Cargar librerias
library(dplyr)
##
## Attaching package: 'dplyr'
## The following objects are masked from 'package:stats':
##
## filter, lag
## The following objects are masked from 'package:base':
##
## intersect, setdiff, setequal, union
library(mosaic)
## Warning: package 'mosaic' was built under R version 4.0.3
## Registered S3 method overwritten by 'mosaic':
## method from
## fortify.SpatialPolygonsDataFrame ggplot2
##
## The 'mosaic' package masks several functions from core packages in order to add
## additional features. The original behavior of these functions should not be affected by this.
##
## Attaching package: 'mosaic'
## The following object is masked from 'package:Matrix':
##
## mean
## The following object is masked from 'package:ggplot2':
##
## stat
## The following objects are masked from 'package:dplyr':
##
## count, do, tally
## The following objects are masked from 'package:stats':
##
## binom.test, cor, cor.test, cov, fivenum, IQR, median, prop.test,
## quantile, sd, t.test, var
## The following objects are masked from 'package:base':
##
## max, mean, min, prod, range, sample, sum
library(readr)
library(ggplot2)
library(knitr)
library(fdth)
##
## Attaching package: 'fdth'
## The following objects are masked from 'package:mosaic':
##
## sd, var
## The following objects are masked from 'package:stats':
##
## sd, var
Cargar los datos
source("https://raw.githubusercontent.com/rpizarrog/probabilidad-y-estad-stica/master/construir%20datos%20y%20funciones%20caso%209.r", encoding = "UTF-8")
kable(head(personas, 10), caption = "Los primeros diez registros de nombres en el conjunto de datos")
Los primeros diez registros de nombres en el conjunto de datos
| JUAN |
M |
NO |
NO |
NO |
SI |
NO |
SI |
NO |
NO |
NO |
NO |
NO |
SI |
| JOSÉ LUIS |
M |
NO |
NO |
NO |
NO |
NO |
NO |
NO |
SI |
NO |
NO |
NO |
NO |
| JOSÉ |
M |
NO |
SI |
NO |
SI |
NO |
NO |
NO |
NO |
NO |
NO |
SI |
SI |
| MARÍA GUADALUPE |
F |
NO |
SI |
NO |
NO |
NO |
NO |
NO |
NO |
NO |
NO |
SI |
SI |
| FRANCISCO |
M |
NO |
NO |
NO |
NO |
NO |
NO |
SI |
NO |
NO |
NO |
NO |
NO |
| GUADALUPE |
F |
NO |
NO |
NO |
NO |
NO |
NO |
NO |
NO |
NO |
NO |
NO |
NO |
| MARÍA |
F |
NO |
SI |
NO |
NO |
SI |
NO |
NO |
NO |
NO |
NO |
NO |
NO |
| JUANA |
F |
NO |
NO |
NO |
NO |
SI |
NO |
NO |
SI |
NO |
NO |
NO |
NO |
| ANTONIO |
M |
NO |
NO |
NO |
NO |
NO |
NO |
NO |
NO |
NO |
NO |
NO |
NO |
| JESÚS |
M |
NO |
NO |
SI |
NO |
NO |
SI |
NO |
NO |
SI |
NO |
NO |
NO |
kable(tail(personas, 10), caption = "Las útimos diez registros de nombres en el conjunto de datos")
Las útimos diez registros de nombres en el conjunto de datos
| 91 |
ANDREA |
F |
NO |
NO |
NO |
NO |
NO |
NO |
NO |
NO |
NO |
NO |
NO |
SI |
| 92 |
ISABEL |
F |
NO |
NO |
NO |
NO |
NO |
NO |
NO |
NO |
NO |
NO |
NO |
NO |
| 93 |
MARÍA TERESA |
F |
NO |
SI |
NO |
NO |
SI |
NO |
NO |
SI |
NO |
NO |
NO |
NO |
| 94 |
IRMA |
F |
SI |
SI |
NO |
NO |
NO |
NO |
NO |
NO |
NO |
NO |
NO |
NO |
| 95 |
CARMEN |
F |
NO |
NO |
NO |
NO |
NO |
NO |
NO |
NO |
NO |
NO |
NO |
NO |
| 96 |
LUCÍA |
F |
NO |
SI |
NO |
SI |
NO |
NO |
NO |
SI |
NO |
NO |
SI |
SI |
| 97 |
ADRIANA |
F |
NO |
NO |
NO |
NO |
NO |
NO |
SI |
NO |
NO |
NO |
NO |
NO |
| 98 |
AGUSTÍN |
M |
NO |
SI |
NO |
NO |
NO |
NO |
NO |
NO |
SI |
NO |
NO |
NO |
| 99 |
MARÍA DE LA LUZ |
F |
NO |
NO |
NO |
NO |
NO |
NO |
SI |
NO |
NO |
NO |
NO |
NO |
| 100 |
GUSTAVO |
M |
NO |
NO |
NO |
NO |
NO |
NO |
NO |
SI |
NO |
NO |
NO |
NO |
Cargar los datos de alumnos
alumnos=alumnos=read_csv("https://raw.githubusercontent.com/rpizarrog/probabilidad-y-estad-stica/master/datos/promedios%20alumnos/datos%20alumnos%20promedios%20SEP%202020.csv")
## Parsed with column specification:
## cols(
## `No. Control` = col_double(),
## Alumno = col_double(),
## Semestre = col_double(),
## `Cr. Apr.` = col_double(),
## Carga = col_double(),
## Promedio = col_double(),
## Carrera = col_character()
## )
kable(head(alumnos, 10), caption = "Los primeros diez registros de alumnos")
Los primeros diez registros de alumnos
| 20190001 |
1 |
11 |
198 |
19 |
80.21 |
SISTEMAS |
| 20190002 |
2 |
11 |
235 |
10 |
84.33 |
SISTEMAS |
| 20190003 |
3 |
9 |
235 |
10 |
95.25 |
SISTEMAS |
| 20190004 |
4 |
9 |
226 |
19 |
95.00 |
SISTEMAS |
| 20190005 |
5 |
10 |
231 |
14 |
82.32 |
SISTEMAS |
| 20190006 |
6 |
9 |
212 |
23 |
95.02 |
SISTEMAS |
| 20190007 |
7 |
12 |
221 |
10 |
79.06 |
SISTEMAS |
| 20190008 |
8 |
9 |
226 |
9 |
92.47 |
SISTEMAS |
| 20190009 |
9 |
9 |
231 |
4 |
91.08 |
SISTEMAS |
| 20190010 |
10 |
11 |
222 |
13 |
80.42 |
SISTEMAS |
kable(tail(alumnos, 10), caption = "Las útimos diez registros de alumnos")
Las útimos diez registros de alumnos
| 20195920 |
5920 |
7 |
169 |
23 |
89.14 |
ADMINISTRACION |
