does not work because of chinese character in name and directory.Retry it in "destop" should be able to OK

(1).请把mtcars数据集的第一列标题改为“mileage”

> colnames(mtcars)[1]<-"mileage"
> names(mtcars)
##  [1] "mileage" "cyl"     "disp"    "hp"      "drat"    "wt"      "qsec"   
##  [8] "vs"      "am"      "gear"    "carb"

(2).在(1)的基础上请根据条件[cyl>4]筛选mtcars的数据

> cyl4.data<-subset(mtcars,cyl==4)
> head(cyl4.data)
##                mileage cyl  disp hp drat    wt  qsec vs am gear carb
## Datsun 710        22.8   4 108.0 93 3.85 2.320 18.61  1  1    4    1
## Merc 240D         24.4   4 146.7 62 3.69 3.190 20.00  1  0    4    2
## Merc 230          22.8   4 140.8 95 3.92 3.150 22.90  1  0    4    2
## Fiat 128          32.4   4  78.7 66 4.08 2.200 19.47  1  1    4    1
## Honda Civic       30.4   4  75.7 52 4.93 1.615 18.52  1  1    4    2
## Toyota Corolla    33.9   4  71.1 65 4.22 1.835 19.90  1  1    4    1

(3).请对(2)得到的数据按mileage升序排序

> cyl4.data[order(cyl4.data$mileage),]
##                mileage cyl  disp  hp drat    wt  qsec vs am gear carb
## Volvo 142E        21.4   4 121.0 109 4.11 2.780 18.60  1  1    4    2
## Toyota Corona     21.5   4 120.1  97 3.70 2.465 20.01  1  0    3    1
## Datsun 710        22.8   4 108.0  93 3.85 2.320 18.61  1  1    4    1
## Merc 230          22.8   4 140.8  95 3.92 3.150 22.90  1  0    4    2
## Merc 240D         24.4   4 146.7  62 3.69 3.190 20.00  1  0    4    2
## Porsche 914-2     26.0   4 120.3  91 4.43 2.140 16.70  0  1    5    2
## Fiat X1-9         27.3   4  79.0  66 4.08 1.935 18.90  1  1    4    1
## Honda Civic       30.4   4  75.7  52 4.93 1.615 18.52  1  1    4    2
## Lotus Europa      30.4   4  95.1 113 3.77 1.513 16.90  1  1    5    2
## Fiat 128          32.4   4  78.7  66 4.08 2.200 19.47  1  1    4    1
## Toyota Corolla    33.9   4  71.1  65 4.22 1.835 19.90  1  1    4    1

(4).请对(3)得到的数据按列求和

> apply(cyl4.data,1,sum)
##     Datsun 710      Merc 240D       Merc 230       Fiat 128    Honda Civic 
##        259.580        270.980        299.570        213.850        195.165 
## Toyota Corolla  Toyota Corona      Fiat X1-9  Porsche 914-2   Lotus Europa 
##        206.955        273.775        208.215        272.570        273.683 
##     Volvo 142E 
##        288.890

(5).请计算2020年12月10日与1979年1月1日的时间差是几个星期

> now<-as.Date("2020-12-10")
> #format(now, format="%B %d %Y")
> past<-as.Date("1979-01-01")
> difftime(now,past,units = "week")
## Time difference of 2188.429 weeks

(6).请用R对y=sin(2*x)进行求导,并画图原函数和导数函数在[-π,π]上的图像

> fun<-expression(sin(2*x))#函数表达式
> dfun<-D(fun,"x")#符号求导
> x<-seq(-pi,pi,length.out = 100)#分割x成多个间断点
> yfun<-eval(fun)#原函数在x区间上的值
> ydfun<-eval(dfun)#导数在x区间上的值
> plot(x,yfun,type="l",col="red",ylim=c(-2, 2))
> lines(x,ydfun,lty=3,col="black")

(7).请你编写一个用户自定义的函数,这个函数的功能是指定半径r的数据,就可以画出对应的圆

> circle<-function(r)
+   {
+   theta<-seq(0,2*pi,length.out = 100)
+   x<-r*cos(theta)
+   y<-r*sin(theta)
+   plot(x,y,type="l")
+   }
> circle(2)

(8).假设你有两个字符串,分别是“Hello”,“NUIST”,请你把这两个字符串连起来

> paste("Hello","NUIST")
## [1] "Hello NUIST"

(9).请用for语句在屏幕上输出10次“Hello,NUIST”

> for (i in 1:10) {
+   print(paste("Hello","NUIST",sep = ","))
+ }
## [1] "Hello,NUIST"
## [1] "Hello,NUIST"
## [1] "Hello,NUIST"
## [1] "Hello,NUIST"
## [1] "Hello,NUIST"
## [1] "Hello,NUIST"
## [1] "Hello,NUIST"
## [1] "Hello,NUIST"
## [1] "Hello,NUIST"
## [1] "Hello,NUIST"

(10).请用ggplot函数绘制iris数据集中,Sepal.Length和Sepal.Width的散点图

> library(ggplot2)
> ggplot(iris,aes(x=Sepal.Length,y=Sepal.Width))+geom_point()