 1.615 18.52 1 1 4 2
## Toyota Corolla 33.9 4 71.1 65 4.22 1.835 19.90 1 1 4 1
(3).请对(2)得到的数据按mileage升序排序
> cyl4.data[order(cyl4.data$mileage),]
## mileage cyl disp hp drat wt qsec vs am gear carb
## Volvo 142E 21.4 4 121.0 109 4.11 2.780 18.60 1 1 4 2
## Toyota Corona 21.5 4 120.1 97 3.70 2.465 20.01 1 0 3 1
## Datsun 710 22.8 4 108.0 93 3.85 2.320 18.61 1 1 4 1
## Merc 230 22.8 4 140.8 95 3.92 3.150 22.90 1 0 4 2
## Merc 240D 24.4 4 146.7 62 3.69 3.190 20.00 1 0 4 2
## Porsche 914-2 26.0 4 120.3 91 4.43 2.140 16.70 0 1 5 2
## Fiat X1-9 27.3 4 79.0 66 4.08 1.935 18.90 1 1 4 1
## Honda Civic 30.4 4 75.7 52 4.93 1.615 18.52 1 1 4 2
## Lotus Europa 30.4 4 95.1 113 3.77 1.513 16.90 1 1 5 2
## Fiat 128 32.4 4 78.7 66 4.08 2.200 19.47 1 1 4 1
## Toyota Corolla 33.9 4 71.1 65 4.22 1.835 19.90 1 1 4 1
(4).请对(3)得到的数据按列求和
> apply(cyl4.data,1,sum)
## Datsun 710 Merc 240D Merc 230 Fiat 128 Honda Civic
## 259.580 270.980 299.570 213.850 195.165
## Toyota Corolla Toyota Corona Fiat X1-9 Porsche 914-2 Lotus Europa
## 206.955 273.775 208.215 272.570 273.683
## Volvo 142E
## 288.890
(5).请计算2020年12月10日与1979年1月1日的时间差是几个星期
> now<-as.Date("2020-12-10")
> #format(now, format="%B %d %Y")
> past<-as.Date("1979-01-01")
> difftime(now,past,units = "week")
## Time difference of 2188.429 weeks
(6).请用R对y=sin(2*x)进行求导,并画图原函数和导数函数在[-π,π]上的图像
> fun<-expression(sin(2*x))#函数表达式
> dfun<-D(fun,"x")#符号求导
> x<-seq(-pi,pi,length.out = 100)#分割x成多个间断点
> yfun<-eval(fun)#原函数在x区间上的值
> ydfun<-eval(dfun)#导数在x区间上的值
> plot(x,yfun,type="l",col="red",ylim=c(-2, 2))
> lines(x,ydfun,lty=3,col="black")

(7).请你编写一个用户自定义的函数,这个函数的功能是指定半径r的数据,就可以画出对应的圆
> circle<-function(r)
+ {
+ theta<-seq(0,2*pi,length.out = 100)
+ x<-r*cos(theta)
+ y<-r*sin(theta)
+ plot(x,y,type="l")
+ }
> circle(2)

(8).假设你有两个字符串,分别是“Hello”,“NUIST”,请你把这两个字符串连起来
> paste("Hello","NUIST")
## [1] "Hello NUIST"
(9).请用for语句在屏幕上输出10次“Hello,NUIST”
> for (i in 1:10) {
+ print(paste("Hello","NUIST",sep = ","))
+ }
## [1] "Hello,NUIST"
## [1] "Hello,NUIST"
## [1] "Hello,NUIST"
## [1] "Hello,NUIST"
## [1] "Hello,NUIST"
## [1] "Hello,NUIST"
## [1] "Hello,NUIST"
## [1] "Hello,NUIST"
## [1] "Hello,NUIST"
## [1] "Hello,NUIST"
(10).请用ggplot函数绘制iris数据集中,Sepal.Length和Sepal.Width的散点图
> library(ggplot2)
> ggplot(iris,aes(x=Sepal.Length,y=Sepal.Width))+geom_point()