| 20195921 |
5921 |
5 |
109 |
26 |
87.83 |
ADMINISTRACION |
| 20195922 |
5922 |
3 |
55 |
29 |
92.83 |
ADMINISTRACION |
| 20195923 |
5923 |
2 |
23 |
23 |
88.60 |
ADMINISTRACION |
| 20195924 |
5924 |
2 |
27 |
28 |
92.83 |
ADMINISTRACION |
| 20195925 |
5925 |
7 |
94 |
13 |
80.95 |
ADMINISTRACION |
| 20195926 |
5926 |
5 |
103 |
32 |
92.68 |
ADMINISTRACION |
| 20195927 |
5927 |
4 |
79 |
34 |
86.18 |
ADMINISTRACION |
| 20195928 |
5928 |
5 |
108 |
32 |
90.48 |
ADMINISTRACION |
| 20195929 |
5929 |
7 |
169 |
32 |
92.33 |
ADMINISTRACION |
Simular muestreos
N=nrow(personas)
n=10
muestra=sample(personas$nombres, n)
kable(muestra, caption = "La muestra de personas")
La muestra de personas
| DANIEL |
| JUAN MANUEL |
| MIGUEL |
| GUSTAVO |
| FRANCISCA |
| RAÚL |
| JUAN |
| LUCÍA |
| MARÍA TERESA |
| JORGE |
N=nrow(alumnos)
n=100
muestra=sample(N, n)
kable(alumnos[muestra, ], caption = "La muestra de alumnos")
La muestra de alumnos
| 20192700 |
2700 |
9 |
202 |
19 |
82.26 |
INDUSTRIAL |
| 20191164 |
1164 |
9 |
129 |
18 |
83.79 |
BIOQUIMICA |
| 20191469 |
1469 |
7 |
150 |
36 |
80.81 |
BIOQUIMICA |
| 20195645 |
5645 |
3 |
55 |
29 |
97.67 |
ADMINISTRACION |
| 20193227 |
3227 |
7 |
163 |
30 |
86.30 |
INDUSTRIAL |
| 20194973 |
4973 |
6 |
133 |
33 |
85.54 |
GESTION EMPRESARIAL |
| 20195866 |
5866 |
1 |
NA |
27 |
0.00 |
ADMINISTRACION |
| 20191513 |
1513 |
6 |
67 |
34 |
78.60 |
BIOQUIMICA |
| 20194076 |
4076 |
7 |
144 |
32 |
88.52 |
MECATRONICA |
| 20192521 |
2521 |
9 |
222 |
23 |
86.40 |
ELECTRONICA |
| 20195624 |
5624 |
3 |
55 |
29 |
96.67 |
ADMINISTRACION |
| 20194985 |
4985 |
4 |
55 |
29 |
80.42 |
GESTION EMPRESARIAL |
| 20195075 |
5075 |
5 |
116 |
32 |
87.71 |
GESTION EMPRESARIAL |
| 20195041 |
5041 |
7 |
140 |
35 |
82.27 |
GESTION EMPRESARIAL |
| 20190395 |
395 |
1 |
NA |
27 |
0.00 |
SISTEMAS |
| 20193795 |
3795 |
4 |
66 |
29 |
86.47 |
MECATRONICA |
| 20195683 |
5683 |
1 |
NA |
27 |
0.00 |
ADMINISTRACION |
| 20191577 |
1577 |
9 |
165 |
16 |
78.86 |
CIVIL |
| 20192306 |
2306 |
5 |
89 |
27 |
86.33 |
ELECTRICA |
| 20193510 |
3510 |
3 |
41 |
24 |
76.80 |
MECANICA |
| 20191415 |
1415 |
6 |
123 |
29 |
82.48 |
BIOQUIMICA |
| 20190830 |
830 |
5 |
97 |
26 |
93.50 |
ARQUITECTURA |
| 20190200 |
200 |
7 |
107 |
17 |
79.26 |
SISTEMAS |
| 20195484 |
5484 |
11 |
257 |
5 |
87.44 |
ADMINISTRACION |
| 20190025 |
25 |
11 |
230 |
15 |
84.02 |
SISTEMAS |
| 20192596 |
2596 |
3 |
52 |
25 |
92.67 |
ELECTRONICA |
| 20193863 |
3863 |
1 |
NA |
25 |
0.00 |
MECATRONICA |
| 20190074 |
74 |
10 |
230 |
15 |
83.94 |
SISTEMAS |
| 20191933 |
1933 |
1 |
NA |
27 |
0.00 |
CIVIL |
| 20191691 |
1691 |
4 |
75 |
32 |
84.19 |
CIVIL |
| 20192587 |
2587 |
5 |
90 |
20 |
83.50 |
ELECTRONICA |
| 20190886 |
886 |
1 |
NA |
26 |
0.00 |
ARQUITECTURA |
| 20194827 |
4827 |
7 |
150 |
25 |
88.75 |
GESTION EMPRESARIAL |
| 20194756 |
4756 |
9 |
230 |
15 |
91.77 |
GESTION EMPRESARIAL |
| 20190663 |
663 |
7 |
151 |
23 |
85.22 |
ARQUITECTURA |
| 20192503 |
2503 |
10 |
202 |
23 |
81.25 |
ELECTRONICA |
| 20194892 |
4892 |
1 |
NA |
27 |
0.00 |
GESTION EMPRESARIAL |
| 20194549 |
4549 |
6 |
133 |
23 |
83.25 |
QUIMICA |
| 20190308 |
308 |
4 |
83 |
29 |
91.00 |
SISTEMAS |
| 20192139 |
2139 |
6 |
143 |
30 |
84.77 |
CIVIL |
| 20191319 |
1319 |
7 |
124 |
34 |
83.15 |
BIOQUIMICA |
| 20195755 |
5755 |
4 |
84 |
29 |
87.44 |
ADMINISTRACION |
| 20195920 |
5920 |
7 |
169 |
23 |
89.14 |
ADMINISTRACION |
| 20193632 |
3632 |
1 |
NA |
26 |
0.00 |
MECANICA |
| 20193546 |
3546 |
3 |
48 |
22 |
78.64 |
MECANICA |
| 20191619 |
1619 |
9 |
225 |
10 |
84.85 |
CIVIL |
| 20191632 |
1632 |
9 |
159 |
15 |
80.15 |
CIVIL |
| 20194890 |
4890 |
7 |
170 |
35 |
87.44 |
GESTION EMPRESARIAL |
| 20192090 |
2090 |
4 |
78 |
33 |
83.59 |
CIVIL |
| 20191764 |
1764 |
1 |
NA |
27 |
0.00 |
CIVIL |
| 20190612 |
612 |
1 |
NA |
26 |
0.00 |
ARQUITECTURA |
| 20191097 |
1097 |
7 |
139 |
24 |
84.62 |
ARQUITECTURA |
| 20190796 |
796 |
7 |
116 |
34 |
81.12 |
ARQUITECTURA |
| 20190240 |
240 |
2 |
27 |
28 |
92.33 |
SISTEMAS |
| 20191202 |
1202 |
1 |
NA |
23 |
0.00 |
BIOQUIMICA |
| 20194673 |
4673 |
12 |
219 |
16 |
89.93 |
GESTION EMPRESARIAL |
| 20195370 |
5370 |
5 |
41 |
4 |
81.44 |
INFORMATICA |
| 20191901 |
1901 |
5 |
117 |
31 |
87.08 |
CIVIL |
| 20193696 |
3696 |
11 |
231 |
4 |
83.33 |
MECATRONICA |
| 20193370 |
3370 |
11 |
225 |
10 |
81.86 |
MECANICA |
| 20191197 |
1197 |
3 |
57 |
27 |
82.54 |
BIOQUIMICA |
| 20193032 |
3032 |
3 |
55 |
29 |
89.00 |
INDUSTRIAL |
| 20194867 |
4867 |
1 |
NA |
27 |
0.00 |
GESTION EMPRESARIAL |
| 20191967 |
1967 |
1 |
NA |
27 |
0.00 |
CIVIL |
| 20193638 |
3638 |
7 |
170 |
27 |
86.59 |
MECANICA |
| 20190934 |
934 |
7 |
170 |
28 |
88.58 |
ARQUITECTURA |
| 20194100 |
4100 |
9 |
225 |
5 |
87.96 |
QUIMICA |
| 20195193 |
5193 |
6 |
138 |
33 |
86.21 |
GESTION EMPRESARIAL |
| 20195450 |
5450 |
10 |
262 |
10 |
88.60 |
ADMINISTRACION |
| 20191067 |
1067 |
1 |
NA |
26 |
0.00 |
ARQUITECTURA |
| 20193404 |
3404 |
10 |
172 |
18 |
81.13 |
MECANICA |
| 20194217 |
4217 |
12 |
225 |
10 |
78.46 |
QUIMICA |
| 20191449 |
1449 |
1 |
NA |
23 |
0.00 |
BIOQUIMICA |
| 20192720 |
2720 |
9 |
202 |
24 |
82.28 |
INDUSTRIAL |
| 20195151 |
5151 |
1 |
NA |
27 |
0.00 |
GESTION EMPRESARIAL |
| 20193110 |
3110 |
1 |
NA |
27 |
0.00 |
INDUSTRIAL |
| 20191051 |
1051 |
6 |
127 |
24 |
88.19 |
ARQUITECTURA |
| 20194783 |
4783 |
1 |
NA |
27 |
0.00 |
GESTION EMPRESARIAL |
| 20195643 |
5643 |
2 |
27 |
28 |
92.67 |
ADMINISTRACION |
| 20194482 |
4482 |
2 |
25 |
30 |
82.00 |
QUIMICA |
| 20194046 |
4046 |
1 |
NA |
25 |
0.00 |
MECATRONICA |
| 20192183 |
2183 |
2 |
27 |
30 |
83.50 |
CIVIL |
| 20190659 |
659 |
1 |
NA |
26 |
0.00 |
ARQUITECTURA |
| 20195318 |
5318 |
1 |
NA |
26 |
0.00 |
TIC |
| 20192101 |
2101 |
2 |
23 |
25 |
80.80 |
CIVIL |
| 20191758 |
1758 |
4 |
80 |
34 |
85.94 |
CIVIL |
| 20192297 |
2297 |
5 |
94 |
33 |
84.77 |
ELECTRICA |
| 20193793 |
3793 |
7 |
128 |
31 |
84.46 |
MECATRONICA |
| 20190822 |
822 |
3 |
48 |
32 |
90.45 |
ARQUITECTURA |
| 20190352 |
352 |
8 |
176 |
32 |
80.47 |
SISTEMAS |
| 20193467 |
3467 |
3 |
42 |
32 |
82.30 |
MECANICA |
| 20190443 |
443 |
7 |
160 |
34 |
90.34 |
SISTEMAS |
| 20190241 |
241 |
5 |
112 |
25 |
91.63 |
SISTEMAS |
| 20194569 |
4569 |
3 |
51 |
30 |
88.64 |
QUIMICA |
| 20193456 |
3456 |
6 |
89 |
32 |
78.30 |
MECANICA |
| 20195534 |
5534 |
8 |
177 |
34 |
86.89 |
ADMINISTRACION |
| 20193666 |
3666 |
12 |
190 |
5 |
78.35 |
MECATRONICA |
| 20192155 |
2155 |
2 |
22 |
26 |
93.40 |
CIVIL |
| 20193527 |
3527 |
1 |
NA |
26 |
0.00 |
MECANICA |
| 20191607 |
1607 |
10 |
231 |
4 |
83.15 |
CIVIL |
Muestreo aleatorio sistematico
N=nrow(personas)
n = 10
saltos=round(N / n, 0)
inicio=round(sample(N, 1) / n, 0)
cuales=seq(from = inicio, to =N, by= saltos)
kable(personas[cuales, ], caption = "La muestra sistematizada de personas")
La muestra sistematizada de personas
| 6 |
GUADALUPE |
F |
NO |
NO |
NO |
NO |
NO |
NO |
NO |
NO |
NO |
NO |
NO |
NO |
| 16 |
MARÍA DEL CARMEN |
F |
NO |
NO |
NO |
NO |
NO |
SI |
NO |
NO |
NO |
NO |
NO |
NO |
| 26 |
JAVIER |
F |
NO |
NO |
NO |
NO |
NO |
SI |
NO |
NO |
NO |
NO |
SI |
NO |
| 36 |
FRANCISCO JAVIER |
F |
SI |
NO |
NO |
NO |
NO |
NO |
NO |
SI |
NO |
NO |
SI |
NO |
| 46 |
TERESA |
F |
NO |
NO |
NO |
NO |
NO |
NO |
NO |
SI |
NO |
NO |
NO |
NO |
| 56 |
YOLANDA |
F |
SI |
NO |
NO |
NO |
SI |
NO |
NO |
NO |
NO |
NO |
NO |
NO |
| 66 |
VÍCTOR MANUEL |
M |
NO |
SI |
SI |
SI |
NO |
NO |
NO |
NO |
NO |
NO |
NO |
NO |
| 76 |
MARÍA ISABEL |
F |
NO |
SI |
NO |
NO |
NO |
NO |
NO |
NO |
NO |
NO |
NO |
SI |
| 86 |
JOSÉ GUADALUPE |
M |
NO |
NO |
NO |
NO |
NO |
SI |
NO |
NO |
NO |
NO |
NO |
SI |
| 96 |
LUCÍA |
F |
NO |
SI |
NO |
SI |
NO |
NO |
NO |
SI |
NO |
NO |
SI |
SI |
N=nrow(alumnos)
n = 100
saltos=round(N / n, 0)
inicio=round(sample(N, 1) / n, 0)
cuales=seq(from = inicio, to =N, by= saltos)
kable(alumnos[cuales, ], caption = "La muestra de alumnos")
La muestra de alumnos
| 20190040 |
40 |
9 |
217 |
18 |
92.00 |
SISTEMAS |
| 20190099 |
99 |
1 |
NA |
27 |
0.00 |
SISTEMAS |
| 20190158 |
158 |
1 |
NA |
27 |
0.00 |
SISTEMAS |
| 20190217 |
217 |
1 |
NA |
27 |
0.00 |
SISTEMAS |
| 20190276 |
276 |
3 |
8 |
22 |
80.00 |
SISTEMAS |
| 20190335 |
335 |
3 |
50 |
28 |
92.00 |
SISTEMAS |
| 20190394 |
394 |
3 |
50 |
28 |
88.55 |
SISTEMAS |
| 20190453 |
453 |
9 |
219 |
16 |
89.98 |
ARQUITECTURA |
| 20190512 |
512 |
9 |
223 |
4 |
90.24 |
ARQUITECTURA |
| 20190571 |
571 |
1 |
NA |
26 |
0.00 |
ARQUITECTURA |
| 20190630 |
630 |
1 |
NA |
26 |
0.00 |
ARQUITECTURA |
| 20190689 |
689 |
1 |
NA |
26 |
0.00 |
ARQUITECTURA |
| 20190748 |
748 |
6 |
117 |
33 |
86.38 |
ARQUITECTURA |
| 20190807 |
807 |
3 |
48 |
32 |
89.82 |
ARQUITECTURA |
| 20190866 |
866 |
6 |
142 |
28 |
88.53 |
ARQUITECTURA |
| 20190925 |
925 |
4 |
80 |
30 |
93.39 |
ARQUITECTURA |
| 20190984 |
984 |
6 |
120 |
28 |
85.59 |
ARQUITECTURA |
| 20191043 |
1043 |
2 |
26 |
26 |
88.33 |
ARQUITECTURA |
| 20191102 |
1102 |
3 |
52 |
28 |
88.33 |
ARQUITECTURA |
| 20191161 |
1161 |
9 |
247 |
11 |
90.62 |
BIOQUIMICA |
| 20191220 |
1220 |
5 |
81 |
34 |
85.44 |
BIOQUIMICA |
| 20191279 |
1279 |
3 |
52 |
30 |
97.92 |
BIOQUIMICA |
| 20191338 |
1338 |
4 |
77 |
22 |
80.47 |
BIOQUIMICA |
| 20191397 |
1397 |
4 |
77 |
28 |
85.71 |
BIOQUIMICA |
| 20191456 |
1456 |
6 |
118 |
34 |
84.35 |
BIOQUIMICA |
| 20191515 |
1515 |
5 |
99 |
26 |
86.86 |
BIOQUIMICA |
| 20191574 |
1574 |
12 |
230 |
5 |
79.42 |
CIVIL |
| 20191633 |
1633 |
11 |
206 |
29 |
79.65 |
CIVIL |
| 20191692 |
1692 |
8 |
193 |
27 |
80.38 |
CIVIL |
| 20191751 |
1751 |
7 |
175 |
24 |
87.25 |
CIVIL |
| 20191810 |
1810 |
5 |
109 |
30 |
82.48 |
CIVIL |
| 20191869 |
1869 |
3 |
57 |
24 |
90.83 |
CIVIL |
| 20191928 |
1928 |
5 |
100 |
19 |
80.00 |
CIVIL |
| 20191987 |
1987 |
5 |
101 |
28 |
83.71 |
CIVIL |
| 20192046 |
2046 |
8 |
150 |
33 |
81.77 |
CIVIL |
| 20192105 |
2105 |
8 |
178 |
30 |
79.41 |
CIVIL |
| 20192164 |
2164 |
1 |
NA |
27 |
0.00 |
CIVIL |
| 20192223 |
2223 |
9 |
220 |
15 |
83.30 |
ELECTRICA |
| 20192282 |
2282 |
5 |
94 |
26 |
84.09 |
ELECTRICA |
| 20192341 |
2341 |
3 |
46 |
28 |
91.55 |
ELECTRICA |
| 20192400 |
2400 |
1 |
NA |
24 |
0.00 |
ELECTRICA |
| 20192459 |
2459 |
1 |
NA |
24 |
0.00 |
ELECTRICA |
| 20192518 |
2518 |
11 |
192 |
23 |
83.88 |
ELECTRONICA |
| 20192577 |
2577 |
3 |
52 |
25 |
87.67 |
ELECTRONICA |
| 20192636 |
2636 |
5 |
105 |
28 |
92.65 |
ELECTRONICA |
| 20192695 |
2695 |
9 |
226 |
4 |
85.18 |
INDUSTRIAL |
| 20192754 |
2754 |
5 |
93 |
34 |
83.29 |
INDUSTRIAL |
| 20192813 |
2813 |
5 |
98 |
32 |
83.41 |
INDUSTRIAL |
| 20192872 |
2872 |
7 |
156 |
36 |
84.71 |
INDUSTRIAL |
| 20192931 |
2931 |
2 |
27 |
24 |
82.83 |
INDUSTRIAL |
| 20192990 |
2990 |
9 |
235 |
10 |
84.96 |
INDUSTRIAL |
| 20193049 |
3049 |
2 |
27 |
24 |
81.50 |
INDUSTRIAL |
| 20193108 |
3108 |
8 |
123 |
34 |
82.50 |
INDUSTRIAL |
| 20193167 |
3167 |
2 |
27 |
28 |
88.33 |
INDUSTRIAL |
| 20193226 |
3226 |
1 |
NA |
27 |
0.00 |
INDUSTRIAL |
| 20193285 |
3285 |
2 |
27 |
24 |
81.00 |
INDUSTRIAL |
| 20193344 |
3344 |
5 |
55 |
27 |
86.69 |
INDUSTRIAL |
| 20193403 |
3403 |
9 |
175 |
28 |
83.45 |
MECANICA |
| 20193462 |
3462 |
7 |
83 |
30 |
78.05 |
MECANICA |
| 20193521 |
3521 |
7 |
137 |
34 |
86.20 |
MECANICA |
| 20193580 |
3580 |
8 |
175 |
21 |
85.34 |
MECANICA |
| 20193639 |
3639 |
3 |
30 |
22 |
83.00 |
MECANICA |
| 20193698 |
3698 |
9 |
219 |
16 |
89.63 |
MECATRONICA |
| 20193757 |
3757 |
1 |
NA |
25 |
0.00 |
MECATRONICA |
| 20193816 |
3816 |
5 |
108 |
30 |
86.71 |
MECATRONICA |
| 20193875 |
3875 |
4 |
67 |
23 |
79.07 |
MECATRONICA |
| 20193934 |
3934 |
3 |
53 |
27 |
86.50 |
MECATRONICA |
| 20193993 |
3993 |
8 |
151 |
27 |
79.53 |
MECATRONICA |
| 20194052 |
4052 |
5 |
110 |
24 |
85.17 |
MECATRONICA |
| 20194111 |
4111 |
9 |
224 |
6 |
91.26 |
QUIMICA |
| 20194170 |
4170 |
10 |
211 |
24 |
80.44 |
QUIMICA |
| 20194229 |
4229 |
3 |
36 |
30 |
89.25 |
QUIMICA |
| 20194288 |
4288 |
13 |
235 |
10 |
78.98 |
QUIMICA |
| 20194347 |
4347 |
7 |
138 |
24 |
85.07 |
QUIMICA |
| 20194406 |
4406 |
4 |
86 |
28 |
81.44 |
QUIMICA |
| 20194465 |
4465 |
9 |
214 |
21 |
89.05 |
QUIMICA |
| 20194524 |
4524 |
10 |
127 |
13 |
78.89 |
QUIMICA |
| 20194583 |
4583 |
7 |
150 |
22 |
86.16 |
QUIMICA |
| 20194642 |
4642 |
2 |
25 |
31 |
89.17 |
QUIMICA |
| 20194701 |
4701 |
9 |
230 |
5 |
94.75 |
GESTION EMPRESARIAL |
| 20194760 |
4760 |
9 |
215 |
20 |
87.38 |
GESTION EMPRESARIAL |
| 20194819 |
4819 |
3 |
54 |
28 |
87.08 |
GESTION EMPRESARIAL |
| 20194878 |
4878 |
3 |
54 |
28 |
87.42 |
GESTION EMPRESARIAL |
| 20194937 |
4937 |
7 |
167 |
33 |
88.00 |
GESTION EMPRESARIAL |
| 20194996 |
4996 |
3 |
54 |
28 |
95.33 |
GESTION EMPRESARIAL |
| 20195055 |
5055 |
1 |
NA |
27 |
0.00 |
GESTION EMPRESARIAL |
| 20195114 |
5114 |
7 |
185 |
25 |
95.74 |
GESTION EMPRESARIAL |
| 20195173 |
5173 |
2 |
37 |
30 |
93.25 |
GESTION EMPRESARIAL |
| 20195232 |
5232 |
3 |
54 |
28 |
89.08 |
GESTION EMPRESARIAL |
| 20195291 |
5291 |
5 |
101 |
28 |
81.27 |
TIC |
| 20195350 |
5350 |
9 |
215 |
16 |
84.57 |
INFORMATICA |
| 20195409 |
5409 |
3 |
55 |
27 |
87.92 |
INFORMATICA |
| 20195468 |
5468 |
11 |
240 |
22 |
84.88 |
ADMINISTRACION |
| 20195527 |
5527 |
1 |
NA |
27 |
0.00 |
ADMINISTRACION |
| 20195586 |
5586 |
1 |
NA |
27 |
0.00 |
ADMINISTRACION |
| 20195645 |
5645 |
3 |
55 |
29 |
97.67 |
ADMINISTRACION |
| 20195704 |
5704 |
5 |
79 |
29 |
86.06 |
ADMINISTRACION |
| 20195763 |
5763 |
5 |
113 |
27 |
92.83 |
ADMINISTRACION |
| 20195822 |
5822 |
5 |
113 |
27 |
95.63 |
ADMINISTRACION |
| 20195881 |
5881 |
7 |
135 |
34 |
83.90 |
ADMINISTRACION |
Muestreo aleatorio estratificado
N=nrow(personas)
n=10
femeninos=filter(personas, generos=='F')
masculinos=filter(personas, generos=='M')
frfem=nrow(femeninos) / N
frmas=nrow(masculinos) / N
frfem
## [1] 0.42
frmas
## [1] 0.58
muestraFem <- sample(femeninos, n * frfem)
kable(muestraFem, caption = "La muestra de personas Femenino")
La muestra de personas Femenino
| 26 |
GABRIELA |
F |
NO |
NO |
NO |
NO |
NO |
NO |
NO |
NO |
NO |
NO |
NO |
NO |
26 |
| 36 |
ISABEL |
F |
NO |
NO |
NO |
NO |
NO |
NO |
NO |
NO |
NO |
NO |
NO |
NO |
36 |
| 39 |
CARMEN |
F |
NO |
NO |
NO |
NO |
NO |
NO |
NO |
NO |
NO |
NO |
NO |
NO |
39 |
| 10 |
FRANCISCO JAVIER |
F |
SI |
NO |
NO |
NO |
NO |
NO |
NO |
SI |
NO |
NO |
SI |
NO |
10 |
muestraMas <- sample(masculinos, n * frmas)
kable(muestraMas, caption = "La muestra de personas Masculino")
La muestra de personas Masculino
| 58 |
GUSTAVO |
M |
NO |
NO |
NO |
NO |
NO |
NO |
NO |
SI |
NO |
NO |
NO |
NO |
58 |
| 20 |
RAFAEL |
M |
NO |
NO |
NO |
NO |
NO |
NO |
NO |
SI |
NO |
NO |
NO |
NO |
20 |
| 3 |
JOSÉ |
M |
NO |
SI |
NO |
SI |
NO |
NO |
NO |
NO |
NO |
NO |
SI |
SI |
3 |
| 31 |
ALFREDO |
M |
NO |
NO |
NO |
SI |
NO |
NO |
NO |
NO |
NO |
SI |
NO |
NO |
31 |
| 47 |
RUBEN |
M |
NO |
SI |
NO |
NO |
NO |
NO |
NO |
NO |
NO |
NO |
SI |
NO |
47 |
N=nrow(alumnos)
n=100
tabla_frec=data.frame(fdt_cat(alumnos$Carrera))
tabla_frec$muestra=round(tabla_frec$rf * n, 0)
kable(tabla_frec, caption = "Tabla de frecuencia de alumnos")
Tabla de frecuencia de alumnos
| INDUSTRIAL |
707 |
0.1192444 |
11.924439 |
707 |
11.92444 |
12 |
| ARQUITECTURA |
675 |
0.1138472 |
11.384719 |
1382 |
23.30916 |
11 |
| CIVIL |
648 |
0.1092933 |
10.929330 |
2030 |
34.23849 |
11 |
| GESTION EMPRESARIAL |
585 |
0.0986676 |
9.866757 |
2615 |
44.10525 |
10 |
| QUIMICA |
568 |
0.0958003 |
9.580030 |
3183 |
53.68528 |
10 |
| ADMINISTRACION |
497 |
0.0838253 |
8.382527 |
3680 |
62.06780 |
8 |
| SISTEMAS |
452 |
0.0762355 |
7.623545 |
4132 |
69.69135 |
8 |
| BIOQUIMICA |
441 |
0.0743802 |
7.438016 |
4573 |
77.12936 |
7 |
| MECATRONICA |
432 |
0.0728622 |
7.286220 |
5005 |
84.41558 |
7 |
| MECANICA |
301 |
0.0507674 |
5.076741 |
5306 |
89.49233 |
5 |
| ELECTRICA |
280 |
0.0472255 |
4.722550 |
5586 |
94.21488 |
5 |
| ELECTRONICA |
161 |
0.0271547 |
2.715466 |
5747 |
96.93034 |
3 |
| INFORMATICA |
101 |
0.0170349 |
1.703491 |
5848 |
98.63383 |
2 |
| TIC |
81 |
0.0136617 |
1.366166 |
5929 |
100.00000 |
1 |
Muestreo por conglomerados
N=nrow(alumnos)
n=100
locdurangomx=read.csv("https://raw.githubusercontent.com/rpizarrog/probabilidad-y-estad-stica/master/datos/locdurangomx.csv", encoding = "UTF-8")
localidades50=locdurangomx[sample(nrow(locdurangomx), 5), ]
alumlocalidades=sample(localidades50, N, replace = TRUE)
alumnos$localidad=alumlocalidades$Nom_Loc
alumnos$latitud=alumlocalidades$Lat_Decimal
alumnos$longitud=alumlocalidades$Lon_Decimal
kable(head(alumnos, 10), caption = "Los primeros diez registros de alumnos")
Los primeros diez registros de alumnos
| 20190001 |
1 |
11 |
198 |
19 |
80.21 |
SISTEMAS |
Rancho las Sanjuaneras |
24.34891 |
-104.3678 |
| 20190002 |
2 |
11 |
235 |
10 |
84.33 |
SISTEMAS |
Luis Peyro |
23.93362 |
-104.5206 |
| 20190003 |
3 |
9 |
235 |
10 |
95.25 |
SISTEMAS |
Rancho las Sanjuaneras |
24.34891 |
-104.3678 |
| 20190004 |
4 |
9 |
226 |
19 |
95.00 |
SISTEMAS |
Luis Peyro |
23.93362 |
-104.5206 |
| 20190005 |
5 |
10 |
231 |
14 |
82.32 |
SISTEMAS |
Rancho las Sanjuaneras |
24.34891 |
-104.3678 |
| 20190006 |
6 |
9 |
212 |
23 |
95.02 |
SISTEMAS |
Rancho las Sanjuaneras |
24.34891 |
-104.3678 |
| 20190007 |
7 |
12 |
221 |
10 |
79.06 |
SISTEMAS |
Colonia Hidalgo |
24.15923 |
-104.5846 |
| 20190008 |
8 |
9 |
226 |
9 |
92.47 |
SISTEMAS |
Luis Peyro |
23.93362 |
-104.5206 |
| 20190009 |
9 |
9 |
231 |
4 |
91.08 |
SISTEMAS |
Colonia Hidalgo |
24.15923 |
-104.5846 |
| 20190010 |
10 |
11 |
222 |
13 |
80.42 |
SISTEMAS |
El Cacalote |
24.13927 |
-104.7077 |
kable(tail(alumnos, 10), caption = "Las útimos diez registros de alumnos")
Las útimos diez registros de alumnos
| 20195920 |
5920 |
7 |
169 |
23 |
89.14 |
ADMINISTRACION |
Luis Peyro |
23.93362 |
-104.5206 |
| 20195921 |
5921 |
5 |
109 |
26 |
87.83 |
ADMINISTRACION |
Los Fresnos |
24.17011 |
-104.5477 |
| 20195922 |
5922 |
3 |
55 |
29 |
92.83 |
ADMINISTRACION |
El Cacalote |
24.13927 |
-104.7077 |
| 20195923 |
5923 |
2 |
23 |
23 |
88.60 |
ADMINISTRACION |
Los Fresnos |
24.17011 |
-104.5477 |
| 20195924 |
5924 |
2 |
27 |
28 |
92.83 |
ADMINISTRACION |
Los Fresnos |
24.17011 |
-104.5477 |
| 20195925 |
5925 |
7 |
94 |
13 |
80.95 |
ADMINISTRACION |
El Cacalote |
24.13927 |
-104.7077 |
| 20195926 |
5926 |
5 |
103 |
32 |
92.68 |
ADMINISTRACION |
El Cacalote |
24.13927 |
-104.7077 |
| 20195927 |
5927 |
4 |
79 |
34 |
86.18 |
ADMINISTRACION |
Los Fresnos |
24.17011 |
-104.5477 |
| 20195928 |
5928 |
5 |
108 |
32 |
90.48 |
ADMINISTRACION |
Luis Peyro |
23.93362 |
-104.5206 |
| 20195929 |
5929 |
7 |
169 |
32 |
92.33 |
ADMINISTRACION |
Los Fresnos |
24.17011 |
-104.5477 |
N=nrow(alumnos)
n=100
tabla_frec=data.frame(fdt_cat(alumnos$localidad))
tabla_frec$muestra=round(tabla_frec$rf * n, 0)
kable(tabla_frec, caption = "Tabla de frecuencia de alumnos por localidad")
Tabla de frecuencia de alumnos por localidad
| El Cacalote |
1214 |
0.2047563 |
20.47563 |
1214 |
20.47563 |
20 |
| Luis Peyro |
1208 |
0.2037443 |
20.37443 |
2422 |
40.85006 |
20 |
| Colonia Hidalgo |
1179 |
0.1988531 |
19.88531 |
3601 |
60.73537 |
20 |
| Rancho las Sanjuaneras |
1178 |
0.1986844 |
19.86844 |
4779 |
80.60381 |
20 |
| Los Fresnos |
1150 |
0.1939619 |
19.39619 |
5929 |
100.00000 |
19 |
N=nrow(alumnos)
n=100
loc1=filter(alumnos, localidad == tabla_frec$Category[1])
loc2=filter(alumnos, localidad == tabla_frec$Category[2])
loc3=filter(alumnos, localidad == tabla_frec$Category[3])
loc4=filter(alumnos, localidad == tabla_frec$Category[4])
loc5=filter(alumnos, localidad == tabla_frec$Category[5])
frloc1=nrow(loc1) / N
frloc2=nrow(loc2) / N
frloc3=nrow(loc3) / N
frloc4=nrow(loc4) / N
frloc5=nrow(loc5) / N
muestraloc1=sample(loc1, round(n * frloc1, 0))
kable(muestraloc1, caption = paste("La muestra de alumnos de Localidad ",tabla_frec$Category[1] ))
La muestra de alumnos de Localidad El Cacalote
| 20195287 |
5287 |
5 |
101 |
28 |
83.14 |
TIC |
El Cacalote |
24.13927 |
-104.7077 |
1091 |
| 20192736 |
2736 |
11 |
216 |
19 |
79.69 |
INDUSTRIAL |
El Cacalote |
24.13927 |
-104.7077 |
543 |
| 20195773 |
5773 |
5 |
108 |
29 |
89.70 |
ADMINISTRACION |
El Cacalote |
24.13927 |
-104.7077 |
1182 |
| 20191355 |
1355 |
1 |
NA |
23 |
0.00 |
BIOQUIMICA |
El Cacalote |
24.13927 |
-104.7077 |
265 |
| 20190286 |
286 |
1 |
NA |
27 |
0.00 |
SISTEMAS |
El Cacalote |
24.13927 |
-104.7077 |
61 |
| 20190865 |
865 |
7 |
162 |
32 |
89.03 |
ARQUITECTURA |
El Cacalote |
24.13927 |
-104.7077 |
170 |
| 20192405 |
2405 |
1 |
NA |
24 |
0.00 |
ELECTRICA |
El Cacalote |
24.13927 |
-104.7077 |
470 |
| 20190825 |
825 |
2 |
26 |
26 |
86.67 |
ARQUITECTURA |
El Cacalote |
24.13927 |
-104.7077 |
163 |
| 20195793 |
5793 |
3 |
50 |
29 |
92.27 |
ADMINISTRACION |
El Cacalote |
24.13927 |
-104.7077 |
1185 |
| 20195674 |
5674 |
6 |
140 |
32 |
92.77 |
ADMINISTRACION |
El Cacalote |
24.13927 |
-104.7077 |
1162 |
| 20194287 |
4287 |
2 |
25 |
31 |
95.83 |
QUIMICA |
El Cacalote |
24.13927 |
-104.7077 |
891 |
| 20194707 |
4707 |
10 |
209 |
16 |
86.57 |
GESTION EMPRESARIAL |
El Cacalote |
24.13927 |
-104.7077 |
977 |
| 20193762 |
3762 |
1 |
NA |
25 |
0.00 |
MECATRONICA |
El Cacalote |
24.13927 |
-104.7077 |
774 |
| 20192092 |
2092 |
8 |
156 |
20 |
80.18 |
CIVIL |
El Cacalote |
24.13927 |
-104.7077 |
404 |
| 20191283 |
1283 |
7 |
118 |
29 |
80.15 |
BIOQUIMICA |
El Cacalote |
24.13927 |
-104.7077 |
249 |
| 20191493 |
1493 |
1 |
NA |
23 |
0.00 |
BIOQUIMICA |
El Cacalote |
24.13927 |
-104.7077 |
292 |
| 20192343 |
2343 |
6 |
111 |
26 |
83.88 |
ELECTRICA |
El Cacalote |
24.13927 |
-104.7077 |
454 |
| 20191075 |
1075 |
6 |
142 |
24 |
87.33 |
ARQUITECTURA |
El Cacalote |
24.13927 |
-104.7077 |
211 |
| 20193763 |
3763 |
7 |
114 |
29 |
84.92 |
MECATRONICA |
El Cacalote |
24.13927 |
-104.7077 |
775 |
| 20192799 |
2799 |
6 |
147 |
27 |
86.55 |
INDUSTRIAL |
El Cacalote |
24.13927 |
-104.7077 |
560 |
muestraloc2=sample(loc2, round(n * frloc2, 0))
kable(muestraloc1, caption = paste("La muestra de alumnos de Localidad ",tabla_frec$Category[2] ))
La muestra de alumnos de Localidad Luis Peyro
| 20195287 |
5287 |
5 |
101 |
28 |
83.14 |
TIC |
El Cacalote |
24.13927 |
-104.7077 |
1091 |
| 20192736 |
2736 |
11 |
216 |
19 |
79.69 |
INDUSTRIAL |
El Cacalote |
24.13927 |
-104.7077 |
543 |
| 20195773 |
5773 |
5 |
108 |
29 |
89.70 |
ADMINISTRACION |
El Cacalote |
24.13927 |
-104.7077 |
1182 |
| 20191355 |
1355 |
1 |
NA |
23 |
0.00 |
BIOQUIMICA |
El Cacalote |
24.13927 |
-104.7077 |
265 |
| 20190286 |
286 |
1 |
NA |
27 |
0.00 |
SISTEMAS |
El Cacalote |
24.13927 |
-104.7077 |
61 |
| 20190865 |
865 |
7 |
162 |
32 |
89.03 |
ARQUITECTURA |
El Cacalote |
24.13927 |
-104.7077 |
170 |
| 20192405 |
2405 |
1 |
NA |
24 |
0.00 |
ELECTRICA |
El Cacalote |
24.13927 |
-104.7077 |
470 |
| 20190825 |
825 |
2 |
26 |
26 |
86.67 |
ARQUITECTURA |
El Cacalote |
24.13927 |
-104.7077 |
163 |
| 20195793 |
5793 |
3 |
50 |
29 |
92.27 |
ADMINISTRACION |
El Cacalote |
24.13927 |
-104.7077 |
1185 |
| 20195674 |
5674 |
6 |
140 |
32 |
92.77 |
ADMINISTRACION |
El Cacalote |
24.13927 |
-104.7077 |
1162 |
| 20194287 |
4287 |
2 |
25 |
31 |
95.83 |
QUIMICA |
El Cacalote |
24.13927 |
-104.7077 |
891 |
| 20194707 |
4707 |
10 |
209 |
16 |
86.57 |
GESTION EMPRESARIAL |
El Cacalote |
24.13927 |
-104.7077 |
977 |
| 20193762 |
3762 |
1 |
NA |
25 |
0.00 |
MECATRONICA |
El Cacalote |
24.13927 |
-104.7077 |
774 |
| 20192092 |
2092 |
8 |
156 |
20 |
80.18 |
CIVIL |
El Cacalote |
24.13927 |
-104.7077 |
404 |
| 20191283 |
1283 |
7 |
118 |
29 |
80.15 |
BIOQUIMICA |
El Cacalote |
24.13927 |
-104.7077 |
249 |
| 20191493 |
1493 |
1 |
NA |
23 |
0.00 |
BIOQUIMICA |
El Cacalote |
24.13927 |
-104.7077 |
292 |
| 20192343 |
2343 |
6 |
111 |
26 |
83.88 |
ELECTRICA |
El Cacalote |
24.13927 |
-104.7077 |
454 |
| 20191075 |
1075 |
6 |
142 |
24 |
87.33 |
ARQUITECTURA |
El Cacalote |
24.13927 |
-104.7077 |
211 |
| 20193763 |
3763 |
7 |
114 |
29 |
84.92 |
MECATRONICA |
El Cacalote |
24.13927 |
-104.7077 |
775 |
| 20192799 |
2799 |
6 |
147 |
27 |
86.55 |
INDUSTRIAL |
El Cacalote |
24.13927 |
-104.7077 |
560 |
muestraloc3=sample(loc3, round(n * frloc3, 0))
kable(muestraloc1, caption = paste("La muestra de alumnos de Localidad ",tabla_frec$Category[3] ))
La muestra de alumnos de Localidad Colonia Hidalgo
| 20195287 |
5287 |
5 |
101 |
28 |
83.14 |
TIC |
El Cacalote |
24.13927 |
-104.7077 |
1091 |
| 20192736 |
2736 |
11 |
216 |
19 |
79.69 |
INDUSTRIAL |
El Cacalote |
24.13927 |
-104.7077 |
543 |
| 20195773 |
5773 |
5 |
108 |
29 |
89.70 |
ADMINISTRACION |
El Cacalote |
24.13927 |
-104.7077 |
1182 |
| 20191355 |
1355 |
1 |
NA |
23 |
0.00 |
BIOQUIMICA |
El Cacalote |
24.13927 |
-104.7077 |
265 |
| 20190286 |
286 |
1 |
NA |
27 |
0.00 |
SISTEMAS |
El Cacalote |
24.13927 |
-104.7077 |
61 |
| 20190865 |
865 |
7 |
162 |
32 |
89.03 |
ARQUITECTURA |
El Cacalote |
24.13927 |
-104.7077 |
170 |
| 20192405 |
2405 |
1 |
NA |
24 |
0.00 |
ELECTRICA |
El Cacalote |
24.13927 |
-104.7077 |
470 |
| 20190825 |
825 |
2 |
26 |
26 |
86.67 |
ARQUITECTURA |
El Cacalote |
24.13927 |
-104.7077 |
163 |
| 20195793 |
5793 |
3 |
50 |
29 |
92.27 |
ADMINISTRACION |
El Cacalote |
24.13927 |
-104.7077 |
1185 |
| 20195674 |
5674 |
6 |
140 |
32 |
92.77 |
ADMINISTRACION |
El Cacalote |
24.13927 |
-104.7077 |
1162 |
| 20194287 |
4287 |
2 |
25 |
31 |
95.83 |
QUIMICA |
El Cacalote |
24.13927 |
-104.7077 |
891 |
| 20194707 |
4707 |
10 |
209 |
16 |
86.57 |
GESTION EMPRESARIAL |
El Cacalote |
24.13927 |
-104.7077 |
977 |
| 20193762 |
3762 |
1 |
NA |
25 |
0.00 |
MECATRONICA |
El Cacalote |
24.13927 |
-104.7077 |
774 |
| 20192092 |
2092 |
8 |
156 |
20 |
80.18 |
CIVIL |
El Cacalote |
24.13927 |
-104.7077 |
404 |
| 20191283 |
1283 |
7 |
118 |
29 |
80.15 |
BIOQUIMICA |
El Cacalote |
24.13927 |
-104.7077 |
249 |
| 20191493 |
1493 |
1 |
NA |
23 |
0.00 |
BIOQUIMICA |
El Cacalote |
24.13927 |
-104.7077 |
292 |
| 20192343 |
2343 |
6 |
111 |
26 |
83.88 |
ELECTRICA |
El Cacalote |
24.13927 |
-104.7077 |
454 |
| 20191075 |
1075 |
6 |
142 |
24 |
87.33 |
ARQUITECTURA |
El Cacalote |
24.13927 |
-104.7077 |
211 |
| 20193763 |
3763 |
7 |
114 |
29 |
84.92 |
MECATRONICA |
El Cacalote |
24.13927 |
-104.7077 |
775 |
| 20192799 |
2799 |
6 |
147 |
27 |
86.55 |
INDUSTRIAL |
El Cacalote |
24.13927 |
-104.7077 |
560 |
muestraloc4=sample(loc4, round(n * frloc4, 0))
kable(muestraloc1, caption = paste("La muestra de alumnos de Localidad ",tabla_frec$Category[4] ))
La muestra de alumnos de Localidad Rancho las Sanjuaneras
| 20195287 |
5287 |
5 |
101 |
28 |
83.14 |
TIC |
El Cacalote |
24.13927 |
-104.7077 |
1091 |
| 20192736 |
2736 |
11 |
216 |
19 |
79.69 |
INDUSTRIAL |
El Cacalote |
24.13927 |
-104.7077 |
543 |
| 20195773 |
5773 |
5 |
108 |
29 |
89.70 |
ADMINISTRACION |
El Cacalote |
24.13927 |
-104.7077 |
1182 |
| 20191355 |
1355 |
1 |
NA |
23 |
0.00 |
BIOQUIMICA |
El Cacalote |
24.13927 |
-104.7077 |
265 |
| 20190286 |
286 |
1 |
NA |
27 |
0.00 |
SISTEMAS |
El Cacalote |
24.13927 |
-104.7077 |
61 |
| 20190865 |
865 |
7 |
162 |
32 |
89.03 |
ARQUITECTURA |
El Cacalote |
24.13927 |
-104.7077 |
170 |
| 20192405 |
2405 |
1 |
NA |
24 |
0.00 |
ELECTRICA |
El Cacalote |
24.13927 |
-104.7077 |
470 |
| 20190825 |
825 |
2 |
26 |
26 |
86.67 |
ARQUITECTURA |
El Cacalote |
24.13927 |
-104.7077 |
163 |
| 20195793 |
5793 |
3 |
50 |
29 |
92.27 |
ADMINISTRACION |
El Cacalote |
24.13927 |
-104.7077 |
1185 |
| 20195674 |
5674 |
6 |
140 |
32 |
92.77 |
ADMINISTRACION |
El Cacalote |
24.13927 |
-104.7077 |
1162 |
| 20194287 |
4287 |
2 |
25 |
31 |
95.83 |
QUIMICA |
El Cacalote |
24.13927 |
-104.7077 |
891 |
| 20194707 |
4707 |
10 |
209 |
16 |
86.57 |
GESTION EMPRESARIAL |
El Cacalote |
24.13927 |
-104.7077 |
977 |
| 20193762 |
3762 |
1 |
NA |
25 |
0.00 |
MECATRONICA |
El Cacalote |
24.13927 |
-104.7077 |
774 |
| 20192092 |
2092 |
8 |
156 |
20 |
80.18 |
CIVIL |
El Cacalote |
24.13927 |
-104.7077 |
404 |
| 20191283 |
1283 |
7 |
118 |
29 |
80.15 |
BIOQUIMICA |
El Cacalote |
24.13927 |
-104.7077 |
249 |
| 20191493 |
1493 |
1 |
NA |
23 |
0.00 |
BIOQUIMICA |
El Cacalote |
24.13927 |
-104.7077 |
292 |
| 20192343 |
2343 |
6 |
111 |
26 |
83.88 |
ELECTRICA |
El Cacalote |
24.13927 |
-104.7077 |
454 |
| 20191075 |
1075 |
6 |
142 |
24 |
87.33 |
ARQUITECTURA |
El Cacalote |
24.13927 |
-104.7077 |
211 |
| 20193763 |
3763 |
7 |
114 |
29 |
84.92 |
MECATRONICA |
El Cacalote |
24.13927 |
-104.7077 |
775 |
| 20192799 |
2799 |
6 |
147 |
27 |
86.55 |
INDUSTRIAL |
El Cacalote |
24.13927 |
-104.7077 |
560 |
muestraloc5=sample(loc5, round(n * frloc5, 0))
kable(muestraloc1, caption = paste("La muestra de alumnos de Localidad ",tabla_frec$Category[5] ))
La muestra de alumnos de Localidad Los Fresnos
| 20195287 |
5287 |
5 |
101 |
28 |
83.14 |
TIC |
El Cacalote |
24.13927 |
-104.7077 |
1091 |
| 20192736 |
2736 |
11 |
216 |
19 |
79.69 |
INDUSTRIAL |
El Cacalote |
24.13927 |
-104.7077 |
543 |
| 20195773 |
5773 |
5 |
108 |
29 |
89.70 |
ADMINISTRACION |
El Cacalote |
24.13927 |
-104.7077 |
1182 |
| 20191355 |
1355 |
1 |
NA |
23 |
0.00 |
BIOQUIMICA |
El Cacalote |
24.13927 |
-104.7077 |
265 |
| 20190286 |
286 |
1 |
NA |
27 |
0.00 |
SISTEMAS |
El Cacalote |
24.13927 |
-104.7077 |
61 |
| 20190865 |
865 |
7 |
162 |
32 |
89.03 |
ARQUITECTURA |
El Cacalote |
24.13927 |
-104.7077 |
170 |
| 20192405 |
2405 |
1 |
NA |
24 |
0.00 |
ELECTRICA |
El Cacalote |
24.13927 |
-104.7077 |
470 |
| 20190825 |
825 |
2 |
26 |
26 |
86.67 |
ARQUITECTURA |
El Cacalote |
24.13927 |
-104.7077 |
163 |
| 20195793 |
5793 |
3 |
50 |
29 |
92.27 |
ADMINISTRACION |
El Cacalote |
24.13927 |
-104.7077 |
1185 |
| 20195674 |
5674 |
6 |
140 |
32 |
92.77 |
ADMINISTRACION |
El Cacalote |
24.13927 |
-104.7077 |
1162 |
| 20194287 |
4287 |
2 |
25 |
31 |
95.83 |
QUIMICA |
El Cacalote |
24.13927 |
-104.7077 |
891 |
| 20194707 |
4707 |
10 |
209 |
16 |
86.57 |
GESTION EMPRESARIAL |
El Cacalote |
24.13927 |
-104.7077 |
977 |
| 20193762 |
3762 |
1 |
NA |
25 |
0.00 |
MECATRONICA |
El Cacalote |
24.13927 |
-104.7077 |
774 |
| 20192092 |
2092 |
8 |
156 |
20 |
80.18 |
CIVIL |
El Cacalote |
24.13927 |
-104.7077 |
404 |
| 20191283 |
1283 |
7 |
118 |
29 |
80.15 |
BIOQUIMICA |
El Cacalote |
24.13927 |
-104.7077 |
249 |
| 20191493 |
1493 |
1 |
NA |
23 |
0.00 |
BIOQUIMICA |
El Cacalote |
24.13927 |
-104.7077 |
292 |
| 20192343 |
2343 |
6 |
111 |
26 |
83.88 |
ELECTRICA |
El Cacalote |
24.13927 |
-104.7077 |
454 |
| 20191075 |
1075 |
6 |
142 |
24 |
87.33 |
ARQUITECTURA |
El Cacalote |
24.13927 |
-104.7077 |
211 |
| 20193763 |
3763 |
7 |
114 |
29 |
84.92 |
MECATRONICA |
El Cacalote |
24.13927 |
-104.7077 |
775 |
| 20192799 |
2799 |
6 |
147 |
27 |
86.55 |
INDUSTRIAL |
El Cacalote |
24.13927 |
-104.7077 |
560 |
Cargar libreria para mapas
library(leaflet)
## Warning: package 'leaflet' was built under R version 4.0.3
map=leaflet() %>%
addTiles() %>%
addMarkers(lat=localidades50$Lat_Decimal[1],lng=localidades50$Lon_Decimal[1] ,popup=paste(localidades50$Nom_Loc[1], " ", tabla_frec$muestra[1])) %>%
addMarkers(lat=localidades50$Lat_Decimal[2],lng=localidades50$Lon_Decimal[2] ,popup=paste(localidades50$Nom_Loc[2], " ", tabla_frec$muestra[2])) %>%
addMarkers(lat=localidades50$Lat_Decimal[3],lng=localidades50$Lon_Decimal[3] ,popup=paste(localidades50$Nom_Loc[3], " ", tabla_frec$muestra[3])) %>%
addMarkers(lat=localidades50$Lat_Decimal[4],lng=localidades50$Lon_Decimal[4] ,popup=paste(localidades50$Nom_Loc[4], " ", tabla_frec$muestra[4])) %>%
addMarkers(lat=localidades50$Lat_Decimal[5],lng=localidades50$Lon_Decimal[5] ,popup=paste(localidades50$Nom_Loc[5], " ", tabla_frec$muestra[5]))
map
Interpretacion
Primero se cargan los datos los cuales son un conjunto de 100 nombres de personas con sus atributo de género y la actividad deportiva o cultura que practican, datos llamando a una función que construye los dato. Para despues hacer dos tablas una con los primeros diez registros de nombres y despues los diez ultimos registros de nombres. Esto lo hacemos con los nobres tando de personas como de alumnos.
Despues se cargan los datos de alumnos inscritos en una Institución de educación superior en el semetre septiembre 2020 a enero 2021, con los atributos siguientes:
-No de control (modificado y no real),
-Número Conesucutivo de alumno
-Semestre que cursa
-Créditos aprobados
-Carga académica que cursa
-Promedio aritmético
-Carrera
Despues hacemos una simulacion de muestreo con la muestra de personas y la de los alumnos
Luego hacemos el muestreo aleatorio sistematico con la muestra sistematica de alumnos y de personas
Luego hacemos el muestreo aleatorio estratificado con el conjunto de datos de personas se trata de encontrar 10 , pero que sea representativa de acuerdo y conforme al género femenino y masculino el cual es F:0.42 y M;0.58, para luego hacer la muestra de personas masculinas y femeninas y por ultimo la tabla de fracuencia de los alumnos
Por ultimo hacemos un muestreo por conglomerados Primero cargar datos de localidades de Durango, para hacer dos tablas de registro con los diez primeros alumnos y los diez ultimos.
Luego hacer una tabla de frecuencia de alumnos por localidad y hacer 5 tablas con los datos de 5 localidades.
Por ultimo hay que usar la libreria leaflet para hacer un mapa con las localidades.